
64 Chapter 2 Instructions: Language of the Computer

MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9, $zero,
$a0–$a3, $v0–$v1, $gp, $fp,
$sp, $ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic,
register $zero always equals 0, and register $at is reserved by the assembler to
handle large constants.

230 memory
words

Memory[0], Memory[4], . . . ,
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so
sequential word addresses differ by 4. Memory holds data structures, arrays, and
spilled registers.

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add $s1,$s2,$s3 $s1 = $s2 + $s3 Three register operands
subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 Three register operands
add immediate addi $s1,$s2,20 $s1 = $s2 + 20 Used to add constants

Data
transfer

load word lw $s1,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register
store word sw $s1,20($s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half lh $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register
load half unsigned lhu $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register
store half sh $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory
load byte lb $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register
load byte unsigned lbu $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register
store byte sb $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory
load linked word ll $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap
store condition. word sc $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap
load upper immed. lui $s1,20 $s1 = 20 * 216 Loads constant in upper 16 bits

Logical

and and $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND
or or $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,$s3 $s1 = ~ ($s2 | $s3) Three reg. operands; bit-by-bit NOR
and immediate andi $s1,$s2,20 $s1 = $s2 & 20 Bit-by-bit AND reg with constant
or immediate ori $s1,$s2,20 $s1 = $s2 | 20 Bit-by-bit OR reg with constant
shift left logical sll $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant
shift right logical srl $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional
branch

branch on equal beq $s1,$s2,25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne $s1,$s2,25 if ($s1!= $s2) go to
PC + 4 + 100

Not equal test; PC-relative

set on less than slt $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set on less than
unsigned

sltu $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than unsigned

set less than
immediate

slti $s1,$s2,20 if ($s2 < 20) $s1 = 1;
else $s1 = 0

Compare less than constant

set less than
immediate unsigned

sltiu $s1,$s2,20 if ($s2 < 20) $s1 = 1;
else $s1 = 0

Compare less than constant
unsigned

Unconditional
jump

jump j 2500 go to 10000 Jump to target address
jump register jr $ra go to $ra For switch, procedure return
jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. Th is information is also found in Column 1 of the MIPS Reference
Data Card at the front of this book.

