AL The Chinese University of Hong Kong

2
I

szjf AR P K S

CENG3420
Lecture 11: Virtual Memory & Performance

Bei Yu

byu@cse.cuhk.edu.hk
(Latest update: March 23, 2017)

RS U

mailto:byu@cse.cuhk.edu.hk

Overview

Introduction

Virtual Memory
VA — PA
TLB

Performance Issues

2/32

Overview

Introduction

3/32

Motivations

Physical memory may not be as large as “possible address
space” spanned by a processor, e.g.
» A processor can address 4G bytes with 32-bit address

» But installed main memory may only be 1GB

How if we want to simultaneously run many programs which require a
total memory consumption greater than the installed main memory

capacity?

Terminology:
» A running program is called a process or a thread

» Operating System (OS) controls the processes

DG
=2 =S =)

3/32

Virtual Memory

» Use main memory as a “cache” for secondary memory
» Each program is compiled into its own virtual address space
» What makes it work? Principle of Locality

4/32

Virtual Memory

» Use main memory as a “cache” for secondary memory
» Each program is compiled into its own virtual address space
» What makes it work? Principle of Locality

Why virtual memory?
» During run-time, virtual address is translated to a physical address
» Efficient & safe sharing memory among multiple programs
» Ability to run programs larger than the size of physical memory
» Code relocation: code can be loaded anywhere in main memory

crreey

4/32

Bottom of the Memory Hierarchy

Consider the following example:

» Suppose we hit the limit of 1GB in the example, and we suddenly
need some more memory on the fly.

» We move some main memory chunks to the harddisk, say,
100MB.

» So, we have 100MB of “free” main memory for use.

» What if later on, those instructions / data in the saved 100MB
chunk are needed again?

» We have to “free” some other main memory chunks in order to
move the instructions / data back from the harddisk.

crreey

5/32

Two Programs Sharing Physical Memory

» A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

Program 1
virtual address space
_

~ main memory

T

.
/.

2

6/32

Two Programs Sharing Physical Memory

» A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

Program 1
virtual address space

~ main memory

Program 2
itual address space

6/32

Virtual Memory Organization

» Part of process(es) are stored | Processor |

temporarily on harddisk and brought into Virtual address
main memory as needed . IIMU:I
» This is done automatically by the OS, Physical address

application program does not need to be
aware of the existence of virtual memory

Cache

(V M) Data Physical address
» Memory management unit (MMU) | Main memory |
translates virtual addresses to physical DMA transfer

addresses | . |
isk storage

Srrts

7132

Overview

Virtual Memory
VA — PA
TLB

8/32

Address Translation

» Memory divided into pages of size ranging from 2KB to 16KB

» Page too small: too much time spent getting pages from disk
» Page too large: a large portion of the page may not be used
» This is similar to cache block size issue (discussed earlier)

» For harddisk, it takes a considerable amount of time to locate a
data on the disk but once located, the data can be transferred at a
rate of several MB per second.

> If pages are too large, it is possible that a substantial portion of a
page is not used but it will occupy valuable space in the main
memory.

Euane &

8/32

Address Translation

» An area in the main memory that can hold one page is called a
page frame.

» Processor generates virtual addresses

» MS (high order) bits are the virtual page number
» LS (low order) bits are the offset

» Information about where each page is stored is maintained in a
data structure in the main memory called the page table
» Starting address of the page table is stored in a page table base
register
» Address in physical memory is obtained by indexing the virtual
page number from the page table base register

9/32

Srrts

Address Translation

» Virtual address — physical address by combination of HW/SW
» Each memory request needs first an address translation
» Page Fault: a virtual memory miss

3130 1211 ... 10
Virtual Address (VA) | virtual page num [page offset
\
Physical Address (PA) [physicalpagenum [pageofiset

2928 1211 ... 10

10/32

Address Translation Mechanisms

Virtual page
number
Page table
Physical page or Physical memory
Valid disk address
1 —
1 ———
1 —
1
0 Qs
1 LN
1 ——<
0 oL
1 Cf Disk storage
1 o
0 L
1 7 \:
\\\\\\\\\\\\\\\\\
[
Iy
[

» Page Table: in main memory
» Process: page table + program counter + registers @@%

11/32

Virtual Addressing with a Cache

Disadvantage of virtual addressing:

» One exira memory access to translate a VA to a PA

» memory (cache) access very expensive...

CPU

VA

Translation

PA

Cache

miss

Main
Memory

hit

;

data

12/32

g@gjtzﬁ B

Translation Look-aside Buffer (TLB)

13/32

» A small cache: keeps track of recently used address mappings

> Avoid page table lookup

CPU

VA

TLB

PA

Cache

miss

Main
Memory

missi

T

Tral

nslation

hit

data

g;ggfy f@—;

Translation Look-aside Buffer (TLB)

Virtual page Physical page
number Valid Dirty Ref Tag address
[
1]0(1 ~
} } } b Physical memory
1]0(1 ~_
o[0f0
1]0(1 ~
Page table
Physical page
Valid Dirty Ref or disk address
1101 ://
1[0[0 i
TToTo — Disk storage
1/0(1 o~
o[ofo —= Lo
110[1 L [E——
1ol A A
o[ofo
10171 ¢ (—
111 o
o0[ofo o~
1111 <

» Dirty bit:
» Ref bit:

14/32

More about TLB

Organization:

» Just like any other cache, can be fully associative, set
associative, or direct mapped.

Access time:
» Faster than cache: due to smaller size

» Typically not more than 512 entries even on high end machines

A TLB miss:

» If the page is in main memory: miss can be handled; load
translation info from page table to TLB

» If the page is NOT in main memory: page fault

Srrts

15/32

Cooperation of TLB & Cache

Virtual address

TLB miss

exception Physical address

Write access
bit on?

Write protection
Cache miss stall Yes exception
while read block
Deliver data
to the CPU

Cache miss stall
while read block

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer|

16/32

et

TLB Event Combinations

17/32

» TLB/ Cache miss: page / block not in “cache”

» Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?
Hit Hit Hit
Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss
Hit Miss Miss / Hit

Miss Miss Hit

crreey

TLB Event Combinations

17/32

» TLB/ Cache miss: page / block not in “cache”

» Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?

Hit Hit Hit Yes — what we want!

Hit Hit Miss Yes — although page table is not
checked if TLB hits

Miss Hit Hit Yes — TLB miss, PA in page table

Miss Hit Miss Yes — TLB miss, PA in page table but
data not in cache

Miss Miss Miss Yes — page fault

Hit Miss Miss / Hit
Miss Miss Hit

ety

TLB Event Combinations

17/32

» TLB/ Cache miss: page / block not in “cache”

» Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes — what we want!
Hit Hit Miss Yes — although page table is not
checked if TLB hits
Miss Hit Hit Yes — TLB miss, PA in page table
Miss Hit Miss Yes — TLB miss, PA in page table but
data not in cache
Miss Miss Miss Yes — page fault
Hit Miss Miss / Hit Impossible — TLB translation not possible
if page is not in memory
Miss Miss Hit Impossible — data not allowd in cache if

page is not in memory

DG
=2 =S =)

QUESTION: Why Not a Virtually Addressed Cache?

» Access Cache using virtual address (VA)

» Only address translation when cache misses

VA

PA

CPU Translation Main
Memory
data
it Cache

Answer:

18/32

DG
=2 =S =)

Overlap Cache & TLB Accesses

» High order bits of VA are used to access TLB

» Low order bits of VA are used as index into cache

Virtual page # lPage offset

|

2-way Associative Cache

Tag | Data Tag| Data

l—‘) | | IBlock offset
Index
VA Tag .';Aé
l PA Tag
TLB Hit '

19/32

Cache Hit Desired word

Srrts

The Hardware / Software Boundary

Which part of address translation is done by hardware?

» TLB that caches recent translations:
> TLB access time is part of cache hit time

> May allot extra stage in pipeline
» Page Table storage, fault detection and updating

> Dirty & Reference bits
» Page faults result in interrupts

» Disk Placement:

20/32

2

The Hardware / Software Boundary

Which part of address translation is done by hardware?

» TLB that caches recent translations: (Hardware)
» TLB access time is part of cache hit time

> May allot extra stage in pipeline
» Page Table storage, fault detection and updating

> Dirty & Reference bits (Hardware)
> Page faults result in interrupts (Software)

» Disk Placement: (Software)

20/32

Overview

Performance Issues

21/32

21/32

Q1: Where A Block Be Placed in Upper Level?

Set associative

Associativity

Scheme name # of sets | Blocks per set
Direct mapped | # of blocks 1
of blocks

Associativity

Fully associative

1

of blocks

Euane &

21/32

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets | Blocks per set
Direct mapped | # of blocks 1
o # of blocks PR
Set associative Associativity Associativity
Fully associative 1 # of blocks
Q2: How Is Entry Be Found?
Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags | Degree of associativity
Fully associative Compare all tags # of blocks
y Separate page tables 0

DG
=2 =S =)

Q3: Which Entry Should Be Replaced on a Miss?

» Direct mapped: only one choice
» Set associative or fully associative:

» Random
» LRU (Least Recently Used)

Note that:

» For a 2-way set associative, random replacement has a miss rate
1.1x than LRU

» For high level associativity (4-way), LRU is too costly

crreey

22/32

Q4: What Happen On A Write?
» Write-Through:
» The information is written in both the block in cache & the block in
lower level of memory
» Combined with write buffer, so write waits can be eliminated
> @;
> @;

» Write-Back:

» The information is written only to the block in cache

The modification is written to lower level, only when the block is
replaced

Need dirty bit: tracks whether the block is clean or not

Virtual memory always use write-back

h:

h:

v

vV vy vy

Srrts

23/32

Q4: What Happen On A Write?
» Write-Through:

» The information is written in both the block in cache & the block in
lower level of memory

» Combined with write buffer, so write waits can be eliminated

» (P: read misses don't result in writes

» (D: easier to implement

» Write-Back:

» The information is written only to the block in cache

The modification is written to lower level, only when the block is
replaced

Need dirty bit: tracks whether the block is clean or not

Virtual memory always use write-back

h:

h:

v

vV vy vy

crreey

23/32

Q4: What Happen On A Write?
» Write-Through:
» The information is written in both the block in cache & the block in
lower level of memory
» Combined with write buffer, so write waits can be eliminated
» (P: read misses don't result in writes
» (D: easier to implement

» Write-Back:

» The information is written only to the block in cache

» The modification is written to lower level, only when the block is
replaced

Need dirty bit: tracks whether the block is clean or not

Virtual memory always use write-back

P: write with speed of cache

D: repeated writes require only one write to lower level

vV vy vy

crreey

23/32

Performance Consideration

Performance

How fast machine instructions can be brought into the processor and
how fast they can be executed.

» Two key factors are performance and cost, i.e., price/performance
ratio.

» For a hierarchical memory system with cache, the processor is
able to access instructions and data more quickly when the data
wanted are in the cache.

» Therefore, the impact of a cache on performance is dependent on
the hit and miss rates.

Srrts

24/32

Cache Hit Rate and Miss Penalty

» High hit rates over 0.9 are essential for high-performance
computers.

» A penalty is incurred because extra time is needed to bring a
block of data from a slower unit to a faster one in the hierarchy.

» During that time, the processor is stalled.

» The waiting time depends on the details of the cache operation.

Miss Penalty

Total access time seen by the processor when a miss occurs.

Euane &

25/32

Miss Penalty

Example: Consider a computer with the following parameters:

Access times to the cache and the main memory are t and 10t
respectively. When a cache miss occurs, a block of 8 words will be
transferred from the MM to the cache. It takes 10t to transfer the first
word of the block and the remaining 7 words are transferred at a rate

of one word per t seconds.

> Misspenalty =t + 10t +7 X t +t
» First t: Initial cache access that results in a miss.

» Last t: Move data from the cache to the processor.

ety

26/32

Average Memory Access Time

hxC+(1—h)xM

h: hit rate
M: miss penalty

v

v

v

C: cache access time

v

High cache hit rates (> 90%) are essential

v

Miss penalty must also be reduced

Srrts

27/32

Question: Memory Access Time Example

>

>

Assume 8 cycles to read a single memory word;

15 cycles to load a 8-word block from main memory (previous
example);

cache access time = 1 cycle

For every 100 instructions, statistically 30 instructions are data
read/ write

Instruction fetch: 100 memory access: assume hit rate = 0.95
Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles
with cache.

28/32

P, 0
[SESES

Caches on Processor Chips

» In high-performance processors, two levels of caches are
normally used, L1 and L2.

» L1 must be very fast as they determine the memory access time
seen by the processor.

» L2 cache can be slower, but it should be much larger than the L1
cache to ensure a high hit rate. lts speed is less critical because it
only affects the miss penalty of the L1 cache.

» Average access time on such a system:
h1-Cl—l-(l—hl)-[hz'CZ—{—(l—hz)-M]

> hy (hy): the L1 (L2) hit rate

» (the access time of L1 cache,

» (), the miss penalty to transfer data from L2 cache to L1

» M: the miss penalty to transfer data from MM to L2 and then to

L1. ety

29/32

Larger Block Size

» Take advantage of spatial locality.

» © If all items in a larger block are needed in a computation, it is
better to load these items into the cache in a single miss.

» © Larger blocks are effective only up to a certain size, beyond
which too many items will remain unused before the block is
replaced.

» © Larger blocks take longer time to transfer and thus increase the
miss penalty.

» Block sizes of 16 to 128 bytes are most popular.

Euane &

30/32

Miss Rate v.s. Block Size v.s. Cache Size

31/32

Miss rate (%)

8 KB
16 KB
64 KB
—+256 KB

Block size (bytes)

Miss rate goes up if the block size becomes a significant fraction of the
cache size because the number of blocks that can be held in the same

size cache is smaller (increasing capacity misses)

crrrey

Enhancement
Write buffer:
» Read request is served first.
» Write request stored in write buffer first and sent to memory
whenever there is no read request.
» The addresses of a read request should be compared with the
addresses of the write buffer.

ety

32/32

Enhancement
Write buffer:

» Read request is served first.

» Write request stored in write buffer first and sent to memory
whenever there is no read request.

» The addresses of a read request should be compared with the
addresses of the write buffer.

Prefetch:

» Prefetch data into the cache before they are needed, while the
processor is busy executing instructions that do not result in a
read miss.

» Prefetch instructions can be inserted by the programmer or the
compiler.

32/32

DG
=2 =S =)

Enhancement
Write buffer:

» Read request is served first.

» Write request stored in write buffer first and sent to memory
whenever there is no read request.

» The addresses of a read request should be compared with the
addresses of the write buffer.

Prefetch:

» Prefetch data into the cache before they are needed, while the
processor is busy executing instructions that do not result in a
read miss.

» Prefetch instructions can be inserted by the programmer or the
compiler.

Load-through Approach

» Instead of waiting the whole block to be transferred, the processor
resumes execution as soon as the required word is loaded in the
cache.

DG
=2 =S =)

32/32

	Main Talk
	Introduction
	Virtual Memory
	VA PA
	TLB

	Performance Issues

