
CENG3420 Computer Organization & Design
Lecture 10: I/O Systems

Bei Yu

Spring 2016

byu@cse.cuhk.edu.hk

1 / 27

mailto:byu@cse.cuhk.edu.hk


Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

2 / 27



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

3 / 27



Review: Major Components of a Computer

Processor

Control

Datapath

Memory

Devices

Input

Output

Important metrics for an I/O system
I Performance
I Expandability
I Dependability
I Cost, size, weight
I Security

3 / 27



A Typical I/O System

Processor

Cache

Memory  -­ I/O  Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

4 / 27



Input and Output Devices

I/O devices are incredibly diverse with respect to
I Behavior input, output or storage
I Partner human or machine
I Data rate the peak rate at which data can be transferred

Device Behavior Partner Data Rate (Mb/s)
Keyboard Input Human 0.0001

Mouse Input Human 0.0038
Laser printer Output Human 3.2000

Flash memory Storage Machine 32.0000-200.0000
Magnetic disk Storage Machine 800.0000-3000.0000

Graphics display Output Human 800.0000-8000.0000
Network/LAN Input/output Machine 100.0000-10000.0000

5 / 27



I/O Performance Measures

I/O bandwidth (throughput)
I Amount of information that can be input (output) and communicated per

unit time
I How much data can we move through the system in a certain time?
I How many I/O operations can we do per unit time?

I/O response time (latency)
I Total elapsed time to accomplish an input or output operation
I An especially important performance metric in real-time systems

6 / 27



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

7 / 27



Bus

A shared communication link (a single set of wires used to connect multiple
subsystems) that needs to support a range of devices with widely varying
latencies and data transfer rates

Advantages
I Versatile – new devices can be added easily and can be moved

between computer systems that use the same bus standard
I Low cost – a single set of wires is shared in multiple ways

Disadvantages
I Creates a communication bottleneck bus bandwidth limits the

maximum I/O throughput

The maximum bus speed is largely limited by
I The length of the bus
I The number of devices on the bus

7 / 27



Bus

A shared communication link (a single set of wires used to connect multiple
subsystems) that needs to support a range of devices with widely varying
latencies and data transfer rates

Advantages
I Versatile – new devices can be added easily and can be moved

between computer systems that use the same bus standard
I Low cost – a single set of wires is shared in multiple ways

Disadvantages
I Creates a communication bottleneck bus bandwidth limits the

maximum I/O throughput

The maximum bus speed is largely limited by
I The length of the bus
I The number of devices on the bus

7 / 27



Types of Buses
Processor-Memory Bus (“Front Side Bus”, proprietary)

I Short and high speed
I Matched to the memory system to maximize the memory-processor

bandwidth
I Optimized for cache block transfers

I/O Bus (industry standard, e.g., SCSI, USB, Firewire)
I Usually is lengthy and slower
I Needs to accommodate a wide range of I/O devices
I Use either the processor-memory bus or a backplane bus to connect to

memory

Backplane Bus (industry standard, e.g., ATA, PCIexpress)
I Allow processor, memory and I/O devices to coexist on a single bus
I Used as an intermediary bus connecting I/O busses to the

processor-memory bus

8 / 27



I/O Transactions

I An I/O transaction is a sequence of operations over the interconnect
that includes a request and may include a response either of which may
carry data.

I A transaction is initiated by a single request and may take many
individual bus operations.

I An I/O transaction typically includes two parts

1. Sending the address
2. Receiving or sending the data

9 / 27



Synchronous and Asynchronous Buses

Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for

communication that is relative to the clock
I

I

I

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional

control lines (ReadReq, Ack, DataRdy)
I

I

I

10 / 27



Synchronous and Asynchronous Buses

Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for

communication that is relative to the clock
I , Involves very little logic and can run very fast
I

I

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional

control lines (ReadReq, Ack, DataRdy)
I

I

I

10 / 27



Synchronous and Asynchronous Buses

Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for

communication that is relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional

control lines (ReadReq, Ack, DataRdy)
I

I

I

10 / 27



Synchronous and Asynchronous Buses

Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for

communication that is relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional

control lines (ReadReq, Ack, DataRdy)
I , Can accommodate a wide range of devices and device speeds
I , Can be lengthened without worrying about clock skew
I

10 / 27



Synchronous and Asynchronous Buses

Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for

communication that is relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional

control lines (ReadReq, Ack, DataRdy)
I , Can accommodate a wide range of devices and device speeds
I , Can be lengthened without worrying about clock skew
I / Disadvantage: slow(er)

10 / 27



Advanced Technology Attachment (ATA) Cable

I Backplane bus
I Connects hard drives, CD-ROM drives, and other drives
I [Old] Parallel ATA (PATA): synchronous
I [New] Serial ATA (SATA), much thinner, asynchronous

I Reason:

Skew Problem

11 / 27



Advanced Technology Attachment (ATA) Cable

I Backplane bus
I Connects hard drives, CD-ROM drives, and other drives
I [Old] Parallel ATA (PATA): synchronous
I [New] Serial ATA (SATA), much thinner, asynchronous

I Reason: Skew Problem

11 / 27



Asynchronous Bus Handshaking Protocol

Example: data from Memory to I/O devices

ReadReq

Data

Ack

DataRdy

addr data

1. I/O device requests by raising ReadReq & putting addr on the data lines

2.

3.

4.

5.

6.

7.

12 / 27



Key Characteristics of I/O Standards

Firewire USB  2.0 PCIe Serial  ATA SA  SCSI
Use External External Internal Internal External
Devices  
per  
channel

63 127 1 1 4

Max  length 4.5  meters 5  meters 0.5  meters 1  meter 8  meters
Data  Width 4 2 2  per  lane 4 4
Peak  
Bandwidth

50MB/sec  
(400)
100MB/sec  
(800)

0.2MB/sec  
(low)
1.5MB/sec  
(full)
60MB/sec  
(high)

250MB/sec  
per  lane  
(1x)
Come  as  
1x,  2x,  4x,  
8x,  16x,  
32x

300MB/sec 300MB/sec

Hot  
pluggable?

Yes Yes Depends Yes Yes

Hot plugging: a device does not require a restart of the system

13 / 27



A Typical I/O System

Memory
Controller
Hub

(north  bridge)
5000P  

Intel  Xeon  5300
processor

Intel  Xeon  5300
processor

Main
memory
DIMMs

Front  Side  Bus  
(1333MHz,  10.5GB/sec)FB  DDR2  667

(5.3GB/sec)

PCIe 8x  (2GB/sec)ESI  (2GB/sec)

I/O
Controller  
Hub

(south  bridge)
Entreprise
South
Bridge  2

CD/DVD

Disk

Disk Serial  ATA
(300MB/sec)

Keyboard,
Mouse,  …

LPC
(1MB/sec)

USB  ports USB  2.0
(60MB/sec)

PCIe 4x
(1GB/sec)
PCIe 4x
(1GB/sec)
PCI-­X  bus
(1GB/sec)
PCI-­X  bus
(1GB/sec)

Parallel  ATA
(100MB/sec)

14 / 27



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

15 / 27



Interfacing I/O Devices to Processor / Memory

The operating system (OS) acts as the interface between the I/O hardware
and the program requesting I/O since

I Multiple programs using the processor share the I/O system
I I/O systems usually use interrupts which are handled by the OS
I Low-level control of an I/O device is complex and detailed

OS must be able to
I give commands to the I/O devices
I be notified the status of I/O device
I transfer data between the memory and the I/O device
I protect I/O devices to which a user program doesn’t have access
I schedule I/O requests to enhance system throughput

15 / 27



How Processor Ditects I/O Devices

Port-mapped I/O (PMIO)
I special class of CPU instructions for performing I/O
I EX:

Memory-mapped I/O (MMIO)
I Portions of the high-order memory address space are assigned to each

I/O device
I Read and writes to those memory addresses are interpreted as

commands to the I/O devices
I Load/stores to the I/O address space can only be done by the OS
I EX:

16 / 27



How Processor Ditects I/O Devices

Port-mapped I/O (PMIO)
I special class of CPU instructions for performing I/O
I EX: in and out instructions in x86 architecture

Memory-mapped I/O (MMIO)
I Portions of the high-order memory address space are assigned to each

I/O device
I Read and writes to those memory addresses are interpreted as

commands to the I/O devices
I Load/stores to the I/O address space can only be done by the OS
I EX: MIPS, LC-3b

16 / 27



How I/O Devices Communicate with Processor

Polling
I Processor periodically checks the status of an I/O device (through the

OS) to determine its need for service
I Processor is totally in control but does all the work
I Can waste a lot of processor time due to speed differences

Interrupt-driven I/O
I I/O device issues an interrupt to indicate that it needs attention

17 / 27



Interrupt Driven I/O

Asynchronous
I does NOT prevent any instruction from completing
I Need a way to identify the device generating the interrupt
I Can have different urgencies (so need a way to prioritize them)

Advantages
I Relieves the processor from having to continuously polling
I user program progress is only suspended during the actual transfer of

I/O data to/from user memory space

Disadvantage
I need special hardware support

18 / 27



Exception Handling Registers

19 / 27



Status Register

I Interrupt mask bits: whether enables 8 different exception levels
I Eception level bit: 1 if an exception occurs
I Interrupt enable bit: whether enable interrupt

20 / 27



Cause Register

When an inerrupt arrives, it sets its Pending interrupt bit in the cause
register, even if the mask bit is disabled.

I To enable a Pending interrupt in cause register, the corresponding
Interrupt mask in status register must be 1

I Once an interrupt occurs, the OS can find the reason in the Exception
code field

21 / 27



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

22 / 27



Direct Memory Access (DMA)

I For high-bandwidth devices (like disks) interrupt-driven I/O would
consume a lot of processor cycles

I With DMA, the DMA controller has the ability to transfer large blocks of
data directly to/from the memory without involving the processor

I The processor initiates the DMA transfer by supplying the I/O device
address, the operation to be performed, the memory address
destination/source, the number of bytes to transfer

I The DMA controller manages the entire transfer (possibly thousand of
bytes in length), arbitrating for the bus

I When the DMA transfer is complete, the DMA controller interrupts the
processor to let it know that the transfer is complete

I There may be multiple DMA devices in one system
I Processor and DMA controllers contend for bus cycles and for memory

22 / 27



DMA Example

23 / 27



DMA & Virtual Memory Considerations

Should the DMA work with virtual addresses or physical addresses?

If with Physical Address:
I Must constrain all of the DMA transfers to stay within one page because

if it crosses a page boundary, then it wont necessarily be contiguous in
memory

I If the transfer won’t fit in a single page, it can be broken into a series of
transfers (each of which fit in a page) which are handled individually
and chained together

If with virtual Address:
I The DMA controller will have to translate the virtual address to a

physical address (i.e., will need a TLB structure)

24 / 27



DMA & Virtual Memory Considerations

Whichever is used, the OS must cooperate by not remapping pages while a
DMA transfer involving that page is in progress. Otherwise, may cause
Coherency problem

25 / 27



Coherency Problem

I In systems with caches, there can be two copies of a data item, one in
the cache and one in the main memory

I For a DMA input (from disk to memory) the processor will be using
stale data if that location is also in the cache

I For a DMA output (from memory to disk) and a write-back cache the
I/O device will receive stale data if the data is in the cache and has not
yet been written back to the memory

26 / 27



Coherency Problem

The coherency problem can be solved by
I Routing all I/O activity through the cache expensive and a large

negative performance impact
I Having the OS invalidate all the entries in the cache for an I/O input or

force write-backs for an I/O output (called a cache flush)
I Providing hardware to selectively invalidate cache entries i.e., need a

snooping cache controller

27 / 27


	Main Talk
	Introduction
	Bus
	Interrupt I/O
	Direct Memory Access (DMA)




