
CENG3420 L06.1 Spring 2017

CENG 3420
Lecture 06: Datapath

Bei Yu
byu@cse.cuhk.edu.hk

CENG3420 L06.2 Spring 2017

q We're ready to look at an implementation of the MIPS
q Simplified to contain only:

● memory-reference instructions: lw, sw
● arithmetic-logical instructions: add, addu, sub, subu,
and, or, xor, nor, slt, sltu

● arithmetic-logical immediate instructions: addi, addiu,
andi, ori, xori, slti, sltiu

● control flow instructions: beq, j
q Generic implementation:

● use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory
(and update the PC)

● decode the instruction (and read registers)
● execute the instruction

The Processor: Datapath & Control

Fetch
PC = PC+4

DecodeExec

CENG3420 L06.3 Spring 2017

Abstract Implementation View
q Two types of functional units:

● elements that operate on data values (combinational)
● elements that contain state (sequential)

q Single cycle operation
q Split memory (Harvard) model - one memory for

instructions and one for data

Address Instruction

Instruction
Memory

Write Data

Reg Addr

Reg Addr

Reg Addr

Register

File ALU
Data

Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

CENG3420 L06.4 Spring 2017

Fetching Instructions
q Fetching instructions involves

● reading the instruction from the Instruction Memory
● updating the PC value to be the address of the next

(sequential) instruction

Read
Address Instruction

Instruction
Memory

Add

PC

4

● PC is updated every clock cycle, so it does not need an
explicit write control signal

● Instruction Memory is read every clock cycle, so it
doesn’t need an explicit read control signal

Fetch
PC = PC+4

DecodeExec

clock

CENG3420 L06.5 Spring 2017

Decoding Instructions
q Decoding instructions involves

● sending the fetched instruction’s opcode and function
field bits to the control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

Control
Unit

● reading two values from the Register File
- Register File addresses are contained in the instruction

Fetch
PC = PC+4

DecodeExec

CENG3420 L06.6 Spring 2017

q Note that both RegFile read ports are active for all
instructions during the Decode cycle using the rs and
rt instruction field addresses
● Since haven’t decoded the instruction yet, don’t know what

the instruction is !
● Just in case the instruction uses values from the RegFile

do “work ahead” by reading the two source operands

Which instructions do make use of the RegFile values?

Reading Registers “Just in Case”

CENG3420 L06.7 Spring 2017

EX:
q All instructions (except j) use the ALU after

reading the registers. Please analyze memory-
reference, arithmetic, and control flow
instructions.

CENG3420 L06.8 Spring 2017

Executing R Format Operations
q R format operations (add, sub, slt, and, or)

● perform operation (op and funct) on values in rs and rt
● store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

R-type:
31 25 20 15 5 0

op rs rt rd functshamt

10

● Note that Register File is not written every cycle (e.g. sw), so
we need an explicit write control signal for the Register File

Fetch
PC = PC+4

DecodeExec

CENG3420 L06.9 Spring 2017

q Remember the R format instruction slt
slt $t0, $s0, $s1 # if $s0 < $s1

then $t0 = 1
else $t0 = 0

Consider the slt Instruction

● Where does the 1 (or 0) come from to store into $t0 in the
Register File at the end of the execute cycle?

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

CENG3420 L06.10 Spring 2017

Executing Load and Store Operations
q Load and store operations have to

● compute a memory address by adding the base
register (in rs) to the 16-bit signed offset field in the
instruction

- base register was read from the Register File during
decode

- offset value in the low order 16 bits of the instruction
must be sign extended to create a 32-bit signed value

● store value, read from the Register File during
decode, must be written to the Data Memory

● load value, read from the Data Memory, must be
stored in the Register File

I-Type: op rs rt address offset
31 25 20 15 0

CENG3420 L06.11 Spring 2017

Executing Load and Store Operations, con’t

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead
16 32

CENG3420 L06.12 Spring 2017

Executing Branch Operations
q Branch operations have to

● compare the operands read from the Register File
during decode (rs and rt values) for equality (zero
ALU output)

● compute the branch target address by adding the
updated PC to the sign extended16-bit signed
offset field in the instruction

- “base register” is the updated PC
- offset value in the low order 16 bits of the instruction

must be sign extended to create a 32-bit signed
value and then shifted left 2 bits to turn it into a word
address

I-Type: op rs rt address offset
31 25 20 15 0

CENG3420 L06.13 Spring 2017

Executing Branch Operations, con’t

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

zero

ALU control

Sign
Extend16 32

Shift
left 2

Add

4 Add

PC

Branch
target
address

(to branch
control logic)

CENG3420 L06.14 Spring 2017

Executing Jump Operations
q Jump operations have to

● replace the lower 28 bits of the PC with the lower 26 bits
of the fetched instruction shifted left by 2 bits

Read
Address Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

J-Type: op

31 25 0
jump target address

CENG3420 L06.15 Spring 2017

Creating a Single Datapath from the Parts
q Assemble the datapath elements, add control lines

as needed, and design the control path
q Fetch, decode and execute each instruction in one

clock cycle – single cycle design
● no datapath resource can be used more than once per

instruction, so some must be duplicated (e.g., why we
have a separate Instruction Memory and Data Memory)

● to share datapath elements between two different
instruction classes will need multiplexors at the input of
the shared elements with control lines to do the
selection

q Cycle time is determined by length of the longest
path

CENG3420 L06.16 Spring 2017

Fetch, R, and Memory Access Portions

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

CENG3420 L06.17 Spring 2017

Multiplexor Insertion

MemtoReg

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

CENG3420 L06.18 Spring 2017

Clock Distribution

MemtoReg

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU control

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

System Clock

clock cycle

CENG3420 L06.19 Spring 2017

Adding the Branch Portion

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

MemtoRegALUSrc

Read
Address Instruction

Instruction
Memory

Add

PC

4 Shift
left 2

Add

PCSrc

CENG3420 L06.20 Spring 2017

q We wait for everything to settle down
● ALU might not produce “right answer” right away
● Memory and RegFile reads are combinational (as are

ALU, adders, muxes, shifter, signextender)
● Use write signals along with the clock edge to determine

when to write to the sequential elements (to the PC, to
the Register File and to the Data Memory)

q The clock cycle time is determined by the logic
delay through the longest path

Our Simple Control Structure

We are ignoring some details like register
setup and hold times

CENG3420 L06.21 Spring 2017

Summary: Adding the Control
q Selecting the operations to perform (ALU, Register

File and Memory read/write)
q Controlling the flow of data (multiplexor inputs)
q Information comes from the 32 bits of the instruction

I-Type: op rs rt address offset
31 25 20 15 0

R-type:
31 25 20 15 5 0

op rs rt rd functshamt

10

q Observations
● op field always

in bits 31-26
● addr of two

registers to be
read are always specified by the
rs and rt fields (bits 25-21 and 20-16)

● base register for lw and sw always in rs (bits 25-21)
● addr. of register to be written is in one of two places – in rt

(bits 20-16) for lw; in rd (bits 15-11) for R-type instructions
● offset for beq, lw, and sw always in bits 15-0

CENG3420 L06.22 Spring 2017

(Almost) Complete Single Cycle Datapath

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr ALU

ovfzero

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Register

File

Read
Data 1

Read
Data 2

RegWrite

Sign
Extend16 32

MemtoRegALUSrc

Shift
left 2

Add

PCSrc

1
0

RegDst

0

1

1
0

1

0

ALU
control

ALUOp
Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

CENG3420 L06.23 Spring 2017

ALU Control

ALU control
input

Function

0000 and
0001 or
0010 xor
0011 nor
0110 add
1110 subtract
1111 set on less than

q ALU's operation based on instruction type and function
code

q Notice that we are using different encodings than in
the book

CENG3420 L06.24 Spring 2017

EX: ALU Control, Con’t
q Controlling the ALU uses of multiple decoding levels

● main control unit generates the ALUOp bits
● ALU control unit generates ALUcontrol bits

Instr op funct ALUOp action ALUcontrol
lw xxxxxx 00 add 0110
sw xxxxxx 00 add 0110
beq xxxxxx 01 subtract 1110
add 100000 10 add 0110
subt 100010 10 subtract 1110
and 100100 10 and 0000
or 100101 10 or 0001
xor 100110 10 xor 0010
nor 100111 10 nor 0011
slt 101010 10 slt 1111

CENG3420 L06.25 Spring 2017

ALU Control Truth Table
F5 F4 F3 F2 F1 F0 ALU

Op1

ALU
Op0

ALU
control3

ALU
control2

ALU
control1

ALU
control0

X X X X X X 0 0 0 1 1 0
X X X X X X 0 1 1 1 1 0
X X 0 0 0 0 1 0 0 1 1 0
X X 0 0 1 0 1 0 1 1 1 0
X X 0 1 0 0 1 0 0 0 0 0
X X 0 1 0 1 1 0 0 0 0 1
X X 0 1 1 0 1 0 0 0 1 0
X X 0 1 1 1 1 0 0 0 1 1
X X 1 0 1 0 1 0 1 1 1 1

q Four, 6-input truth tables

Our ALU m control input

Add/subt Mux control

CENG3420 L06.26 Spring 2017

ALU Control Logic
q From the truth table can design the ALU Control logic
Instr[3]
Instr[2]
Instr[1]
Instr[0]

ALUOp1

ALUOp0

ALUcontrol3

ALUcontrol2

ALUcontrol1

ALUcontrol0

CENG3420 L06.27 Spring 2017

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

CENG3420 L06.28 Spring 2017

R-type Instruction Data/Control Flow

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

0

1

CENG3420 L06.29 Spring 2017

Store Word Instruction Data/Control Flow

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0 1

0

CENG3420 L06.30 Spring 2017

Load Word Instruction Data/Control Flow

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

1

1

CENG3420 L06.31 Spring 2017

Branch Instruction Data/Control Flow

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

0

0

CENG3420 L06.32 Spring 2017

Main Control Unit

Instr RegDst ALUSrc MemReg RegWr MemRd MemWr Branch ALUOp

R-type
000000

1 0 0 1 0 0 0 10

lw
100011

0 1 1 1 1 0 0 00

sw
101011

X 1 X 0 0 1 0 00

beq
000100

X 0 X 0 0 0 1 01

CENG3420 L06.33 Spring 2017

Control Unit Logic
q From the truth table can design the Main Control logic
Instr[31]
Instr[30]
Instr[29]
Instr[28]
Instr[27]
Instr[26]

R-type lw sw beq
RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

CENG3420 L06.34 Spring 2017

Review: Handling Jump Operations
q Jump operation have to

● replace the lower 28 bits of the PC with the lower 26 bits
of the fetched instruction shifted left by 2 bits

Read
Address Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

J-Type: op jump target address

31 0

CENG3420 L06.35 Spring 2017

Adding the Jump Operation

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

Shift
left 2

0

1

Jump

32
Instr[25-0]

26
PC+4[31-28]

28

0 0

0

CENG3420 L06.36 Spring 2017

EX: Main Control Unit of j

Instr RegDst ALUSrc MemReg RegWr MemRd MemWr Branch ALUOp Jump

R-type
000000

1 0 0 1 0 0 0 10 0

lw
100011

0 1 1 1 1 0 0 00 0

sw
101011

X 1 X 0 0 1 0 00 0

beq
000100

X 0 X 0 0 0 1 01 0

j
000010

X X X 0 0 0 X XX 1

CENG3420 L06.37 Spring 2017

Single Cycle Implementation Cycle Time

q Unfortunately, though simple, the single cycle
approach is not used because it is very slow

q Clock cycle must have the same length for every
instruction

q What is the longest path (slowest instruction)?

CENG3420 L06.38 Spring 2017

EX: Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total
R-
type
load
store
beq
jump

4 1 2 1 8

4 1 2 4 1 12

q Calculate cycle time assuming negligible delays (for
muxes, control unit, sign extend, PC access, shift left 2,
wires) except:

● Instruction and Data Memory (4 ns)
● ALU and adders (2 ns)
● Register File access (reads or writes) (1 ns)

4 1 2 4 11
4 1 2 7
4 4

CENG3420 L06.39 Spring 2017

Single Cycle Disadvantages & Advantages
q Uses the clock cycle inefficiently – the clock cycle

must be timed to accommodate the slowest instr
● especially problematic for more complex instructions like

floating point multiply

q May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can
not be shared during a clock cycle

but
q It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

