CENG3420 Homework 1

Due: Feb. 04, 2018
Q1 (10\%) Draw the schematic view of four-input NAND gate.
Q2 (20\%) Solve the problems about multiplexer.

1. (10%) Write down the logic expression of a multiplexer with 2^{n} inputs and n selection lines.
2. (10%) Design the multiplexer when $n=1$ with only NAND and NOT gates (Use the symbols given in slides L02.13).

Q3 (15\%)

1. (10\%) Translate the following C function into MIPS assembly.
```
int sum(int n, int rst){
        if (n>0)
        return sum(n-1, rst+n)
        else
            return rst
}
```

2. (5%) Is the access to the stack necessary? Please elaborate the resons.

Q4 (15\%) Write an assembly function to clear an array array [] with size size (i.e. set every elements to zero). Assume two parameters array and size are stored in \$a0 and $\$ a 1$.

Q5 (10\%) A program runs in $10 s$ on computer A with 2 GHz clock. If we want to design a computer B such that the same program can be finished in $6 s$, determine the clock frequency of computer B. Assume it requires 1.2 X clock cycles to execute the program on computer B due to different CPU design.

Q6 (10\%) Dynamic power of one transistor is proportional to the capacitive load (C), square voltage (V^{2}) and working frequency (f). Suppose we have developed new versions of a processor with the following characteristics.

Version	Voltage	Clock Rate
Version 1	1.3 V	5 GHz
Version 2	0.8 V	4 GHz

1. (5%) How much has the capacitive load varied between versions if the dynamic power of version 2 is 20% less than version 1 ?
2. (5%) How much has the dynamic power been reduced if the capacitive load does not change?

Q7 (10\%) Figure 1 shows a simple multiplication algorithm in ALU design. Write down the step by step procedure to calculate 7×3 or 00000111×0011. Use 4 -bit numbers in the calculation.

Figure 1: A simple multiplication algorithm.

Q8 (10\%) Figure 2 shows a simple division algorithm in ALU design. Write down the step by step procedure to calculate $7 \div 3$ or $00000111 \div 0011$. Use 4 -bit numbers in the calculation.

Figure 2: A simple division algorithm.

