
CENG3420
Lecture 11: Virtual Memory & Performance

Bei Yu

byu@cse.cuhk.edu.hk
(Latest update: March 23, 2017)

2017 Spring

1 / 32

mailto:byu@cse.cuhk.edu.hk

Overview

Introduction

Virtual Memory
VA→ PA
TLB

Performance Issues

2 / 32

Overview

Introduction

Virtual Memory
VA→ PA
TLB

Performance Issues

3 / 32

Motivations

Physical memory may not be as large as “possible address
space” spanned by a processor, e.g.

I A processor can address 4G bytes with 32-bit address
I But installed main memory may only be 1GB

How if we want to simultaneously run many programs which require a
total memory consumption greater than the installed main memory
capacity?

Terminology:
I A running program is called a process or a thread
I Operating System (OS) controls the processes

3 / 32

Virtual Memory

I Use main memory as a “cache” for secondary memory
I Each program is compiled into its own virtual address space
I What makes it work? Principle of Locality

Why virtual memory?
I During run-time, virtual address is translated to a physical address
I Efficient & safe sharing memory among multiple programs
I Ability to run programs larger than the size of physical memory
I Code relocation: code can be loaded anywhere in main memory

4 / 32

Virtual Memory

I Use main memory as a “cache” for secondary memory
I Each program is compiled into its own virtual address space
I What makes it work? Principle of Locality

Why virtual memory?
I During run-time, virtual address is translated to a physical address
I Efficient & safe sharing memory among multiple programs
I Ability to run programs larger than the size of physical memory
I Code relocation: code can be loaded anywhere in main memory

4 / 32

Bottom of the Memory Hierarchy

Consider the following example:
I Suppose we hit the limit of 1GB in the example, and we suddenly

need some more memory on the fly.

I We move some main memory chunks to the harddisk, say,
100MB.

I So, we have 100MB of “free” main memory for use.

I What if later on, those instructions / data in the saved 100MB
chunk are needed again?

I We have to “free” some other main memory chunks in order to
move the instructions / data back from the harddisk.

5 / 32

Two Programs Sharing Physical Memory

I A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

main memory

Program 1
virtual address space

6 / 32

Two Programs Sharing Physical Memory

I A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

main memory

Program 1
virtual address space

Program 2
virtual address space

6 / 32

Virtual Memory Organization

I Part of process(es) are stored
temporarily on harddisk and brought into
main memory as needed

I This is done automatically by the OS,
application program does not need to be
aware of the existence of virtual memory
(VM)

I Memory management unit (MMU)
translates virtual addresses to physical
addresses

7 / 32

Overview

Introduction

Virtual Memory
VA→ PA
TLB

Performance Issues

8 / 32

Address Translation

I Memory divided into pages of size ranging from 2KB to 16KB
I Page too small: too much time spent getting pages from disk
I Page too large: a large portion of the page may not be used
I This is similar to cache block size issue (discussed earlier)

I For harddisk, it takes a considerable amount of time to locate a
data on the disk but once located, the data can be transferred at a
rate of several MB per second.

I If pages are too large, it is possible that a substantial portion of a
page is not used but it will occupy valuable space in the main
memory.

8 / 32

Address Translation

I An area in the main memory that can hold one page is called a
page frame.

I Processor generates virtual addresses
I MS (high order) bits are the virtual page number
I LS (low order) bits are the offset

I Information about where each page is stored is maintained in a
data structure in the main memory called the page table

I Starting address of the page table is stored in a page table base
register

I Address in physical memory is obtained by indexing the virtual
page number from the page table base register

9 / 32

Address Translation

I Virtual address→ physical address by combination of HW/SW
I Each memory request needs first an address translation
I Page Fault: a virtual memory miss

Translation

Virtual Address (VA)

Physical Address (PA)

page offsetvirtual page num

31 30 . . . 12 11 . . . 1 0

29 28 . . . 12 11 . . . 1 0

page offsetphysical page num

10 / 32

Address Translation Mechanisms

I Page Table: in main memory
I Process: page table + program counter + registers

11 / 32

Virtual Addressing with a Cache

Disadvantage of virtual addressing:
I One extra memory access to translate a VA to a PA
I memory (cache) access very expensive...

VA PA miss

datahit

CPU Translation Cache Main
Memory

12 / 32

Translation Look-aside Buffer (TLB)

I A small cache: keeps track of recently used address mappings
I Avoid page table lookup

VA PA miss

data
hit

CPU Cache Main
MemoryTLB

Translation

miss

13 / 32

Translation Look-aside Buffer (TLB)

I Dirty bit:
I Ref bit:

14 / 32

More about TLB

Organization:
I Just like any other cache, can be fully associative, set

associative, or direct mapped.

Access time:
I Faster than cache: due to smaller size
I Typically not more than 512 entries even on high end machines

A TLB miss:
I If the page is in main memory: miss can be handled; load

translation info from page table to TLB
I If the page is NOT in main memory: page fault

15 / 32

Cooperation of TLB & Cache

16 / 32

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit
Hit Hit Miss

Miss Hit Hit
Miss Hit Miss

Miss Miss Miss
Hit Miss Miss / Hit

Miss Miss Hit

17 / 32

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit

Miss Miss Hit

17 / 32

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit Impossible – TLB translation not possible

if page is not in memory
Miss Miss Hit Impossible – data not allowd in cache if

page is not in memory

17 / 32

QUESTION: Why Not a Virtually Addressed Cache?

I Access Cache using virtual address (VA)
I Only address translation when cache misses

VA PA

data

hit

CPU Main
MemoryTranslation

Cache

Answer:

18 / 32

Overlap Cache & TLB Accesses
I High order bits of VA are used to access TLB
I Low order bits of VA are used as index into cache

Tag Data

=

Tag Data

=

Cache Hit Desired word

VA Tag PA
Tag

TLB Hit

2-way Associative Cache
Index

PA Tag

Block offset

Page offsetVirtual page #

19 / 32

The Hardware / Software Boundary

Which part of address translation is done by hardware?
I TLB that caches recent translations:

I TLB access time is part of cache hit time
I May allot extra stage in pipeline

I Page Table storage, fault detection and updating
I Dirty & Reference bits
I Page faults result in interrupts

I Disk Placement:

20 / 32

The Hardware / Software Boundary

Which part of address translation is done by hardware?
I TLB that caches recent translations: (Hardware)

I TLB access time is part of cache hit time
I May allot extra stage in pipeline

I Page Table storage, fault detection and updating
I Dirty & Reference bits (Hardware)
I Page faults result in interrupts (Software)

I Disk Placement: (Software)

20 / 32

Overview

Introduction

Virtual Memory
VA→ PA
TLB

Performance Issues

21 / 32

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks
Separate page tables 0

21 / 32

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks
Separate page tables 0

21 / 32

Q3: Which Entry Should Be Replaced on a Miss?
I Direct mapped: only one choice
I Set associative or fully associative:

I Random
I LRU (Least Recently Used)

Note that:
I For a 2-way set associative, random replacement has a miss rate

1.1× than LRU
I For high level associativity (4-way), LRU is too costly

22 / 32

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the block in
lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
:

I
⊕

:

I Write-Back:
I The information is written only to the block in cache
I The modification is written to lower level, only when the block is

replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
:

I
⊕

:

23 / 32

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the block in
lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
: read misses don’t result in writes

I
⊕

: easier to implement

I Write-Back:
I The information is written only to the block in cache
I The modification is written to lower level, only when the block is

replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
:

I
⊕

:

23 / 32

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the block in
lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
: read misses don’t result in writes

I
⊕

: easier to implement

I Write-Back:
I The information is written only to the block in cache
I The modification is written to lower level, only when the block is

replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
: write with speed of cache

I
⊕

: repeated writes require only one write to lower level

23 / 32

Performance Consideration

Performance
How fast machine instructions can be brought into the processor and
how fast they can be executed.

I Two key factors are performance and cost, i.e., price/performance
ratio.

I For a hierarchical memory system with cache, the processor is
able to access instructions and data more quickly when the data
wanted are in the cache.

I Therefore, the impact of a cache on performance is dependent on
the hit and miss rates.

24 / 32

Cache Hit Rate and Miss Penalty

I High hit rates over 0.9 are essential for high-performance
computers.

I A penalty is incurred because extra time is needed to bring a
block of data from a slower unit to a faster one in the hierarchy.

I During that time, the processor is stalled.

I The waiting time depends on the details of the cache operation.

Miss Penalty

Total access time seen by the processor when a miss occurs.

25 / 32

Miss Penalty

Example: Consider a computer with the following parameters:

Access times to the cache and the main memory are t and 10t
respectively. When a cache miss occurs, a block of 8 words will be
transferred from the MM to the cache. It takes 10t to transfer the first
word of the block and the remaining 7 words are transferred at a rate
of one word per t seconds.

I Miss penalty = t + 10t + 7 × t + t
I First t: Initial cache access that results in a miss.
I Last t: Move data from the cache to the processor.

26 / 32

Average Memory Access Time

h× C + (1− h)×M

I h: hit rate
I M: miss penalty
I C: cache access time

I High cache hit rates (> 90%) are essential
I Miss penalty must also be reduced

27 / 32

Question: Memory Access Time Example

I Assume 8 cycles to read a single memory word;
I 15 cycles to load a 8-word block from main memory (previous

example);
I cache access time = 1 cycle
I For every 100 instructions, statistically 30 instructions are data

read/ write
I Instruction fetch: 100 memory access: assume hit rate = 0.95
I Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles
with cache.

28 / 32

Caches on Processor Chips
I In high-performance processors, two levels of caches are

normally used, L1 and L2.
I L1 must be very fast as they determine the memory access time

seen by the processor.
I L2 cache can be slower, but it should be much larger than the L1

cache to ensure a high hit rate. Its speed is less critical because it
only affects the miss penalty of the L1 cache.

I Average access time on such a system:

h1 · C1 + (1− h1) · [h2 · C2 + (1− h2) ·M]

I h1 (h2): the L1 (L2) hit rate
I C1 the access time of L1 cache,
I C2 the miss penalty to transfer data from L2 cache to L1
I M: the miss penalty to transfer data from MM to L2 and then to

L1.
29 / 32

Larger Block Size

I Take advantage of spatial locality.

I , If all items in a larger block are needed in a computation, it is
better to load these items into the cache in a single miss.

I / Larger blocks are effective only up to a certain size, beyond
which too many items will remain unused before the block is
replaced.

I / Larger blocks take longer time to transfer and thus increase the
miss penalty.

I Block sizes of 16 to 128 bytes are most popular.

30 / 32

Miss Rate v.s. Block Size v.s. Cache Size

Miss rate goes up if the block size becomes a significant fraction of the
cache size because the number of blocks that can be held in the same
size cache is smaller (increasing capacity misses)

31 / 32

Enhancement
Write buffer:

I Read request is served first.
I Write request stored in write buffer first and sent to memory

whenever there is no read request.
I The addresses of a read request should be compared with the

addresses of the write buffer.

Prefetch:
I Prefetch data into the cache before they are needed, while the

processor is busy executing instructions that do not result in a
read miss.

I Prefetch instructions can be inserted by the programmer or the
compiler.

Load-through Approach
I Instead of waiting the whole block to be transferred, the processor

resumes execution as soon as the required word is loaded in the
cache.

32 / 32

Enhancement
Write buffer:

I Read request is served first.
I Write request stored in write buffer first and sent to memory

whenever there is no read request.
I The addresses of a read request should be compared with the

addresses of the write buffer.
Prefetch:

I Prefetch data into the cache before they are needed, while the
processor is busy executing instructions that do not result in a
read miss.

I Prefetch instructions can be inserted by the programmer or the
compiler.

Load-through Approach
I Instead of waiting the whole block to be transferred, the processor

resumes execution as soon as the required word is loaded in the
cache.

32 / 32

Enhancement
Write buffer:

I Read request is served first.
I Write request stored in write buffer first and sent to memory

whenever there is no read request.
I The addresses of a read request should be compared with the

addresses of the write buffer.
Prefetch:

I Prefetch data into the cache before they are needed, while the
processor is busy executing instructions that do not result in a
read miss.

I Prefetch instructions can be inserted by the programmer or the
compiler.

Load-through Approach
I Instead of waiting the whole block to be transferred, the processor

resumes execution as soon as the required word is loaded in the
cache.

32 / 32

	Main Talk
	Introduction
	Virtual Memory
	VA PA
	TLB

	Performance Issues

