
CENG3420 Computer Organization & Design
Lecture 09: Virtual Memory Review

Bei Yu

Spring 2016

byu@cse.cuhk.edu.hk

1 / 17

mailto:byu@cse.cuhk.edu.hk

Review: Memory Hierarchy
Take advantage of principle of locality, present the user:

I as much memory as is available
I cheapest technology
I at the speed offered by the fastest technology

Increasing
distance
from the

processor in
access time

Processor
4-8 bytes (word)

L1$

L2$

Main Memory

Secondary Memory

(Relative) size of the memory at each level

8-32 bytes (block)

1 to 4 blocks

1,024+ bytes (page)

Inclusive —
what in

higher level
is a subset
of what is in
lower level

2 / 17

Review: Reducing Cache Miss Rates #1

Direct mapped cache:
I a memory block maps to exactly one cache block

Fully associative cache:
I a memory block maps to any cache block

N-Way Set Associative Cache:
I A compromise is to divide the cache into sets
I index field maps a memory block to a unique set
I can be placed in any way of that set

3 / 17

Review: Reducing Cache Miss Rates #1

Direct mapped cache:
I a memory block maps to exactly one cache block

Fully associative cache:
I a memory block maps to any cache block

N-Way Set Associative Cache:
I A compromise is to divide the cache into sets
I index field maps a memory block to a unique set
I can be placed in any way of that set

3 / 17

Review: 4-Way Set Associative Cache
31 30 . . . 10 9 8 . . . 2 1 0

0
1
2

253
254
255

. . .

0
1
2

253
254
255

. . .

0
1
2

253
254
255

. . .

0
1
2

253
254
255

. . .

Hit

3222

= = = =

22 8

4-to-1 multiplexor

Data

Address

I 28 = 256 sets each with four ways (each with one block)

4 / 17

Virtual Memory

I Use main memory as a “cache” for secondary memory
I Each program is compiled into its own virtual address space
I What makes it work? Principle of Locality

Why virtual memory?
I During run-time, virtual address is translated to a physical address
I Efficient & safe sharing memory among multiple programs
I Ability to run programs larger than the size of physical memory
I Code relocation: code can be loaded anywhere in main memory

5 / 17

Virtual Memory

I Use main memory as a “cache” for secondary memory
I Each program is compiled into its own virtual address space
I What makes it work? Principle of Locality

Why virtual memory?
I During run-time, virtual address is translated to a physical address
I Efficient & safe sharing memory among multiple programs
I Ability to run programs larger than the size of physical memory
I Code relocation: code can be loaded anywhere in main memory

5 / 17

Two Programs Sharing Physical Memory

I A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

main memory

Program 1
virtual address space

6 / 17

Two Programs Sharing Physical Memory

I A program’s address space is divided into pages (fixed size) or
segments (variable sizes)

main memory

Program 1
virtual address space

Program 2
virtual address space

6 / 17

Address Translation

I Virtual address→ physical address by combination of HW/SW
I Each memory request needs first an address translation
I Page Fault: a virtual memory miss

Translation

Virtual Address (VA)

Physical Address (PA)

page offsetvirtual page num

31 30 . . . 12 11 . . . 1 0

29 28 . . . 12 11 . . . 1 0

page offsetphysical page num

7 / 17

Address Translation Mechanisms

I Page Table: in main memory
I Process: page table + program counter + registers

8 / 17

Virtual Addressing with a Cache

Disadvantage of virtual addressing:
I One extra memory access to translate a VA to a PA
I memory (cache) access very expensive...

VA PA miss

datahit

CPU Translation Cache Main
Memory

9 / 17

Translation Look-aside Buffer (TLB)

I A small cache: keeps track of recently used address mappings
I Avoid page table lookup

VA PA miss

data
hit

CPU Cache Main
MemoryTLB

Translation

miss

10 / 17

Translation Look-aside Buffer (TLB)

I Dirty bit:
I Ref bit:

11 / 17

More about TLB

Organization:
I Just like any other cache, can be fully associative, set associative, or

direct mapped.

Access time:
I Faster than cache: due to smaller size
I Typically not more than 512 entries even on high end machines

A TLB miss:
I If the page is in main memory: miss can be handled; load translation

info from page table to TLB
I If the page is NOT in main memory: page fault

12 / 17

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit
Hit Hit Miss

Miss Hit Hit
Miss Hit Miss

Miss Miss Miss
Hit Miss Miss / Hit

Miss Miss Hit

13 / 17

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit

Miss Miss Hit

13 / 17

TLB Event Combinations

I TLB / Cache miss: page / block not in “cache”
I Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit Impossible – TLB translation not possible

if page is not in memory
Miss Miss Hit Impossible – data not allowd in cache if

page is not in memory

13 / 17

Question: Why Not a Virtually Addressed Cache?

I Access Cache using virtual address (VA)
I Only address translation when cache misses

VA PA

data

hit

CPU Main
MemoryTranslation

Cache

Answer:

I aliasing: 2 programs may share data w. different VAs for the same PA
I Coherence issues: must update all cache entries with same PAs

14 / 17

Question: Why Not a Virtually Addressed Cache?

I Access Cache using virtual address (VA)
I Only address translation when cache misses

VA PA

data

hit

CPU Main
MemoryTranslation

Cache

Answer:
I aliasing: 2 programs may share data w. different VAs for the same PA
I Coherence issues: must update all cache entries with same PAs

14 / 17

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks
Separate page tables 0

15 / 17

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks
Separate page tables 0

15 / 17

Q3: Which Entry Should Be Replaced on a Miss?
I Direct mapped: only one choice

I Set associative or fully associative:

I Random
I LRU (Least Recently Used)

Note that:
I For a 2-way set associative, random replacement has a miss rate 1.1×

than LRU
I For high level associativity (4-way), LRU is too costly

16 / 17

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the
block in lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
:

I
⊕

:

I Write-Back:

I The information is written only to the block in cache
I The modification is written to lower level, only when the

block is replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
:

I
⊕

:

17 / 17

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the
block in lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
: read misses don’t result in writes

I
⊕

: easier to implement

I Write-Back:

I The information is written only to the block in cache
I The modification is written to lower level, only when the

block is replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
:

I
⊕

:

17 / 17

Q4: What Happen On A Write?
I Write-Through:

I The information is written in both the block in cache & the
block in lower level of memory

I Combined with write buffer, so write waits can be eliminated
I

⊕
: read misses don’t result in writes

I
⊕

: easier to implement

I Write-Back:

I The information is written only to the block in cache
I The modification is written to lower level, only when the

block is replaced
I Need dirty bit: tracks whether the block is clean or not
I Virtual memory always use write-back
I

⊕
: write with speed of cache

I
⊕

: repeated writes require only one write to lower level

17 / 17

	Review: Memory Hierarchy
	Virtual Memory
	1. VA PA
	2. TLB

	Questions for Memory Hierarchy

