CENG3420 Computer Organization and Design
Lab 1-1: MIPS assembly language programing

Wen Zong

Department of Computer Science and Engineering
The Chinese University of Hong Kong

wzong@cse.cuhk.edu.hk

o

v G

The Chinese University of Hong Kong

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Abstraction of Computer

Frocessor Memory

addr

w| Programs
data out

= Data
. data in

-

inst. in

Question:
1. Where's cache?

2. Why to know programers’ view?

Registers

» 32 general-purpose registers

> register preceded by $ in assembly language instruction
» two formats for addressing:

» using register number e.g. $0 through $31

» using equivalent names e.g. $t1, $sp

> special registers Lo and Hi used to store result of
multiplication and division

» not directly addressable; contents accessed with special
instruction mfhi (“move from Hi") and mflo (“move from
Lo™)

» stack grows from high memory to low memory

Register Names and Descriptions

Register | Alternative Description
Number Name P
0 Zero the value 0
1 $at (assembler temporary) reserved by the assembler
2-3 $v0-$vl |(values) from expression evaluation and function results
47 $a0 - $a3 (arguments) First four parameters for subroutine.
INot preserved across procedure calls
8-15 $t0 - $t7 (temporaries) Caller saved if needed. Subroutines can use w/out saving.
INot preserved across procedure calls
(saved values) - Callee saved.
16-23 $s0 - $s7 A subroutine using one of these must save original and restore it before exiting.
Preserved across procedure calls
(temporaries) Caller saved if needed. Subroutines can use w/out saving.
24-25 $t8 - $t9 These are in addition to $t0 - $t7 above.
INot preserved across procedure calls.
26-27 $k0 - $k1 reserved for use by the interrupt/trap handler
global pointer.
28 $gp Points to the middle of the 64K block of memory in the static data
segment.
stack pointer
29 $sp IPoints to last location on the stack.
30 $58/$fp saved value / frame pointer
Preserved across procedure calls
31 $ra return address

Memory Allocation of A Program

MEMORY ALLOCATION

Ssp — P THEf fifcyey

$ep-»1000 8000},
1000 00000,

pc 0040 00000,

Ohex

Stack

Dynamic Data

Static Data

Text

Reserved

STACK FRAME

Argument 6

Argument 5

$ip —p

Saved Registers

$sp—p

Local Variables

Higher
Memory
Addresses

Stack
Grows

.

Lower
Memory
Addresses

Data Types and Literals

Data types:

» Instructions are all 32 bits

> byte(8 bits), halfword (2 bytes), word (4 bytes)

> a character requires 1 byte of storage

> an integer requires 1 word (4 bytes) of storage
Literals:

> numbers entered as is. e.g. 4

» characters enclosed in single quotes. e.g. ‘b’

> strings enclosed in double quotes. e.g. “A string’

Program Structure |

> Just plain text file with data declarations, program code
(name of file should end in suffix .s to be used with SPIM
simulator)

» Data declaration section followed by program code section

Data Declarations

1. placed in section of program identified with assembler directive
.data.

2. declares variable names used in program; storage allocated in
main memory (RAM)

Code

Program Structure Il

placed in section of text identified with assembler directive .text
contains program code (instructions)

starting point for code e.g.ecution given label main:,

ending point of main code should use exit system call

B win =

Comments

anything following # on a line
The structure of an assembly program looks like this:

Program outline

Program Structure |ll

Comment giving name of program and description
Template.s
Bare-bones outline of MIPS assembly language program

.data # variable declarations follow this line
...
.text # instructions follow this line
main: # indicates start of code
...

End of program, leave a blank line afterwards
to make SPIM happy

An Example Program |

Declare main as a global function

main
ALl memory structures are placed after the
.data assembler directive

The .word assembler directive reserves space
.word 12
.asciiz "Hello CENG3420!\n"

ALl program code is placed after the
.text assembler directive
The label ’main’ represents the starting point

$t2, 25 # Load immediate value (25)
$t3, value # Load the word stored at label ’value’
$ta, $t2, $t3 # Add
$t5, $t2, St3 # Subtract
$a@, msg # Pointer to string
Svo, 4 # to use print_string syscall

Exit the program by means of a syscall.
There are many syscalls - pick the desired one
by placing its code in $vO@. The code for exit is "18"
$vo, 10 # Sets SvO to "10" to select exit syscall
Exit

Pseudo instruction |

Some instructions in this example are pseudo instructions which
will be translated to MIPS instructions by the assembler. Here's a
list of useful pseudo-instructions.

» mov $t0, $t1: Copy contents of register t1 to register t0.

> /i $s0, immed: Load immediate into to register sO. The way
this is translated depends on whether immed is 16 bits or 32
bits.

» Ja $s0, addr. Load address into to register s0.
» |w $t0, address: Load a word at address into register t0
» Similar pseudo-instructions exist for sw, etc
Translating some pseudoinstructions
> mov $t0, $s0 — addi $t0, $s0, 0
> i $rs, small — addi $rs, $zero, small
> Ii $rs, big — lui $rs, upper(big) ori $rs, 3rs, lower(big)
> la $rs, big — lui $rs, upper(big) ori $rs, $rs, lower(big)

Pseudo instruction I

1. where small means a quantity that can be represented using
16 bits, and big means a 32 bit quantity. upper(big) is the

upper 16 bits of a 32 bit quantity. lower(big) is the lower 16
bits of the 32 bit quantity.

2. upper(big) and lower(big) are not real instructions. If you
were to do the translation, you'd have to break it up yourself
to figure out those quantities.

More Information

For more information about MIPS instructions and assembly
programing you can refer to:

1. Lecture slides and textbook.

2. Google

Overview

Using SPIM

What is SPIM

>

SPIM is a MIPS32 simulator.
Spim is a self-contained simulator that runs MIPS32 programs.

It reads and executes assembly language programs written for
this processor.

Spim also provides a simple debugger and minimal set of
operating system services.

Spim does not execute binary (compiled) programs.

Dowload it here:
http://sourceforge.net/projects/spimsimulator/files/

http://sourceforge.net/projects/spimsimulator/files/

SPIM Overview

Qtspim - s ox
Fle Simulator Registers Text Segment Data Segment Window _Help

S e 2E
FP Regs | ntRegs (16]

FPRegs
R - 9800 sex Text sogment. 1004000001 (004400001 =
rem -0 looso0000] arat0000 1w a4, 0(423) 163: 1w a0 0(5ap) #

s © ioat it sui Sop 4 ¢ arav

36, 52 : 167 addu $a2 522 50
1004000141 0100005 Ja1 0x00400024 [matn] ; 135: jal main
100400018] 00000000 nop. } 189 nop
[0040001c] 34020002 ori 82, 80, 10 5 191 15 sv0 1
[0000020] 0000000c syseall : 192 ayscall # syscall 10 (exit)
(004000241 34080015 ox3 $10, 40, 25 i 18: 10 st2, 25 # Load inmediate value (25)
[00400026] 36012002 Ius 41, 4097 § 19: 1w $t3, value # Load the word stored at label ‘value®
10040002¢] 3200000 1w $11, 0($1)
[00400030] 01256020 add #12, #10, $11 : 20: add ste, sez2, se3 ¢ add
1004000341 01466522 sub #13, #10, $11 § 21t sub S5, Sea. S5 # subtract
[00400038] 36011001 1ui 41, 4097 [msg] } 22: 1a sa0, meg # Poincer to string
100400036 34240004 oxi 44, 81, 4 [msg)
[00400020] 0000000c syseall 5 23: suscall
1004000441 3302000a _oxi 42, 80, 10 § 26 10 $v0. 10 # Sets $v0 to *10% to select exit syscall
[[00400048] 0000000c syscall ; 29: syscall # Exit
Kernel Text egment (80000000] .. (80010000]
iso0oienl oo0idez: aads . 40, 41 i 50: nove $ki sat # Save fat
[30000154] 36019000 1ui 41, § 92t ow $v0 o1 # ot re-encrant and we can't trust §ep

130000188] 2c220200
[8000015c] 3019000 1ui #1,
(800001501 2c24020¢ s 8¢, 516(81)
[30000154] 40126500 mre0 426, $13

5 93: ow a0 52 # But we need to use these registers

4 95: meco $ko $13 & Cause reg:
20 sk

[80000196] 00222082 sx1 84, 436, 2 s6: or1 2" Bverace Exccode Field
[8000015¢] 3084001L% andi 3, 84, 31 § 971 andi $a0 520 051T

[80000120] 34020004 ori 42, 40, 4 5 1012 14 500 48 syscali 4 (rint_ste)

[300001a4] 36045000 1ui 4a, -28672 _m1l ; 102: 1a $a0

[30000128] 0000000c syseall 7 103: syscal.

300001ac] 34020001 ori 82, §0, 1 e -

(800001001 00142082 sr1 34, 836, 2 : 208 a1 5a0 k0 2 # Bxtract ExcCode Field

(800001041 3084001c andi $4, 84, 31 } 107 andt a0 520 oxie

130000158] 0000000¢ _syseall ; 108: sgscar o

What SPIM looks like.

Register Panel and Memory Panel

Qtspim - s ox
Fle Simulator Registers Text Segment Data Segment Window _Help

IS Ha2E >
FP Regs | ntRegs (16]

FPRegs Text
em o - o800 User Text segmenc [00400000) .. (00440000] =
rem -0 (00400000] 8£220000 1w 84, 0(429) 183 1w $20 0(5p) # arge
s 1004000041 27250004 addiu #5, 429, & © 284 adiiu sa1 $ap ¢ ¢ arav
P 100400008] 24250004 addiu 86, $5, & ? 185: addtu $a2 Sai 4 7 envp
10040000c] 00041080 811 82, 44, 2 ? 186: 511 570 520 2
[0000010] 00c23021 36, 52 : 167 addu $a2 522 50
single Precision 1004000141 0100005 Ja1 0x00400024 [matn] ; 135: jal main
0 < 0 100400018] 00000000 nop. 1

oso0uao] aooooude syscats Meniohg,phml 10 (exit

2,125 # toad inmediate value (25)

[00400026] 36012002 Ius 41, 4097 § 19: 1w $t3, value # Load the word stored at label ‘value®
10040002¢] 3200000 1w $11, 0($1)

[00400030] 01256020 add #12, #10, $11 : 20: add ste, sez2, se3 ¢ add

1004000341 01466522 sub #13, #10, $11 § 21t sub S5, Sea. S5 # subtract

[00400038] 36011001 1ui 41, 4097 [msg] } 22: 1a sa0, meg # Poincer to string

100400036 34240004 oxi 44, 81, 4 [msg)

[00400020] 0000000c syseall 5 23: suscall

1004000441 3302000a _oxi 42, 80, 10 § 26 10 $v0. 10 # Sets $v0 to *10% to select exit syscall
[[00400048] 0000000c syscall ; 29: syscall # Exit

Kernel Text egment (80000000] .. (80010000]
& 50¢ move $kI sat # Save fat
v $v0 o1 # fot re-encrant and we can't trust §ep

(300001801 0001ds2: addu $27, 40, $1
i 1, 23672 b2

[8000018c] 3019000 1ui #1, -20672 5 93: ow a0 52 # But we need to use these registers

[30000154] 40126300 mee + 93¢ meco $ko $13 & cause register
[30000198] 00122082 ex1 44, 426, 2 ? 96+ orl $a0 §k0 2 # Bxerace ExcCode Field

[8000015¢] 3084001L% andi 3, 84, 31 3 97: andi $a0 $a0 ox1f

[80000120] 34020004 ori 42, 40, 4 2015 15 $v0 4 # syscall 4 (print_str)

[8000012¢] 3c049000 Iui 44, 28672 L_mi) ; 02: 2a $a0 _mi

[30000128] 0000000c syseall 7 103: syscarl

300001ac] 34020001 ori 82, §0, 1 7 105: 15 $v0 1 # syscall 1 (print_int)

(800001001 00142082 sr1 34, 836, 2 : 208 a1 5a0 k0 2 # Bxtract ExcCode Field

(800001041 3084001c andi $4, 84, 31 } 107 andt a0 520 oxie

130000158] 0000000¢ _syseall ; 108: sgscar o

. Message panel

There's also a console window.

Operations

Load a source file: File — Reinitialize and Load File

v

v

Run the code: F5 or Press the green triangle button

v

Single stepping: F10

v

Breakpoint: in Text panel, right click on an address to set a
breakpoint there.

Overview

System service in SPIM

System calls in SPIM |

SPIM provides a small set of operating system-like services through
the system call (syscall) instruction.

[Sorves | _systom ca cote

print_int $a0 = integer

print_float 2 $f12 =float

print_double 3 $f12 =double

print_string 4 $a0 = string

read_int 5 integer (in $v0)

read_float 6 float (in $10)

read_double 7 double (in $10)

read_string 8 $a0 = buffer, $al = length

shrk 9 $a0 = amount address (in $v0)

exit 10

print_char 11 $a0 = char

read_char 12 char (in $v0)

open $a0 = filename (string), file descriptor (in $a0)
13 $al = flags, $a2 = mode

read $a0 = file descriptor, num chars read (in
14 $al = buffer, $a2 = length $a0)

write $a0 = file descriptor, num chars written (in
15 $al = buffer, $a2 = length $a0)

close 16 $a0 = file descriptor

exit? 17 $a0 = result

System calls in SPIM I

To request a service, a program loads the system call code into
register $v0 and arguments into registers $a0 - $a3 (or $f12 for
floating-point values). System calls that return values put their
results in register $v0 (or $f0 for floating-point results). Like this
example:

Using system call

System calls in SPIM Il

str:

.data

.asciiz "the answer = "

.text

1li $vo, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string

1i $vo, 1 # system call code for print_int
1i $%a0, 5 # integer to print

syscall # print it

Run An Example Program

Download the file from course website and run it on your computer.

Overview

Lab assignment

Lab Assignment

Finish these two assignments and submit your code (.s file) to
elearn system before Feb. 05 (midnight).

1. Write an assembly program that outputs your student ID.

2. Write an assembly program that outputs the odd digit in your
student ID (e.g. sid 1155012345 should output 1155135).
The SID is required to be declared as an array of word in the
data segment.

	Main Talk
	Assembly programing
	Programer view of a MIPS32 machine
	Preliminaries of assembly programing

	Using SPIM
	System service in SPIM
	Lab assignment

