
CENG3420 L05.1 Spring 2017

CENG 3420
Lecture 05: Arithmetic and Logic Unit

Bei Yu
byu@cse.cuhk.edu.hk

CENG3420 L05.2 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.3 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.4 Spring 2017

Abstract Implementation View

Address Instruction

Instruction
Memory

Write Data

Write Addr

Read Addr

Read Addr

Register

File ALU
Data

Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

CENG3420 L05.5 Spring 2017

Arithmetic
q Where we've been

● Abstractions
- Instruction Set Architecture (ISA)
- Assembly and machine language

q What's up ahead
● Implementing the ALU architecture

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

CENG3420 L05.6 Spring 2017

Review: VHDL
q Supports design, documentation, simulation &

verification, and synthesis of hardware
q Allows integrated design at behavioral & structural levels

CENG3420 L05.7 Spring 2017

Review: VHDL
q Basic structure

● Design entity-architecture descriptions
● Time-based execution (discrete event simulation) model

Design Entity-Architecture ==
Hardware Component

Entity == External
Characteristics

Architecture (Body) ==
Internal Behavior

or Structure

CENG3420 L05.8 Spring 2017

Review: Entity-Architecture Features
q Entity defines externally visible characteristics

● Ports: channels of communication
- signal names for inputs, outputs, clocks, control

● Generic parameters: define class of components
- timing characteristics, size (fan-in), fan-out

q Architecture defines the internal behavior or
structure of the circuit
● Declaration of internal signals
● Description of behavior

- collection of Concurrent Signal Assignment (CSA)
statements (indicated by <=); can also model temporal
behavior with the delay annotation

- one or more processes containing CSAs and (sequential)
variable assignment statements (indicated by :=)

● Description of structure
- interconnections of components; underlying behavioral

models of each component must be specified

CENG3420 L05.9 Spring 2017

ALU VHDL Representation

entity ALU is
port(A, B: in std_logic_vector (31 downto 0);

m: in std_logic_vector (3 downto 0);
result: out std_logic_vector (31 downto 0);
zero: out std_logic;
ovf: out std_logic)

end ALU;

architecture process_behavior of ALU is
. . .
begin

ALU: process(A, B, m)
begin

. . .
result := A + B;
. . .

end process ALU;
end process_behavior;

CENG3420 L05.10 Spring 2017

Machine Number Representation
q Bits are just bits (have no inherent meaning)

● conventions define the relationships between bits and
numbers

q Binary numbers (base 2) - integers
0000 -> 0001 -> 0010 -> 0011 -> 0100 -> 0101 -> . . .
● in decimal from 0 to 2n-1 for n bits

q Of course, it gets more complicated
● storage locations (e.g., register file words) are finite, so

have to worry about overflow (i.e., when the number is
too big to fit into 32 bits)

● have to be able to represent negative numbers, e.g., how
do we specify -8 in

addi $sp, $sp, -8 #$sp = $sp - 8
● in real systems have to provide for more than just

integers, e.g., fractions and real numbers (and floating
point) and alphanumeric (characters)

CENG3420 L05.11 Spring 2017

q 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

q What if the bit string represented addresses?
● need operations that also deal with only positive (unsigned)

integers

maxint

minint

MIPS Representations

CENG3420 L05.12 Spring 2017

q Negating a two's complement number –
complement all the bits and then add a 1
● remember: “negate” and “invert” are quite different!

q Converting n-bit numbers into numbers with more
than n bits:
● MIPS 16-bit immediate gets converted to 32 bits for

arithmetic
● sign extend - copy the most significant bit (the sign bit)

into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

● sign extension versus zero extend (lb vs. lbu)

Two's Complement Operations

CENG3420 L05.13 Spring 2017

Design the MIPS Arithmetic Logic Unit (ALU)
q Must support the Arithmetic/Logic

operations of the ISA
add, addi, addiu, addu
sub, subu
mult, multu, div, divu
sqrt
and, andi, nor, or, ori, xor, xori
beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

q With special handling for
● sign extend – addi, addiu, slti, sltiu
● zero extend – andi, ori, xori
● Overflow detected – add, addi, sub

CENG3420 L05.14 Spring 2017

MIPS Arithmetic and Logic Instructions

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

000000 101000

000000 101001

SLT 000000 101010

SLTU 000000 101011

000000 101100

CENG3420 L05.15 Spring 2017

Design Trick: Divide & Conquer

q Break the problem into simpler problems, solve
them and glue together the solution

q Example: assume the immediates have been
taken care of before the ALU
● now down to 10 operations
● can encode in 4 bits

0 add

1 addu

2 sub

3 subu

4 and

5 or

6 xor

7 nor

a slt

b sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

CENG3420 L05.16 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.17 Spring 2017

q Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

q Two's complement operations are easy
● do subtraction by negating and then adding

0111 -> 0111
- 0110 -> + 1010

q Overflow (result too large for finite computer word)
● e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001

Addition & Subtraction

1101 0001 0001

0001 1 0001

1000

CENG3420 L05.18 Spring 2017

Building a 1-bit Binary Adder

S = A xor B xor carry_in
carry_out = A&B | A&carry_in | B&carry_in

(majority function)

q How can we use it to build a 32-bit adder?

q How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1 bit
Full
Adder

A

B
S

carry_in

carry_out

CENG3420 L05.19 Spring 2017

Building 32-bit Adder

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

q Just connect the carry-out of
the least significant bit FA to the
carry-in of the next least
significant bit and connect . . .

q Ripple Carry Adder (RCA)
l advantage: simple logic, so small

(low cost)

l disadvantage: slow and lots of
glitching (so lots of energy
consumption)

CENG3420 L05.20 Spring 2017

Glitch

q Glitch: invalid and unpredicted output that can be read
by the next stage and result in a wrong action

q Example: Draw the propagation delay

CENG3420 L05.21 Spring 2017

Glitch in RCA
A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

CENG3420 L05.22 Spring 2017

But What about Performance?
q Critical path of n-bit ripple-carry adder is n*CP

q Design trick – throw hardware at it (Carry
Lookahead)

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CENG3420 L05.23 Spring 2017

A 32-bit Ripple Carry Adder/Subtractor

q Remember 2’s
complement is just

l complement all the bits

l add a 1 in the least
significant bit

A 0111 -> 0111
B - 0110 -> +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

. .
 .

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001
1001

1
1 0001

CENG3420 L05.24 Spring 2017

Minimal Implementation of a Full Adder

architecture concurrent_behavior of full_adder is
signal t1, t2, t3, t4, t5: std_logic;

begin
t1 <= not A after 1 ns;
t2 <= not cin after 1 ns;
t4 <= not((A or cin) and B) after 2 ns;
t3 <= not((t1 or t2) and (A or cin)) after 2 ns;
t5 <= t3 nand B after 2 ns;
S <= not((B or t3) and t5) after 2 ns;
cout <= not((t1 or t2) and t4) after 2 ns;

end concurrent_behavior;

q [Optional] Can you create the equivalent schematic?
Can you determine worst case delay (the worst case
timing path through the circuit)?

q Gate library: inverters, 2-input nands, or-and-inverters

CENG3420 L05.25 Spring 2017

q Also need to support the logic operations
(and,nor,or,xor)
● Bit wise operations (no carry operation involved)
● Need a logic gate for each function and a mux to choose

the output
q Also need to support the set-on-less-than

instruction (slt)
● Uses subtraction to determine if (a – b) < 0 (implies a < b)

q Also need to support test for equality (bne, beq)
● Again use subtraction: (a - b) = 0 implies a = b

q Also need to add overflow detection hardware
● overflow detection enabled only for add, addi, sub

q Immediates are sign extended outside the ALU with
wiring (i.e., no logic needed)

Tailoring the ALU to the MIPS ISA

CENG3420 L05.26 Spring 2017

A Simple ALU Cell with Logic Op Support

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

CENG3420 L05.27 Spring 2017

Modifying the ALU Cell for slt

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

CENG3420 L05.28 Spring 2017

Modifying the ALU for slt

0

0
set

q First perform a
subtraction

q Make the result 1 if
the subtraction yields
a negative result

q Make the result 0 if
the subtraction yields
a positive result

l tie the most
significant sum bit
(sign bit) to the low
order less input

A1

B1

A0

B0

A31

B31

+

result1

less

+

result0

less

+

result31

less

. . .

CENG3420 L05.29 Spring 2017

Overflow Detection
q Overflow occurs when the result is too large to

represent in the number of bits allocated
● adding two positives yields a negative
● or, adding two negatives gives a positive
● or, subtract a negative from a positive gives a negative
● or, subtract a positive from a negative gives a positive

q On your own: Prove you can detect overflow by:
● Carry into MSB xor Carry out of MSB

1

1

1 10

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6

1 1 0 0

1 0 1 1+

–4

– 5

71

0

CENG3420 L05.30 Spring 2017

Modifying the ALU for Overflow

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .

0

0
set

q Modify the most
significant cell to
determine overflow
output setting

q Enable overflow bit
setting for signed
arithmetic (add, addi,
sub)

zero

. . .

add/subt op

overflow

CENG3420 L05.31 Spring 2017

Overflow Detection and Effects

q On overflow, an exception (interrupt) occurs
● Control jumps to predefined address for exception
● Interrupted address (address of instruction causing the

overflow) is saved for possible resumption
q Don't always want to detect (interrupt on) overflow

CENG3420 L05.32 Spring 2017

New MIPS Instructions

Category Instr Op Code Example Meaning

Arithmetic
(R & I
format)

add unsigned 0 and 21 addu $s1, $s2, $s3 $s1 = $s2 + $s3
sub unsigned 0 and 23 subu $s1, $s2, $s3 $s1 = $s2 - $s3
add
imm.unsigned

9 addiu $s1, $s2, 6 $s1 = $s2 + 6

Data
Transfer

ld byte
unsigned

24 lbu $s1, 20($s2) $s1 = Mem($s2+20)

ld half unsigned 25 lhu $s1, 20($s2) $s1 = Mem($s2+20)
Cond.
Branch
(I & R
format)

set on less than
unsigned

0 and 2b sltu $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set on less than
imm unsigned

b sltiu $s1, $s2, 6 if ($s2<6) $s1=1
else $s1=0

q Sign extend – addi, addiu, slti
q Zero extend – andi, ori, xori
q Overflow detected – add, addi, sub

CENG3420 L05.33 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.34 Spring 2017

q More complicated than addition
● Can be accomplished via shifting and adding

0010 (multiplicand)
x_1011 (multiplier)
0010
0010 (partial product

0000 array)
0010

00010110 (product)

q Double precision product produced
q More time and more area to compute

Multiplication

CENG3420 L05.35 Spring 2017

First Version of Multiplication Hardware

CENG3420 L05.36 Spring 2017

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

CENG3420 L05.37 Spring 2017

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

CENG3420 L05.38 Spring 2017

q Multiply (mult and multu) produces a double
precision product
mult $s0, $s1 # hi||lo = $s0 * $s1

● Low-order word of the product is left in processor register
lo and the high-order word is left in register hi

● Instructions mfhi rd and mflo rd are provided to
move the product to (user accessible) registers in the
register file

MIPS Multiply Instruction

0 16 17 0 0 0x18

q Multiplies are usually done by fast, dedicated
hardware and are much more complex (and slower)
than adders

CENG3420 L05.39 Spring 2017

Division
q Division is just a bunch of quotient digit guesses

and left shifts and subtracts

dividend
divisor

partial
remainder
array

quotientn
n

remainder
n

0 0 0

0

0

0

CENG3420 L05.40 Spring 2017

Example: Division

q Dividing 1001010 by 1000

CENG3420 L05.41 Spring 2017

q Divide generates the reminder in hi and the
quotient in lo
div $s0, $s1 # lo = $s0 / $s1

hi = $s0 mod $s1

● Instructions mflo rd and mfhi rd are provided to
move the quotient and reminder to (user accessible)
registers in the register file

MIPS Divide Instruction

q As with multiply, divide ignores overflow so
software must determine if the quotient is too
large. Software must also check the divisor to
avoid division by 0.

op rs rt rd shamt funct

CENG3420 L05.42 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.43 Spring 2017

Shift Operations
q Shifts move all the bits in a word left or right
sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits
sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

q Notice that a 5-bit shamt field is enough to shift a
32-bit value 25 – 1 or 31 bit positions

q Logical shifts fill with zeros, arithmetic left shifts fill
with the sign bit

q The shift operation is implemented by hardware
separate from the ALU
● using a barrel shifter (which would takes lots of gates in

discrete logic, but is pretty easy to implement in VLSI)

CENG3420 L05.44 Spring 2017

A Simple Shifter

Ai

Ai-1

Bi

Bi-1

Right Leftnop

Bit-Slice i

...

CENG3420 L05.45 Spring 2017

Parallel Programmable Shifters

Control
Shift amount (Sh4Sh3Sh2Sh1Sh0)
Shift direction (left, right)
Shift type (logical, arithmetic)

=

CENG3420 L05.46 Spring 2017

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

shifts
of 0
or 8
bits

!Sh3Sh3

0,1,2…15
shifts

shifts
of 0
or 16
bits

!Sh4Sh4

0,1,2…31
shifts

Sh0 & right

dataini
dataouti

dataini-1

dataini+1

Sh0 & left

!Sh0

Sh1 & right

dataini
dataouti

dataini-2

dataini+2

Sh1 & left

!Sh0

CENG3420 L05.47 Spring 2017

Logarithmic Shifter Structure

Sh1 Sh1 Sh2 Sh2 Sh4 Sh4

A3

A2

A1

A0

B1

B0

B2

B3

CENG3420 L05.48 Spring 2017

Outline

q 1. Overview
q 2. Addition
q 3. Multiplication & Division
q 4. Shift
q 5. Floating Point Number

CENG3420 L05.49 Spring 2017

Floating Point Number

q Scientific notation: 6.6254 ´10-27

● A normalized number of certain accuracy
e.g. 6.6254 is called the mantissa

● Scale factors to determine the position of the decimal
point
e.g. 10-27 indicates position of decimal point and is
called the exponent (the base is implied)

● Sign bit

CENG3420 L05.50 Spring 2017

Normalized Form
q Floating Point Numbers can have multiple forms, e.g.

0.232 x 104 = 2.32 x 103

= 23.2 x 102

= 2320. x 100

= 232000. x 10-2

q It is desirable for each number to have a unique
representation => Normalized Form

q We normalize Mantissa's in the Range [1 .. R)
where R is the Base, e.g.:

[1 .. 2) for BINARY

[1 .. 10) for DECIMAL

CENG3420 L05.51 Spring 2017

IEEE Standard 754 Single Precision
(32-bit, float in C/ C++/ Java)

Sign of
number :

32 bits

mantissa fraction
23-bit

representation
excess-127

exponent in
8-bit signed

Value represented

0 0 1 0 1 0 . . . 00 0 0 1 0 1 0 0 0

S M

Value represented

(a) Single precision

(b) Example of a single-precision number

E¢

+

+ 1.001010 … 0 2
– 87

x=

1. M 2
E ¢ – 127

x�=

0 signifies

–1 signifies

00101000 à 40

40 – 127 = – 87

CENG3420 L05.52 Spring 2017

IEEE Standard 754 Double Precision
(64-bit, double in C/ C++/ Java)

52-bit
mantissa fraction

11-bit excess-1023
exponent

64 bits

Sign

S M

(c) Double precision

Value represented 1. M 2
E ¢ – 1023

x�=

E ¢

CENG3420 L05.53 Spring 2017

Example

q What is the IEEE single precision number
40C0 000016 in decimal?

● Binary:
0100 0000 1100 0000 0000 0000 0000 0000

● Sign: +
● Exponent: 129 – 127 = +2
● Mantissa: 1.100 0000 …2 à 1.510 x 2+2

à +110.0000 …2

● Decimal Answer = +6.010

CENG3420 L05.54 Spring 2017

Class Exercise

q What is –0.510 in IEEE single precision binary
floating point format?

● 0.5 = 1.0... � 2−1 (in binary)
●Exponent bit= 127 + (−1) = 01111110

Sign bit = 1
Mantissa = 1.000 0000 0000 0000 0000 0000

● binary representation =
1 01111110 000 0000 0000 0000 0000 0000

CENG3420 L05.55 Spring 2017

Ref: IEEE Standard 754 Numbers

Format # bits # significant bits macheps # exponent bits exponent range
----------- --------- -------------------------- ---------------- ----------------------- ------------------------------
Single 32 1+23 2-24 (~10-7) 8 2-126 – 2+127 (~10 �38)
Double 64 1+52 2-53 (~10-16) 11 2-1022 – 2+1023 (~10 �308)
Double Extended >=80 >=64 <=2-64(~10-19) >=15 2-16382 – 2+16383 (~10
�4932)
(Double Extended is 80 bits on all Intel machines)
macheps = Machine Epsilon = = 2 – (# significand bits)

l Normalized +/– 1.d…d x 2exp

l Denormalized +/– 0.d…d x 2min_exp à to represent near-zero numbers
e.g. + 0.0000…0000001 x 2-126 for Single Precision

mach

CENG3420 L05.56 Spring 2017

Other Features
q +, –, x, /, sqrt, remainder, as well as

conversion to and from integer are correctly rounded
● As if computed with infinite precision and then rounded
● Transcendental functions (that cannot be computed in a finite

number of steps e.g., sine, cosine, logarithmic, p, e, etc.) may not
be correctly rounded

q Exceptions and Status Flags
● Invalid Operation, Overflow, Division by zero, Underflow, Inexact

q Floating point numbers can be treated as "integer bit-
patterns" for comparisons
● If Exponent is all zeroes, it represents a denormalized, very small

and near (or equal to) zero number

● If Exponent is all ones, it represents a very large number and is
considered infinity (see next slide.)

CENG3420 L05.57 Spring 2017

Special Values

qExponents of all 0's and all 1's have special meaning

●E=0, M=0 represents 0 (sign bit still used so there is +/-
0)

●E=0, M<>0 is a denormalized number ±0.M x 2-127

(smaller than the smallest normalized number)

●E=All 1's, M=0 represents ±Infinity, depending on Sign

●E=All 1's, M<>0 represents NaN

CENG3420 L05.58 Spring 2017

Other Features
q Dual Zeroes: +0 (0x00000000) and –0 (0x80000000)

(they are treated as the same)

q Infinity is like the mathematical one
● Finite / Infinity à 0
● Infinity x Infinity à Infinity
● Non-zero / 0 à Infinity
● Infinity ^ (Finite or Infinity) à Infinity

q NaN (Not-a-Number) is produced whenever a limiting value cannot be
determined:
● Infinity – Infinity à NaN
● Infinity / Infinity à NaN
● 0 / 0 à NaN
● Infinity x 0 à NaN
● Many systems just store the result quietly as a NaN (all 1's in exponent)

some systems will signal or raise an exception

q If x is a NaN, x != x

CENG3420 L05.59 Spring 2017

Inaccurate Floating Point Operations
q E.g. Find 1st root of a quadratic equation

● r = (–b + sqrt(b*b – 4*a*c)) / (2*a)

Sparc processor, Solaris, gcc 3.3 (ANSI C),
Expected Answer 0.00023025562642476431
double 0.00023025562638524986

float 0.00024670246057212353

q Problem is that if c is near zero,

sqrt(b*b – 4*a*c) » b

q Rule of thumb: use the highest precision which does
not give up too much speed

CENG3420 L05.60 Spring 2017

Catastrophic Cancellation

l (a – b) is inaccurate when a » b
l Decimal Examples

¡ Using 2 significant digits to compute mean of 5.1 and 5.2
using the formula (a+b) / 2:

a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10)
10 / 2 = 5.0 (the computed mean is less than both numbers!!!)

¡ Using 8 significant digits to compute sum of three numbers:
(11111113 + (–11111111)) + 7.5111111 = 9.5111111

11111113 + ((–11111111) + 7.5111111) = 10.000000

l Catastrophic cancellation occurs when

