
CENG3420 Computer Organization and Design
Lab 1-1: MIPS assembly language programing

Wen Zong

Department of Computer Science and Engineering
The Chinese University of Hong Kong

wzong@cse.cuhk.edu.hk

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

Abstraction of Computer

Question:

1. Where’s cache?

2. Why to know programers’ view?

Registers

I 32 general-purpose registers

I register preceded by $ in assembly language instruction
I two formats for addressing:

I using register number e.g. $0 through $31
I using equivalent names e.g. $t1, $sp

I special registers Lo and Hi used to store result of
multiplication and division

I not directly addressable; contents accessed with special
instruction mfhi (“move from Hi”) and mflo (“move from
Lo”)

I stack grows from high memory to low memory

Register Names and Descriptions

Memory Allocation of A Program

Data Types and Literals

Data types:

I Instructions are all 32 bits

I byte(8 bits), halfword (2 bytes), word (4 bytes)

I a character requires 1 byte of storage

I an integer requires 1 word (4 bytes) of storage

Literals:

I numbers entered as is. e.g. 4

I characters enclosed in single quotes. e.g. ‘b’

I strings enclosed in double quotes. e.g. “A string”

Program Structure I

I Just plain text file with data declarations, program code
(name of file should end in suffix .s to be used with SPIM
simulator)

I Data declaration section followed by program code section

Data Declarations

1. placed in section of program identified with assembler directive
.data.
2. declares variable names used in program; storage allocated in
main memory (RAM)

Code

Program Structure II

1. placed in section of text identified with assembler directive .text
2. contains program code (instructions)
3. starting point for code e.g.ecution given label main:,
4. ending point of main code should use exit system call

Comments

anything following # on a line

The structure of an assembly program looks like this:

Program outline

Program Structure III

Comment giving name of program and description

Template.s

Bare-bones outline of MIPS assembly language program

.data # variable declarations follow this line

...

.text # instructions follow this line

main: # indicates start of code

...

End of program, leave a blank line afterwards

to make SPIM happy

An Example Program I

Pseudo instruction I
Some instructions in this example are pseudo instructions which
will be translated to MIPS instructions by the assembler. Here’s a
list of useful pseudo-instructions.

I mov $t0, $t1: Copy contents of register t1 to register t0.

I li $s0, immed: Load immediate into to register s0. The way
this is translated depends on whether immed is 16 bits or 32
bits.

I la $s0, addr: Load address into to register s0.

I lw $t0, address: Load a word at address into register t0

I Similar pseudo-instructions exist for sw, etc

Translating some pseudoinstructions

I mov $t0, $s0 → addi $t0, $s0, 0

I li $rs, small → addi $rs, $zero, small

I li $rs, big → lui $rs, upper(big) ori $rs, $rs, lower(big)

I la $rs, big → lui $rs, upper(big) ori $rs, $rs, lower(big)

Pseudo instruction II

1. where small means a quantity that can be represented using
16 bits, and big means a 32 bit quantity. upper(big) is the
upper 16 bits of a 32 bit quantity. lower(big) is the lower 16
bits of the 32 bit quantity.

2. upper(big) and lower(big) are not real instructions. If you
were to do the translation, you’d have to break it up yourself
to figure out those quantities.

More Information

For more information about MIPS instructions and assembly
programing you can refer to:

1. Lecture slides and textbook.

2. Google

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

What is SPIM

I SPIM is a MIPS32 simulator.

I Spim is a self-contained simulator that runs MIPS32 programs.

I It reads and executes assembly language programs written for
this processor.

I Spim also provides a simple debugger and minimal set of
operating system services.

I Spim does not execute binary (compiled) programs.

Dowload it here:
http://sourceforge.net/projects/spimsimulator/files/

http://sourceforge.net/projects/spimsimulator/files/

SPIM Overview

What SPIM looks like.

Register Panel and Memory Panel

There’s also a console window.

Operations

I Load a source file: File → Reinitialize and Load File

I Run the code: F5 or Press the green triangle button

I Single stepping: F10

I Breakpoint: in Text panel, right click on an address to set a
breakpoint there.

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

System calls in SPIM I

SPIM provides a small set of operating system-like services through
the system call (syscall) instruction.

System calls in SPIM II

To request a service, a program loads the system call code into
register $v0 and arguments into registers $a0 - $a3 (or $f12 for
floating-point values). System calls that return values put their
results in register $v0 (or $f0 for floating-point results). Like this
example:

Using system call

System calls in SPIM III

.data

str: .asciiz "the answer = "

.text

li $v0, 4 # system call code for print_str

la $a0, str # address of string to print

syscall # print the string

li $v0, 1 # system call code for print_int

li $a0, 5 # integer to print

syscall # print it

Run An Example Program

Download the file from course website and run it on your computer.

Overview

Assembly programing
Programer view of a MIPS32 machine
Preliminaries of assembly programing

Using SPIM

System service in SPIM

Lab assignment

Lab Assignment

Finish these two assignments and submit your code (.s file) to
elearn system before Feb. 05 (midnight).

1. Write an assembly program that outputs your student ID.

2. Write an assembly program that outputs the odd digit in your
student ID (e.g. sid 1155012345 should output 1155135).
The SID is required to be declared as an array of word in the
data segment.

	Main Talk
	Assembly programing
	Programer view of a MIPS32 machine
	Preliminaries of assembly programing

	Using SPIM
	System service in SPIM
	Lab assignment

