
CENG3420
Lecture 01: Introduction

Bei Yu

byu@cse.cuhk.edu.hk
(Latest update: January 10, 2018)

Fall 2017

1 / 50

mailto:byu@cse.cuhk.edu.hk

Overview

Course Information

Background

Organization – First Glance

Summary

2 / 50

Overview

Course Information

Background

Organization – First Glance

Summary

3 / 50

Course Administration

Instructor:
I Bei Yu (byu@cse.cuhk.edu.hk)
I Office: SHB 914
I Office Hrs: H13:30–15:30

Tutors:
I Haoyu Yang (hyyang@cse.cuhk.edu.hk)
I Tinghuan Chen (thchen@cse.cuhk.edu.hk)
I Office: SHB 913

3 / 50

mailto:byu@cse.cuhk.edu.hk
mailto:hyyang@cse.cuhk.edu.hk
mailto:thchen@cse.cuhk.edu.hk

Grading Information

Grade Determinates
5% Attendance

15% Homework
15% Midterm (Mar. 16)
25% Three Labs (Individual project)
40% Final Exam

I Late submission per day is subject to 10% of penalty.
I A student must gain at least 50% of the full marks in order to pass the course.
I A student must attend at least 80% of lectures in order to gain all class attendance

credits.

4 / 50

General References

Textbook:

I Computer Organization and Design, 5th Edition
I Soft copy, amazon.cn, or amazon.com

Manuals:
I LC-3 Instruction Set Architecture (ISA)
I Lab tutorials (slides)

Slides:
I On the course web page before lecture
I Summary may be uploaded afterwards

5 / 50

Course Content

I Introduction to the major components of a computer system, how they function
together in executing a program.

I Introduction to CPU datapath and control unit design
I Introduction to techniques to improve performance and energy-efficiency of computer

systems
I Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of computer systems and to
understand the interactions between the computer’s architecture and its software so that
future software designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best cost-performance
trade-offs and so that future architects understand the effects of their design choices on
software.

6 / 50

Course Content

I Introduction to the major components of a computer system, how they function
together in executing a program.

I Introduction to CPU datapath and control unit design
I Introduction to techniques to improve performance and energy-efficiency of computer

systems
I Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of computer systems and to
understand the interactions between the computer’s architecture and its software so that
future software designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best cost-performance
trade-offs and so that future architects understand the effects of their design choices on
software.

6 / 50

Why Learn This Stuff?

I You want to call yourself a “computer scientist/engineer”
I You want to build HW/SW people use (so need performance/power)
I You need to make a purchasing decision or offer “expert” advice

Both hardware and software affect performance/power
I Algorithm determines number of source-level statements
I Language/compiler/architecture determine the number of machine-level instructions
I Processor/memory determine how fast and how power-hungry machine-level

instructions are executed

7 / 50

Kernel-memory-leaking Intel Processor Design Flaw

http://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

8 / 50

http://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

What You Should Already Know

I Basic logic design & machine organization
I logical minimization, FSMs, component design
I processor, memory, I/O

I Create, run, debug programs in an assembly language
I Will be introduced in tutorial

I Create, compile, and run C/C++ programs

I Create, organize, and edit files and run programs on Unix/Linux

9 / 50

Computer Organization and Design

I This course is all about how computers work

I But what do we mean by a computer?
I Different types: embedded, laptop, desktop, server
I Different uses: automobiles, graphics, finance, genomics ...
I Different manufacturers: Intel, Apple, IBM, Sony, Oracle ...
I Different underlying technologies and different costs

I Analogy: Consider a course on “automotive vehicles”
I Many similarities from vehicle to vehicle (e.g., wheels)
I Huge differences from vehicle to vehicle (e.g., gas vs. electric)

I Best way to learn:
I Focus on a specific instance and learn how it works
I While learning general principles and historical perspectives

10 / 50

Overview

Course Information

Background

Organization – First Glance

Summary

11 / 50

A Computer

Desktop computers

Designed to deliver good performance to a single user at low cost usually executing 3rd
party software, usually incorporating a graphics display, a keyboard, and a mouse

11 / 50

Other Classes of Computers

Servers
Used to run larger programs for multiple, simultaneous users typically accessed only via a
network and that places a greater emphasis on dependability and (often) security

Supercomputers

A high performance, high cost class of servers with hundreds to thousands of processors,
terabytes of memory and petabytes of storage that are used for high-end scientific and
engineering applications.

Embedded computers (processors)

A computer inside another device used for running one predetermined application

12 / 50

Supercomputers

Tianhe-2 (MilkyWay-2)

I Over 3 million cores
I Power: 17.6 MW (24 MW with cooling)
I Speed: 33.86 PFLOPS (peta = 1015)

13 / 50

Embedded Computers in You Car

14 / 50

PostPC Era

Personal Mobile Device (PMD)

Battery-operated device with wireless connectivity

Warehouse Scale Computer (WSC)

Datacenter containing hundreds of thousands of servers providing software as a service
(SaaS)

15 / 50

Growth in Cell Phone Sales (Embedded)
I embedded growth >> desktop growth
I Where else are embedded processors found?

16 / 50

When Machine Learning Meets Hardware
Convolution layer is one of the most expensive layers

I Computation pattern
I Emerging challenges

More and more end-point devices with limited memory

I Cameras
I Smartphone
I Autonomous driving

17 / 50

Convolutional Neural Network (CNN)

18 / 50

Bottleneck of CNN

19 / 50

20 / 50

The Evolution of Computer Hardware

When was the first transistor invented?

(a) (b)

(a) 1947, bi-polar transistor, by John Bardeen et al. at Bell Laboratories; (b) UNIVAC I (Universal Automatic
Computer): the first commercial computer in USA.

21 / 50

The Evolution of Computer Hardware

When was the first IC (integrated circuit) invented?

(a) (b)

(a) 1958, by Jack Kilby@Texas Instruments, by hand. Several transistors, resistors and capacitors on a single
substrate. (b) IBM System/360, 2MHz, 128KB – 256KB.

22 / 50

The Evolution of Computer Hardware
When was the first Microprocessor?

(a) (b)

1971, Intel 4004.

23 / 50

The IC Manufacturing Process

Yield
Proportion of working dies per wafer

Check this: https://youtu.be/d9SWNLZvA8g?list=FLELqiXCJQW-jcijW8ZAbA8w

24 / 50

https://youtu.be/d9SWNLZvA8g?list=FLELqiXCJQW-jcijW8ZAbA8w

AMD Opteron X2 Wafer

300mm wafer, 117 chips, 90nm technology.

25 / 50

Integrated Circuit Cost

Cost per die =
Cost per wafer

Dies per wafer · Yield
Dies per wafer = Wafer area / Die area

Yield =
1

[1 + (Defects per area · Die area / 2)]2

Nonlinear relation to area and defect rate
I Wafer cost and area are fixed
I Defect rate determined by manufacturing process
I Die area determined by architecture and circuit design

26 / 50

Impacts of Advancing Technology

Processor

I Logic capacity: increases about 30% per year
I Performance: 2× every 1.5 years

Memory

I DRAM capacity: 4× every 3 years, about 60% per year
I Memory speed: 1.5× every 10 years
I Cost per bit: decreases about 25% per year

Disk

I Capacity: increases about 60% per year

27 / 50

Moore’s Law for CPUs and DRAMs

From: “Facing the Hot Chips Challenge Again”, Bill Holt, Intel, presented at Hot Chips 17, 2005.

28 / 50

Main driver: device scaling ...

From: “Facing the Hot Chips Challenge Again”, Bill Holt, Intel, presented at Hot Chips 17, 2005.

29 / 50

Technology Scaling Road Map (ITRS)

Year 2004 2006 2008 2010 2012
Feature size (nm) 90 65 45 32 22

Intg. Capacity (BT) 2 4 6 16 32

Fun facts about 45nm transistors
I 30 million can fit on the head of a pin
I You could fit more than 2,000 across the width of a human hair
I If car prices had fallen at the same rate as the price of a single transistor since 1968, a

new car today would cost about 1 cent

30 / 50

Highest Clock Rate of Intel Processors

What if the exponential increase had kept up? Why not?
I Due to process improvements
I Deeper pipeline
I Circuit design techniques

31 / 50

Highest Clock Rate of Intel Processors

What if the exponential increase had kept up? Why not?
I Due to process improvements
I Deeper pipeline
I Circuit design techniques

31 / 50

Power Issue

Power = Capacitive load · Voltage2 · Frequency∗

Example

For a simple processor, if capacitive load is reduced by 15%, voltage is reduced by 15%,
maintain the same frequency, how much power consumption can be reduced?

∗here we only consider dynamic power, but not static power
32 / 50

A Sea Change Is at Hand

I The power challenge has forced a change in the design of microprocessors
I Since 2002 the rate of improvement in the response time of programs on desktop

computers has slowed from a factor of 1.5 per year to less than a factor of 1.2 per year
I As of 2006 all desktop and server companies are shipping microprocessors with

multiple processors – cores – per chip
I Plan of record is to add two cores per chip per generation (about every two years)

Product AMD
Barcelona

Intel
Nehalem

IBM Power 6 Sun Niagara
2

Cores per chip 4 4 2 8
Clock rate ~2.5 GHz ~2.5 GHz 4.7 GHz 1.4 GHz
Power 120 W ~100 W ~100 W 94 W

33 / 50

Intel Core i7 Processor

45nm technology, 18.9mm x 13.6mm, 0.73billion transistors, 2008

34 / 50

Overview

Course Information

Background

Organization – First Glance

Summary

35 / 50

What is a Computer?

Components

I processor (datapath, control)
I input (mouse, keyboard)
I output (display, printer)
I memory (cache, main memory, disk drive, CD/DVD)
I network

Our primary focus: the processor (datapath and control) and its interaction with
memory systems

I Implemented using tens/hundreds of millions of transistors
I Impossible to understand by looking at each transistor
I We need abstraction!

35 / 50

Major Components of a Computer

36 / 50

Machine Organization

I Capabilities and performance characteristics of the principal Functional Units (FUs).
(e.g., register file, ALU, multiplexors, memories, ...)

I The ways those FUs are interconnected (e.g., buses)
I Logic and means by which information flow between FUs is controlled
I The machine’s Instruction Set Architecture (ISA)
I Register Transfer Level (RTL) machine description

37 / 50

Processor Organization

Control needs to have circuitry to
I Decide which is the next instruction and input it from memory
I Decode the instruction
I Issue signals that control the way information flows between datapath components
I Control what operations the datapath’s functional units perform

Datapath needs to have circuitry to
I Execute instructions - functional units (e.g., adder) and storage locations (e.g., register

file)
I Interconnect the functional units so that the instructions can be executed as required
I Load data from and store data to memory

38 / 50

System Software

Systems software

Applications software

Hardware

Operating System
I Supervising program that interfaces the user’s program with the hardware (e.g., Linux,

iOS, Windows)
I Handles basic input and output operations
I Allocates storage and memory
I Provides for protected sharing among multiple applications

Compiler
I Translate programs written in a high-level language (e.g., C, Java) into instructions that

the hardware can execute
39 / 50

Advantages of Higher-Level Languages ?

I Allow the programmer to think in a more natural language and for their intended use
(Fortran for scientific computation, Cobol for business programming, Lisp for symbol
manipulation, Java for web programming, ...)

I Improve programmer productivity – more understandable code that is easier to debug
and validate

I Improve program maintainability
I Allow programs to be independent of the computer on which they are developed

(compilers and assemblers can translate high-level language programs to the binary
instructions of any machine)

I Emergence of optimizing compilers that produce very efficient assembly code
optimized for the target machine

As a result, very little programming is done today at the assembler level

40 / 50

Below the Program

• High-level	language	program	(in	C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly	language	program	(for	MIPS)
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine	(object)	code	(for	MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

41 / 50

Below the Program

• High-level	language	program	(in	C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly	language	program	(for	MIPS)
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine	(object)	code	(for	MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

41 / 50

Input Device Inputs Object Code

Processor

Control

Datapath

Memory

000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

42 / 50

Object Code Stored in Memory

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

43 / 50

Object Code Stored in Memory

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

43 / 50

Decode & Excute Codes

Processor

Control

Datapath

Memory000000 00100 00010 0001000000100000

Devices

Input

Output

Network

I Control decodes the instruction to determine what to execute

I Datapath executes the instruction as directed by control

44 / 50

Decode & Excute Codes

Processor

Control

Datapath

Memory

contents Reg #4 ADD contents Reg #2
results put in Reg #2

000000 00100 00010 0001000000100000

Devices

Input

Output

Network

I Control decodes the instruction to determine what to execute
I Datapath executes the instruction as directed by control

44 / 50

What Happens Next?

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network
Fetch

DecodeExec

I Processor fetches the next instruction from memory
I How does it know which location in memory to fetch from next?

45 / 50

Output Device Outputs Data

Processor

Control

Datapath

Memory

00000100010100000000000000000000
00000000010011110000000000000100
00000011111000000000000000001000

Devices

Input

Output

Network

46 / 50

Instruction Set Architecture (ISA)

The interface description separating the software and hardware

software

hardware

instruction set architecture

47 / 50

Instruction Set Architecture (ISA)

I ISA, or simply architecture – the abstract interface between the hardware and the
lowest level software that includes all the information necessary to write a machine
language program, including instructions, registers, memory access, I/O, ...

I Enables implementations of varying cost and performance to run identical software
I The combination of the basic instruction set (the ISA) and the operating system

interface is called the application binary interface (ABI)
I ABI: The user portion of the instruction set plus the operating system interfaces used

by application programmers. Defines a standard for binary portability across
computers.

48 / 50

The MIPS ISA

Instruction Categories
I Load/Store
I Computational
I Jump and Branch
I Floating Point
I Memory Management
I Special

R0 - R31

PC
HI
LO

Registers

3 Instruction Formats: all 32 bits wide

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

49 / 50

Overview

Course Information

Background

Organization – First Glance

Summary

50 / 50

How Do the Pieces Fit Together?

I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory
system

Datapath & Control

network

I Coordination of many levels of abstraction
I Under a rapidly changing set of forces
I Design, measurement, and evaluation

50 / 50

How Do the Pieces Fit Together?

I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory
system

Datapath & Control

network

CSCI3150
CSCI3120

CENG2400&CENG3420

CENG3470
ENGG2020

CENG4430

I Coordination of many levels of abstraction
I Under a rapidly changing set of forces
I Design, measurement, and evaluation

50 / 50

	Main Talk
	Course Information
	Background
	Organization – First Glance
	Summary

