
CEG3420 L11.1 Spring 2016

CENG 3420
Computer Organization and Design

Lecture 11: Multiple-Issue Processor

Bei Yu

CEG3420 L11.2 Spring 2016

Extracting Yet More Performance
q Increase the depth of the pipeline to increase the clock

rate – superpipelining
● The more stages in the pipeline, the more forwarding/hazard

hardware needed and the more pipeline latch overhead (i.e., the
pipeline latch accounts for a larger and larger percentage of the
clock cycle time)

q Fetch (and execute) more than one instructions at one
time (expand every pipeline stage to accommodate
multiple instructions) – multiple-issue
● The instruction execution rate, CPI, will be less than 1, so

instead we use IPC: instructions per clock cycle
- E.g., a 3 GHz, four-way multiple-issue processor can execute at a

peak rate of 12 billion instructions per second with a best case CPI
of 0.25 or a best case IPC of 4

● If the datapath has a five stage pipeline, how many instructions
are active in the pipeline at any given time?

CEG3420 L11.3 Spring 2016

Types of Parallelism
q Instruction-level parallelism (ILP) of a program – a

measure of the average number of instructions in a
program that a processor might be able to execute at the
same time
● Mostly determined by the number of true (data) dependencies

and procedural (control) dependencies in relation to the number
of other instructions

q Data-level parallelism (DLP) DO I = 1 TO 100
A[I] = A[I] + 1

CONTINUE
q Machine parallelism of a

processor – a measure of the ability of the processor to
take advantage of the ILP of the program
● Determined by the number of instructions that can be fetched

and executed at the same time

q To achieve high performance, need both ILP and
machine parallelism

CEG3420 L11.4 Spring 2016

Multiple-Issue Processor Styles
q Static multiple-issue processors (aka VLIW)

● Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

● E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC
(Explicit Parallel Instruction Computer)

- 128-bit “bundles” containing three instructions, each 41-bits plus a
5-bit template field (which specifies which FU each instruction
needs)

- Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch)
- Extensive support for speculation and predication

q Dynamic multiple-issue processors (aka superscalar)
● Decisions on which instructions to execute simultaneously (in

the range of 2 to 8) are being made dynamically (at run time by
the hardware)

● E.g., IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona

CEG3420 L11.5 Spring 2016

Static V.S. Dynamic
q Static typically means "let's make our compiler take care

of this”
● Fast runtime
● Limited performance (variable values available when is running)

q Dynamic typically means “let's build some hardware that
takes care of this”
● Hardware penalty
● Complete knowledge on the program

CEG3420 L11.6 Spring 2016

Multiple-Issue Datapath Responsibilities
q Must handle, with a combination of hardware and software

fixes, the fundamental limitations of
● How many instructions to issue in one clock cycle – issue slots
● Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low
ILP

● Procedural dependencies – aka control hazards
- Ditto, but even more severe
- Use dynamic branch prediction to help resolve the ILP issue

● Resource conflicts – aka structural hazards
- A SS/VLIW processor has a much larger number of potential

resource conflicts
- Functional units may have to arbitrate for result buses and register-

file write ports
- Resource conflicts can be eliminated by duplicating the resource or

by pipelining the resource

CEG3420 L11.7 Spring 2016

Speculation
q Speculation is used to allow execution of future instr’s that

(may) depend on the speculated instruction
● Speculate on the outcome of a conditional branch (branch

prediction)
● Speculate that a store (for which we don’t yet know the address)

that precedes a load does not refer to the same address, allowing
the load to be scheduled before the store (load speculation)

q Must have (hardware and/or software) mechanisms for
● Checking to see if the guess was correct
● Recovering from the effects of the instructions that were executed

speculatively if the guess was incorrect

q Ignore and/or buffer exceptions created by speculatively
executed instructions until it is clear that they should really
occur

CEG3420 L11.8 Spring 2016

Static Multiple Issue Machines (VLIW)
q Static multiple-issue processors (aka VLIW) use the

compiler (at compile-time) to statically decide which
instructions to issue and execute simultaneously
● Issue packet – the set of instructions that are bundled together

and issued in one clock cycle – think of it as one large instruction
with multiple operations

● The mix of instructions in the packet (bundle) is usually restricted
– a single “instruction” with several predefined fields

● The compiler does static branch prediction and code scheduling
to reduce (control) or eliminate (data) hazards

q VLIW’s have
● Multiple functional units
● Multi-ported register files
● Wide program bus

CEG3420 L11.9 Spring 2016

An Example: A VLIW MIPS
q The ALU and data transfer instructions are issued at the

same time.

CEG3420 L11.10 Spring 2016

An Example: A VLIW MIPS
q Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits

q Instructions are always fetched, decoded, and issued in
pairs
● If one instr of the pair can not be used, it is replaced with a noop

q Need 4 read ports and 2 write ports and a separate
memory address adder

CEG3420 L11.11 Spring 2016

A MIPS VLIW (2-issue) Datapath

Instruction
Memory

Add

PC

4

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

q No hazard hardware (so
no load use allowed)

CEG3420 L11.12 Spring 2016

Code Scheduling Example
q Consider the following loop code

lp: lw $t0,0($s1) # $t0=array element
addu $t0,$t0,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
addi $s1,$s1,-4 # decrement pointer
bne $s1,$0,lp # branch if $s1 != 0

q Must “schedule” the instructions to avoid pipeline stalls
● Instructions in one bundle must be independent
● Must separate load use instructions from their loads by one

cycle
● Notice that the first two instructions have a load use

dependency, the next two and last two have data dependencies
● Assume branches are perfectly predicted by the hardware

CEG3420 L11.13 Spring 2016

The Scheduled Code (Not Unrolled)

ALU or branch Data transfer CC
lp: 1

2
3
4
5

CEG3420 L11.14 Spring 2016

The Scheduled Code (Not Unrolled)

q Four clock cycles to execute 5 instructions for a
● CPI of 0.8 (versus the best case of 0.5)
● IPC of 1.25 (versus the best case of 2.0)
● noops don’t count towards performance !!

ALU or branch Data transfer CC
lp: lw $t0,0($s1) 1

addi $s1,$s1,-4 2
addu $t0,$t0,$s2 3
bne $s1,$0,lp sw $t0,4($s1) 4

ALU or branch Data transfer CC
lp: 1

2
3
4
5

CEG3420 L11.15 Spring 2016

Loop Unrolling
q Loop unrolling – multiple copies of the loop body are

made and instructions from different iterations are
scheduled together as a way to increase ILP

q Apply loop unrolling (4 times for our example) and then
schedule the resulting code
● Eliminate unnecessary loop overhead instructions
● Schedule so as to avoid load use hazards

q During unrolling the compiler applies register renaming to
eliminate all data dependencies that are not true data
dependencies

CEG3420 L11.16 Spring 2016

Unrolled Code Example
lp: lw $t0,0($s1) # $t0=array element

lw $t1,-4($s1) # $t1=array element
lw $t2,-8($s1) # $t2=array element
lw $t3,-12($s1) # $t3=array element
addu $t0,$t0,$s2 # add scalar in $s2
addu $t1,$t1,$s2 # add scalar in $s2
addu $t2,$t2,$s2 # add scalar in $s2
addu $t3,$t3,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
sw $t1,-4($s1) # store result
sw $t2,-8($s1) # store result
sw $t3,-12($s1) # store result
addi $s1,$s1,-16 # decrement pointer
bne $s1,$0,lp # branch if $s1 != 0

CEG3420 L11.17 Spring 2016

The Scheduled Code (Unrolled)

q Eight clock cycles to execute 14 instructions for a
● CPI of 0.57 (versus the best case of 0.5)
● IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC
lp: addi $s1,$s1,-16 lw $t0,0($s1) 1

lw $t1,12($s1) 2
addu $t0,$t0,$s2 lw $t2,8($s1) 3
addu $t1,$t1,$s2 lw $t3,4($s1) 4
addu $t2,$t2,$s2 sw $t0,16($s1) 5
addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2,8($s1) 7
bne $s1,$0,lp sw $t3,4($s1) 8

CEG3420 L11.18 Spring 2016

Compiler Support for VLIW Processors
q The compiler packs groups of independent instructions

into the bundle
● Done by code re-ordering (trace scheduling)

q The compiler uses loop unrolling to expose more ILP

q The compiler uses register renaming to solve name
dependencies and ensures no load use hazards occur

q While superscalars use dynamic prediction, VLIW’s
primarily depend on the compiler for branch prediction
● Loop unrolling reduces the number of conditional branches
● Predication eliminates if-the-else branch structures by replacing

them with predicated instructions

q The compiler predicts memory bank references to help
minimize memory bank conflicts

CEG3420 L11.19 Spring 2016

Dynamic Multiple Issue Machines (SS)
q Dynamic multiple-issue processors (aka SuperScalar) use

hardware at run-time to dynamically decide which
instructions to issue and execute simultaneously

q Instruction-fetch and issue – fetch instructions, decode
them, and issue them to a FU to await execution
● Defines the Instruction lookahead capability – fetch, decode and

issue instructions beyond the current instruction

q Instruction-execution – as soon as the source operands
and the FU are ready, the result can be calculated
● Defines the processor lookahead capability – complete execution

of issued instructions beyond the current instruction

q Instruction-commit – when it is safe to, write back results
to the RegFile or D$ (i.e., change the machine state)

CEG3420 L11.20 Spring 2016

In-Order vs Out-of-Order
q Instruction fetch and decode units are required to issue

instructions in-order so that dependencies can be
tracked

q The commit unit is required to write results to registers
and memory in program fetch order so that
● if exceptions occur the only registers updated will be those

written by instructions before the one causing the exception
● if branches are mispredicted, those instructions executed after

the mispredicted branch don’t change the machine state (i.e., we
use the commit unit to correct incorrect speculation)

q Although the front end (fetch, decode, and issue) and
back end (commit) of the pipeline run in-order, the FUs
are free to initiate execution whenever the data they
need is available – out-of-(program) order execution
● Allowing out-of-order execution increases the amount of ILP

CEG3420 L11.21 Spring 2016

In-Order vs Out-of-Order

CEG3420 L11.22 Spring 2016

Out-of-Order Execution
q With out-of-order execution, a later instruction may

execute before a previous instruction so the hardware
needs to resolve both write after read (WAR) and write
after write (WAW) data hazards

● If the lw write to $t0 occurs after the addu write, then the sub
gets an incorrect value for $t0

● The addu has an output dependency on the lw – write after
write (WAW)

- The issuing of the addu might have to be stalled if its result could
later be overwritten by an previous instruction that takes longer to
complete

lw $t0,0($s1)
addu $t0,$t1,$s2
. . .
sub $t2, $t0, $s2

CEG3420 L11.23 Spring 2016

Antidependencies
q Also have to deal with antidependencies – when a later

instruction (that executes earlier) produces a data value
that destroys a data value used as a source in an earlier
instruction (that executes later)

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

q The constraint is similar to that of true data
dependencies, except reversed
● Instead of the later instruction using a value (not yet) produced

by an earlier instruction (read after write), the later instruction
produces a value that destroys a value that the earlier instruction
(has not yet) used (write after read)

Antidependency (WAR)
True data dependency (RAW)
Output dependency (WAW)

CEG3420 L11.24 Spring 2016

Dependencies Review
q Each of the three data dependencies

● True data dependencies (RAW)
● Antidependencies (WAR)
● Output dependencies (WAW)

manifests itself through the use of registers (or other
storage locations)

q True dependencies represent the flow of data and
information through a program

q Anti- and output dependencies arise because the limited
number of registers, i.e., programmers reuse registers for
different computations leading to storage conflicts

storage conflicts

CEG3420 L11.25 Spring 2016

Storage Conflicts and Register Renaming
q Storage conflicts can be reduced (or eliminated) by

increasing or duplicating the troublesome resource
● Provide additional registers that are used to reestablish the

correspondence between registers and values
- Allocated dynamically by the hardware in SS processors

q Register renaming – the processor renames the original
register identifier in the instruction to a new register (one
not in the visible register set)

R3b := R3a * R5a
R4a := R3b + 1
R3c := R5a + 1

● The hardware that does renaming assigns a “replacement”
register from a pool of free registers and releases it back to the
pool when its value is superseded and there are no outstanding
references to it

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

CEG3420 L11.26 Spring 2016

Does Multiple Issue Work?

q Yes, but not as much as we’d like

q Programs have real dependencies that limit ILP

q Some dependencies are hard to eliminate
● e.g., pointer aliasing

q Some parallelism is hard to expose
● Limited window size during instruction issue

q Memory delays and limited bandwidth
● Hard to keep pipelines full

q Speculation can help if done well

CEG3420 L11.27 Spring 2016

Summary: Extracting More Performance
q To achieve high performance, need both machine

parallelism and instruction level parallelism (ILP) by
● Superpipelining
● Static multiple-issue (VLIW)
● Dynamic multiple-issue (superscalar)

q A processor’s instruction issue and execution policies
impact the available ILP
● In-order fetch, issue, and commit and out-of-order execution

- Pipelining creates true dependencies (RAW)
- Out-of-order execution creates antidependencies (WAR)
- Out-of-order execution creates output dependencies (WAW)
- In-order commit allows speculation (to increase ILP) and is required to

implement precise interrupts

q Register renaming can solve these storage dependencies

CEG3420 L11.28 Spring 2016

CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but
large)

Instr format variable
format

fixed format fixed format fixed format

Registers few, some
special
Limited # of
ports

Many GP
Limited # of
ports

GP and
rename (RUU)
Many ports

many, many
GP
Many ports

Memory
reference

embedded in
many instr’s

load/store load/store load/store

Key Issues decode
complexity

data
forwarding,
hazards

hardware
dependency
resolution

(compiler)
code
scheduling

CEG3420 L11.29 Spring 2016

Evolution of Pipelined, SS Processors
Year Clock

Rate
Pipe
Stages

Issue
Width

OOO? Cores
/Chip

Power

Intel 486 1989 25 MHz 5 1 No 1 5 W
Intel Pentium 1993 66 MHz 5 2 No 1 10 W
Intel Pentium
Pro

1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium
4 Willamette

2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium
4 Prescott

2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W
Sun USPARC
III

2003 1950 MHz 14 4 No 1 90 W

Sun T1
(Niagara)

2005 1200 MHz 6 1 No 8 70 W

CEG3420 L11.30 Spring 2016

Power Efficiency

q Complexity of dynamic scheduling and speculations
requires power

q Multiple simpler cores may be better (next lecture)

