CENG3420 Homework 3

Due: Apr. 23, 2017

Solutions

Q1 (10%) Explain how page offset, page number, virtual address and physical address are
associated to each other.

A1l Example Ans:

* Virtual Address = OS address length
Physical Address = log,(RAM size) bits
Offset = log,(page size) bits

* Virtual Page Number bits = Virtual Address - Offset
 Physical Page Number bits = Physical Address - Offset

Q2 (159%0) Elaborate advantages and disadvantages of LARGE page size.

A2 Sample Answer:
Advantages:

1. Fewer page faults
2. Smaller page table

3. Fewer TLB misses
Disadvantages:

1. Page faults are expensive

2. Wasted space if pages are under-utilized

Q3 (10%) Here are two different I/O systems intended for use in transaction proceeding:

* System A can support 15,000 I/O operations per second and use the processor with
MIPS rate of 50.

* System B can support 1,000 I/O operations per second and use the processor with
MIPS rate of 500.

Assume that each transaction requires 5 1/0 operations and each I/O operation requires
10,000 instructions. Ignoring response time, what is the maximum transactions per
second for each system.

A3 Each transaction requires 10,000 x 5 = 50,000 instructions.

* For System A:
CPU limit: 50M / 50K =1000 trans/second;
1/0 limit: 15,000 / 5=3000 trans/second;
Therefore, max 1000 trans/second.

* For System B:
CPU limit: 500M / 50K =10000 trans/second;
1/O limit: 1,000 / 5=200 trans/second;
Therefore, max 200 trans/second.

Q4 (10%0) For the following code:

for (int i = 0; i < N; ++1i) {

sum([i] = 0;
for (int j = 0; j < i; ++73) |
sum[i] = (sum[i] + array[j]) % N;

}

Clearly the code takes O(N?) time. We would like to improve the actual running time.
Which of these strategies would you recommend. Why? (2% for choice and 8% for

reason)
// Optionl
for(int i = 0; 1 < N; ++1i) {
sum[i] = 0;
parallel_for(int j = 0; j < i; ++73) {
sum[i] = (sum[i] + array[]]) % N;
}
}
// Option2
parallel_for(int 1 = 0; i < N; ++1i) {
sum([i] = O0;
for (int j = 0; J < 1i; ++3) |
sum[i] = (sum[i] + array[j]) % N;

A4 Option 2, because Option 1 results in a race condition. If the race condition was not an
issue, Option 2 would still be better because we would pay the overhead of forking and
joining multiple threads only once, instead of each time within the outer loop (as in Option

1).

QS5 (18%) Considering a scenario that data is transferred from memory to I/O devices. Com-
plete the following Asynchronous Bus Handshaking Protocol.

1. I/O device requests by raising ReadReq & putting addr on the data lines

2. Memory sees ReadReq, reads addr from data lines, and raises Ack

ReadReq ___J
Data _<_aﬂj'_>_ @
Ack 4i -li_ .l[_ L

DataRdy

1

I/0 device sees Ack and releases the ReadReq and data lines
Memory sees ReadReq go low and drops Ack

When memory ready, putting data on data lines & raises DataRdy
I/0 device sees Dat aRdy, reads data from data lines & raises Ack

Memory sees Ack, releases data lines, and drops Dat aRdy

® N 0Nk Ww

I/0O device sees DataRdy go low and drops Ack

Q6 (10%0) In the design of a multi-core processor, there are fixed on chip cache resources. We

assume maximum of n cores can be designed with those resources. Let £k be the real
designed core number (r = 7 is integer.) Define a speed up factor s(r) as sequential
performance gain by using the resources equivalent to r cores to form a single core, and
obviously s(1) = 1. Given f the fraction of software that is parallelizable across multiple

cores, prove the speed up of the multi-core processor in terms of f, 7, n, and s(r) is

1

S(frn) = (D
s(r) + nxs(r)
A6
1
S(f,r,n) = S(T’) X (1 —f) +i
k
1
1
S — (2)
1-f fxr
s(r) + nxs(r)

Q7 (20%0) For the following loop code,

lp: 1w St0, 0(Ssl)
1w $tl, 0(S$s2)
addu $t0, S$t0, stl
sw $t0, 0(S$sl)
addi $s1, $sl1, -4
addi $s2, S$s2, -4
bne $s1, $0, 1p

1. (4%) Write down the 4 times unrolled code.

ALU or Branch | Data Transfer

(@)
(¢}

0| I NN | W —

2. (16%0) Schedule the unrolled code and fill the table (you are free to add more
rows).

A7 1. Trivial

2. A sample solution. As shown in the Table 1. Be careful of the data dependencies.

Table 1: A7

ALU or Branch Data Transfer CcC
lp | addi $s1, $sl1, -16 1
addi $s2, S$s2, -16| 1w 35t0, 16(S$sl) |2
lw $t4, 16(S$s2) |3

addu S$t0, $t0, $t4 | 1lw sStl, 12(S$sl) |4
lw St5, 12($s2) |5

addu $tl, $tl, $t5 | 1w $t2, 8(Ssl) 6
1w $t6, 8($s2) 7

addu S$t2, S$t2, S$te6 | lw $t3, 4($sl) 8
1w St7, 4($s2) 9

addu $t3, $t3, $t7 | sw $t0, 16(ssl) |10
sw Stl, 12($s1l) |11

sw $t2, 8($sl) 12

bne $s1, $0, 1p sw St3, 4(Ssl) 13

Q8 (7%) Name 3 cache enhancement techniques and elaborate them.

A8 Details can be found at last page of slides L11-VM

1. Write buffer
2. Prefetch
3. Load-through approach

