CENG3420 Homework 1

Due: Feb. 04, 2018

Solutions

Q1 (10%) Draw the schematic view of four-input NAND gate.

A1 As shown in Figure 1.

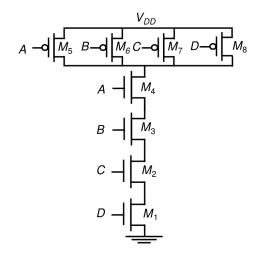


Figure 1: Schematic view of four-input NAND gate.

Q2 (20%) Solve the problems about multiplexer.

- 1. (10%) Write down the logic expression of a multiplexer with 2^n inputs and n selection lines.
- 2. (10%) Design the multiplexer when n=1 with only **NAND** and **NOT** gates (Use the symbols given in slides L02.13).

A2 1.

$$Y = (\bar{S}_{n-1} \dots \bar{S}_1 \bar{S}_0 I_0) + (\bar{S}_{n-1} \dots \bar{S}_1 S_0 I_1) + \dots + (\bar{S}_{n-1} \dots \bar{S}_1 S_0 I_{n-1}), \quad (1)$$

where S_i s are selection signals and I_i s are inputs.

2. When n = 1, Equation (1) becomes,

$$Y = S_0 I_1 + \bar{S}_0 I_0 = \overline{\bar{S}_0 I_0} \overline{S_0 I_1}, \tag{2}$$

which corresponds to the circuit as shown in Figure 2.

Q3 (15%)

1. (10%) Translate the following C function into MIPS assembly.

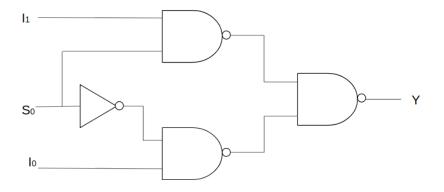


Figure 2: 2-input multiplexer.

```
int sum(int n, int rst) {
    if (n>0)
        return sum(n-1, rst+n)
    else
        return rst
}
```

- 2. (5%) Is the access to the stack necessary? Please elaborate the resons.
- **A3** As shown below (assume that \$a0=n and \$a1=rst):

```
sum:
slti $t0, $a0, 1
bne $t0, $zero, sum_exit
add $a1, $a1, $a0
addi $a0, $a0, -1
j sum
sum_exit:
add $v0, $a1, $zero
jr $ra
```

- **Q4** (15%) Write an assembly function to clear an array <code>array[]</code> with size <code>size</code> (i.e. set every elements to zero). Assume two parameters <code>array</code> and <code>size</code> are stored in <code>\$a0</code> and <code>\$a1</code>.
- **A4** Here is a sample solution:

```
move $t0, $zero
loop:
sll $t1, $t0, 2
add $t2, $a0, $t1
sw $zero, 0($t2)
addi $t0, $t0, 1
slt $t3, $t0, $a1
bne $t3, $zero, loop
```

Q5 (10%) A program runs in 10s on computer A with 2GHz clock. If we want to design

a computer B such that the same program can be finished in 6s, determine the clock frequency of computer B. Assume it requires 1.2X clock cycles to execute the program on computer B due to different CPU design.

A5 CPU clock cycle of the program on computer A is,

$$cycle_A = 10s \times 2GHz = 2 \times 10^{10} cycles.$$
 (3)

CPU clock cycle of the program on computer B is,

$$cycle_B = 1.2 \times cycle_A = 2.4 \times 10^{10} \text{cycles}.$$
 (4)

Clock frequency of computer B will be,

$$cycle_B/6s = 4GHz. (5)$$

Q6 (10%) Dynamic power of one transistor is proportional to the capacitive load (C), square voltage (V^2) and working frequency (f). Suppose we have developed new versions of a processor with the following characteristics.

Version	Voltage	Clock Rate
Version 1	1.3 V	5 GHz
Version 2	0.8V	4 GHz

- 1. (5%) How much has the capacitive load varied between versions if the dynamic power of version 2 is 20% less than version 1?
- 2. (5%) How much has the dynamic power been reduced if the capacitive load does not change?

A6 1.
$$4 \times 0.8^2 C_2 / 5 \times 1.3^2 C_1 = 0.8 \implies C_2 / C_1 = 2.64$$
.

2. $4 \times 0.8^2/5 \times 1.3^2 = 0.3$, i.e., reduced by 70%.

Q7 (10%) Figure 3 shows a simple multiplication algorithm in ALU design. Write down the step by step procedure to calculate 7×3 or 00000111×0011 . Use 4-bit numbers in the calculation.

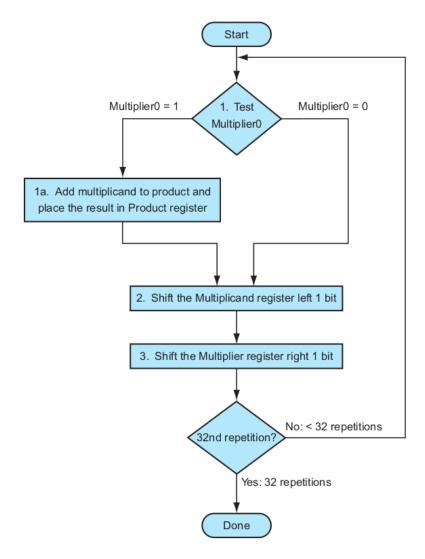


Figure 3: A simple multiplication algorithm.

A7 As shown in Table 1.

Table 1: 3×7

Multiplcand	Multiplier	Multiplier0	Product
0111	0011	1	00000111
1110	0001	1	00010101
1100	0000	0	00010101

Q8 (10%) Figure 4 shows a simple division algorithm in ALU design. Write down the step by step procedure to calculate $7 \div 3$ or $00000111 \div 0011$. Use 4-bit numbers in the calculation.

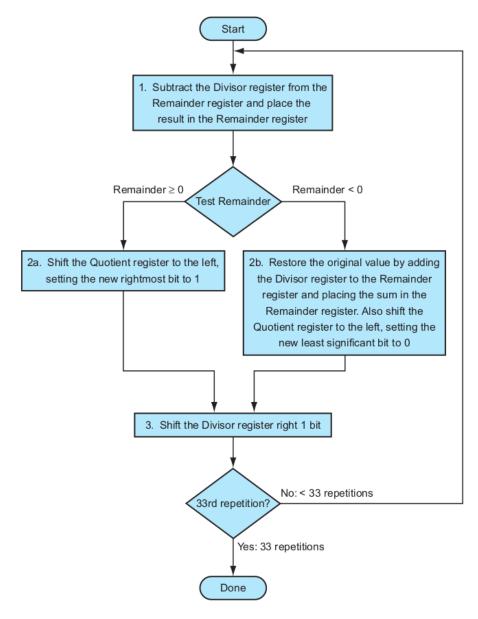


Figure 4: A simple division algorithm.

A8 As shown in Table 2.

Table 2: **7÷3**

Quotient	Divisor	Remainder
0000	00110000	00000111
0000	00011000	00000111
0000	00001100	00000111
0000	00000110	00000111
0001	00000011	00000001
0010	00000001	00000001