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Extracting Yet More Performance
q Increase the depth of the pipeline to increase the clock 

rate – superpipelining
● The more stages in the pipeline, the more forwarding/hazard 

hardware needed and the more pipeline latch overhead (i.e., the 
pipeline latch accounts for a larger and larger percentage of the 
clock cycle time)

q Fetch (and execute) more than one instructions at one 
time (expand every pipeline stage to accommodate 
multiple instructions) – multiple-issue
● The instruction execution rate, CPI, will be less than 1, so 

instead we use IPC:  instructions per clock cycle
- E.g., a 3 GHz, four-way multiple-issue processor can execute at a 

peak rate of 12 billion instructions per second with a best case CPI 
of 0.25  or a best case IPC of 4

● If the datapath has a five stage pipeline, how many instructions 
are active in the pipeline at any given time?
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Types of Parallelism
q Instruction-level parallelism (ILP) of a program – a 

measure of the average number of instructions in a 
program that a processor might be able to execute at the 
same time
● Mostly determined by the number of true (data) dependencies 

and procedural (control) dependencies in relation to the number 
of other instructions

q Data-level parallelism (DLP) DO  I = 1  TO  100
A[I] = A[I] + 1

CONTINUE
q Machine parallelism of a                                            

processor – a measure of the ability of the processor to 
take advantage of the ILP of the program
● Determined by the number of instructions that can be fetched 

and executed at the same time

q To achieve high performance, need both ILP and 
machine parallelism
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Multiple-Issue Processor Styles
q Static multiple-issue processors (aka VLIW)

● Decisions on which instructions to execute simultaneously are 
being made statically (at compile time by the compiler)

● E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC 
(Explicit Parallel Instruction Computer)

- 128-bit “bundles” containing three instructions, each 41-bits plus a 
5-bit template field (which specifies which FU each instruction 
needs)

- Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch)
- Extensive support for speculation and predication

q Dynamic multiple-issue processors (aka superscalar)
● Decisions on which instructions to execute simultaneously (in 

the range of 2 to 8)  are being made dynamically (at run time by 
the hardware)

● E.g., IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona



CEG3420  L11.5 Spring 2016

Static V.S. Dynamic
q Static typically means "let's make our compiler take care 

of this”
● Fast runtime
● Limited performance (variable values available when is running)

q Dynamic typically means “let's build some hardware that 
takes care of this”
● Hardware penalty
● Complete knowledge on the program
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Multiple-Issue Datapath Responsibilities
q Must handle, with a combination of hardware and software 

fixes, the fundamental limitations of 
● How many instructions to issue in one clock cycle – issue slots
● Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low 
ILP

● Procedural dependencies – aka control hazards
- Ditto, but even more severe
- Use dynamic branch prediction to help resolve the ILP issue

● Resource conflicts – aka structural hazards
- A SS/VLIW processor has a much larger number of potential 

resource conflicts
- Functional units may have to arbitrate for result buses and register-

file write ports
- Resource conflicts can be eliminated by duplicating the resource or 

by pipelining the resource
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Speculation
q Speculation is used to allow execution of future instr’s that 

(may) depend on the speculated instruction
● Speculate on the outcome of a conditional branch (branch 

prediction)
● Speculate that a store (for which we don’t yet know the address) 

that precedes a load does not refer to the same address, allowing 
the load to be scheduled before the store (load speculation)

q Must have (hardware and/or software) mechanisms for
● Checking to see if the guess was correct
● Recovering from the effects of the instructions that were executed 

speculatively if the guess was incorrect

q Ignore and/or buffer exceptions created by speculatively 
executed instructions until it is clear that they should really 
occur
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Static Multiple Issue Machines (VLIW)
q Static multiple-issue processors (aka VLIW) use the 

compiler (at compile-time) to statically decide which 
instructions to issue and execute simultaneously
● Issue packet – the set of instructions that are bundled together 

and issued in one clock cycle – think of it as one large instruction 
with multiple operations

● The mix of instructions in the packet (bundle) is usually restricted 
– a single “instruction” with several predefined fields

● The compiler does static branch prediction and code scheduling 
to reduce (control) or eliminate (data) hazards

q VLIW’s have
● Multiple functional units
● Multi-ported register files
● Wide program bus
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An Example: A VLIW MIPS
q The ALU and data transfer instructions are issued at the 

same time.
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An Example: A VLIW MIPS
q Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits

q Instructions are always fetched, decoded, and issued in 
pairs
● If one instr of the pair can not be used, it is replaced with a noop

q Need 4 read ports and 2 write ports and a separate 
memory address adder
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A MIPS VLIW (2-issue) Datapath

Instruction
Memory

Add

PC

4

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

q No hazard hardware (so 
no load use allowed)
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Code Scheduling Example
q Consider the following loop code

lp: lw $t0,0($s1) # $t0=array element
addu $t0,$t0,$s2  # add scalar in $s2
sw $t0,0($s1)   # store result
addi $s1,$s1,-4   # decrement pointer
bne $s1,$0,lp    # branch if $s1 != 0

q Must “schedule” the instructions to avoid pipeline stalls
● Instructions in one bundle must be independent
● Must separate load use instructions from their loads by one 

cycle
● Notice that the first two instructions have a load use 

dependency, the next two and last two have data dependencies 
● Assume branches are perfectly predicted by the hardware
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The Scheduled Code (Not Unrolled)

ALU or branch Data transfer CC
lp: 1

2
3
4
5
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The Scheduled Code (Not Unrolled)

q Four clock cycles to execute 5 instructions for a
● CPI of 0.8 (versus the best case of 0.5)
● IPC of 1.25 (versus the best case of 2.0)
● noops don’t count towards performance !!

ALU or branch Data transfer CC
lp: lw  $t0,0($s1) 1

addi  $s1,$s1,-4 2
addu  $t0,$t0,$s2 3
bne   $s1,$0,lp sw  $t0,4($s1) 4

ALU or branch Data transfer CC
lp: 1

2
3
4
5
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Loop Unrolling
q Loop unrolling – multiple copies of the loop body are 

made and instructions from different iterations are 
scheduled together as a way to increase ILP

q Apply loop unrolling (4 times for our example) and then 
schedule the resulting code
● Eliminate unnecessary loop overhead instructions
● Schedule so as to avoid load use hazards

q During unrolling the compiler applies register renaming to 
eliminate all data dependencies that are not true data 
dependencies
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Unrolled Code Example
lp: lw $t0,0($s1) # $t0=array element

lw $t1,-4($s1)   # $t1=array element
lw $t2,-8($s1)   # $t2=array element
lw $t3,-12($s1)  # $t3=array element
addu $t0,$t0,$s2   # add scalar in $s2
addu $t1,$t1,$s2   # add scalar in $s2
addu $t2,$t2,$s2   # add scalar in $s2
addu $t3,$t3,$s2   # add scalar in $s2
sw $t0,0($s1)    # store result
sw $t1,-4($s1)   # store result
sw $t2,-8($s1)   # store result
sw $t3,-12($s1)  # store result
addi $s1,$s1,-16   # decrement pointer
bne $s1,$0,lp     # branch if $s1 != 0
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The Scheduled Code (Unrolled)

q Eight clock cycles to execute 14 instructions for a
● CPI of 0.57 (versus the best case of 0.5)
● IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC
lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1

lw  $t1,12($s1) 2
addu  $t0,$t0,$s2 lw  $t2,8($s1) 3
addu  $t1,$t1,$s2 lw  $t3,4($s1) 4
addu  $t2,$t2,$s2 sw  $t0,16($s1) 5
addu  $t3,$t3,$s2 sw  $t1,12($s1) 6

sw  $t2,8($s1) 7
bne   $s1,$0,lp sw  $t3,4($s1) 8
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Compiler Support for VLIW Processors
q The compiler packs groups of independent instructions 

into the bundle
● Done by code re-ordering (trace scheduling)

q The compiler uses loop unrolling to expose more ILP 

q The compiler uses register renaming to solve name 
dependencies and ensures no load use hazards occur

q While superscalars use dynamic prediction, VLIW’s 
primarily depend on the compiler for branch prediction
● Loop unrolling reduces the number of conditional branches
● Predication eliminates if-the-else branch structures by replacing 

them with predicated instructions

q The compiler predicts memory bank references to help 
minimize memory bank conflicts
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Dynamic Multiple Issue Machines (SS)
q Dynamic multiple-issue processors (aka SuperScalar) use 

hardware at run-time to dynamically decide which 
instructions to issue and execute simultaneously

q Instruction-fetch and issue – fetch instructions, decode 
them, and issue them to a FU to await execution
● Defines the Instruction lookahead capability – fetch, decode and 

issue instructions beyond the current instruction

q Instruction-execution – as soon as the source operands 
and the FU are ready, the result can be calculated
● Defines the processor lookahead capability – complete execution 

of issued instructions beyond the current instruction

q Instruction-commit – when it is safe to, write back results 
to the RegFile or D$ (i.e., change the machine state)
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In-Order vs Out-of-Order
q Instruction fetch and decode units are required to issue 

instructions in-order so that dependencies can be 
tracked

q The commit unit is required to write results to registers 
and memory in program fetch order so that
● if exceptions occur the only registers updated will be those 

written by instructions before the one causing the exception
● if branches are mispredicted, those instructions executed after 

the mispredicted branch don’t change the machine state (i.e., we 
use the commit unit to correct incorrect speculation)

q Although the front end (fetch, decode, and issue) and 
back end (commit) of the pipeline run in-order, the FUs 
are free to initiate execution whenever the data they 
need is available – out-of-(program) order execution
● Allowing out-of-order execution increases the amount of ILP
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In-Order vs Out-of-Order
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Out-of-Order Execution
q With out-of-order execution, a later instruction may 

execute before a previous instruction so the hardware 
needs to resolve both  write after read (WAR)  and write 
after write (WAW)  data hazards

● If the lw write to $t0 occurs after the addu write, then the sub
gets an incorrect value for $t0

● The addu has an output dependency on the lw – write after 
write (WAW)

- The issuing of the addu might have to be stalled if its result could 
later be overwritten by an previous instruction that takes longer to 
complete

lw $t0,0($s1)
addu $t0,$t1,$s2
. . .
sub $t2, $t0, $s2
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Antidependencies
q Also have to deal with antidependencies – when a later 

instruction (that executes earlier) produces a data value 
that destroys a data value used as a source in an earlier 
instruction (that executes later)

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

q The constraint is similar to that of true data 
dependencies, except reversed
● Instead of the later instruction using a value (not yet) produced 

by an earlier instruction (read after write), the later instruction 
produces a value that destroys a value that the earlier instruction 
(has not yet) used (write after read)

Antidependency (WAR)
True data dependency (RAW)
Output dependency (WAW)
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Dependencies Review
q Each of the three data dependencies

● True data dependencies (RAW)
● Antidependencies (WAR)
● Output dependencies (WAW)

manifests itself through the use of registers (or other 
storage locations)

q True dependencies represent the flow of data and 
information through a program

q Anti- and output dependencies arise because the limited 
number of registers, i.e., programmers reuse registers for 
different computations leading to storage conflicts

storage conflicts
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Storage Conflicts and Register Renaming
q Storage conflicts can be reduced (or eliminated) by 

increasing or duplicating the troublesome resource
● Provide additional registers that are used to reestablish the 

correspondence between registers and values
- Allocated dynamically by the hardware in SS processors

q Register renaming – the processor renames the original 
register identifier in the instruction to a new register (one 
not in the visible register set)

R3b := R3a * R5a
R4a := R3b + 1
R3c := R5a + 1

● The hardware that does renaming assigns a “replacement” 
register from a pool of free registers and releases it back to the 
pool when its value is superseded and there are no outstanding 
references to it

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1



CEG3420  L11.26 Spring 2016

Does Multiple Issue Work?

q Yes, but not as much as we’d like

q Programs have real dependencies that limit ILP

q Some dependencies are hard to eliminate
● e.g., pointer aliasing

q Some parallelism is hard to expose
● Limited window size during instruction issue

q Memory delays and limited bandwidth
● Hard to keep pipelines full

q Speculation can help if done well
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Summary:  Extracting More Performance
q To achieve high performance, need both machine 

parallelism and instruction level parallelism (ILP) by
● Superpipelining
● Static multiple-issue (VLIW)
● Dynamic multiple-issue (superscalar)

q A processor’s instruction issue and execution policies 
impact the available ILP
● In-order fetch, issue, and commit and out-of-order execution

- Pipelining creates true dependencies (RAW)
- Out-of-order execution creates antidependencies (WAR)
- Out-of-order execution creates output dependencies (WAW)
- In-order commit allows speculation (to increase ILP) and is required to 

implement precise interrupts

q Register renaming can solve these storage dependencies
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CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but 
large)

Instr format variable 
format

fixed format fixed format fixed format

Registers few, some 
special
Limited # of 
ports

Many GP
Limited # of 
ports

GP and 
rename (RUU)
Many ports

many, many 
GP
Many ports

Memory 
reference

embedded in 
many instr’s

load/store load/store load/store

Key Issues decode 
complexity

data 
forwarding, 
hazards

hardware 
dependency 
resolution

(compiler) 
code 
scheduling
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Evolution of Pipelined, SS Processors
Year Clock 

Rate
# Pipe 
Stages

Issue 
Width

OOO? Cores
/Chip

Power

Intel 486 1989 25 MHz 5 1 No 1 5 W
Intel Pentium 1993 66 MHz 5 2 No 1 10 W
Intel Pentium 
Pro

1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 
4 Willamette

2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 
4 Prescott

2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W
Sun USPARC 
III

2003 1950 MHz 14 4 No 1 90 W

Sun T1 
(Niagara)

2005 1200 MHz 6 1 No 8 70 W
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Power Efficiency

q Complexity of dynamic scheduling and speculations 
requires power

q Multiple simpler cores may be better (next lecture)


