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q Take advantage of the principle of locality to present the 
user with as much memory as is available in the 
cheapest technology at the speed offered by the fastest
technology
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The Memory Hierarchy:  Why Does it Work?

q Temporal Locality (locality in time)
● If a memory location is referenced then it will tend to be 

referenced again soon
Þ Keep most recently accessed data items closer to the processor

q Spatial Locality (locality in space)
● If a memory location is referenced, the locations with nearby 

addresses will tend to be referenced soon
Þ Move blocks consisting of contiguous words closer to the 

processor 
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Classical SRAM Organization
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Classical SRAM Organization
q Latch based memory
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data bit
data bit

Classical DRAM Organization
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Classical DRAM Operation

q DRAM Organization:
● N rows x N column x M-bit
● Read or Write M-bit at a time
● Each M-bit access requires

a RAS / CAS cycle
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Col Address Row Address Col Address
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M bit planes

Row
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Column
Address

M-bit Output

1st M-bit Access 2nd M-bit Access

Cycle Time
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N cols

DRAM

Column
Address

M-bit Output
M bit planes

N x M SRAM

Row
Address

Page Mode DRAM Operation
q Page Mode DRAM

● N x M SRAM to save a row

q After a row is read into the 
SRAM “register”
● Only CAS is needed to access 

other M-bit words on that row
● RAS remains asserted while CAS 

is toggled

Row Address

CAS

RAS

Col Address Col Address Col Address Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit
Cycle Time
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q The off-chip interconnect and memory architecture can 
affect overall system performance in dramatic ways

Memory Systems that Support Caches

CPU

Cache

DRAM
Memory

bus

One word wide organization (one word wide bus 
and one word wide memory)

q Assume
1. 1 clock cycle to send the addr
2. 15 clock cycles to get the 1st word in the 

block from DRAM, 5 clock cycles for  2nd, 
3rd, 4th words (column access time)

3. 1 clock cycle to return a word of data
q Memory-Bus to Cache bandwidth

l number of bytes accessed from memory 
and transferred to cache/CPU per clock 
cycle

32-bit data
&

32-bit addr
per cycle

on-chip
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One Word Wide Bus, One Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip
q If the block size is one word, then for a 

memory access due to a cache miss, 
the pipeline will have to stall for the 
number of cycles required to return one 
data word from memory

cycle to send address
cycles to read DRAM
cycle to return data
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per memory bus clock 
cycle
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One Word Wide Bus, One Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip
q If the block size is one word, then for a 

memory access due to a cache miss, 
the pipeline will have to stall for the 
number of cycles required to return one 
data word from memory

cycle to send address
cycles to read DRAM
cycle to return data
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per memory bus clock 
cycle

1   
15
1

17

4/17 = 0.235
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One Word Wide Bus, Four Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip

q What if the block size is four words and 
each word is in a different DRAM row?

cycle to send 1st address
cycles to read DRAM
cycles to return last data word
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per clock
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One Word Wide Bus, Four Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip

q What if the block size is four words and 
each word is in a different DRAM row?

cycle to send 1st address
cycles to read DRAM
cycles to return last data word
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per clock

15 cycles

15 cycles

15 cycles

15 cycles

1
4 x 15  =   60

1 
62

(4 x 4)/62 = 0.258
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One Word Wide Bus, Four Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip

q What if the block size is four words and all 
words are in the same DRAM row?

cycle to send 1st address
cycles to read DRAM
cycles to return last data word
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per clock
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One Word Wide Bus, Four Word Blocks

CPU

Cache

DRAM
Memory

bus

on-chip

q What if the block size is four words and all 
words are in the same DRAM row?

cycle to send 1st address
cycles to read DRAM
cycles to return last data word
total clock cycles miss penalty

q Number of bytes transferred per clock 
cycle (bandwidth) for a single miss is

bytes per clock

15 cycles

5 cycles

5 cycles

5 cycles

1

15 + 3*5 = 30
1

32

(4 x 4)/32 = 0.5
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Interleaved Memory, One Word Wide Bus
q For a block size of four words

cycle to send 1st address
cycles to read DRAM banks
cycles to return last data word
total clock cycles miss penalty

CPU

Cache

DRAM
Memory
bank 1

bus

on-chip

DRAM
Memory
bank 0

DRAM
Memory
bank 2

DRAM
Memory
bank 3

q Number of bytes transferred 
per clock cycle (bandwidth) for a 
single miss is

bytes per clock
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Interleaved Memory, One Word Wide Bus
q For a block size of four words

cycle to send 1st address
cycles to read DRAM banks
cycles to return last data word
total clock cycles miss penalty

CPU

Cache

bus

on-chip

q Number of bytes transferred 
per clock cycle (bandwidth) for a 
single miss is

bytes per clock

15 cycles

15 cycles

15 cycles

15 cycles

(4 x 4)/20 = 0.8

1  

15 + 3 = 18

1

20

DRAM
Memory
bank 1

DRAM
Memory
bank 0

DRAM
Memory
bank 2

DRAM
Memory
bank 3
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Caching:  A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 2 
memory address bits to 
tell if the memory block 
is in the cache

Valid

One word blocks
Two low order bits 
define the byte in the 
word (32b words)

Q2: How do we find it?

Use next 2 low order 
memory address bits
– the index – to 
determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

(block address) modulo (# of blocks in the cache)

Index
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Caching:  A Simple First Example

00
01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order 
memory address bits 
– the index – to 
determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 2 
memory address bits to 
tell if the memory block 
is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits 
define the byte in the 
word (32b words)

(block address) modulo (# of blocks in the cache)

Index
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Direct Mapped Cache

0 1 2 3

4 3 4 15

q Consider the main memory word reference string
0   1   2   3   4   3   4   15Start with an empty cache - all 

blocks initially marked as not valid
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Direct Mapped Cache

0 1 2 3

4 3 4 15

q Consider the main memory word reference string
0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)
00    Mem(1)

00    Mem(0) 00    Mem(0)
00    Mem(1)
00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01 4

11 15

00    Mem(1)
00    Mem(2)

00    Mem(3)

Start with an empty cache - all 
blocks initially marked as not valid

● 8 requests, 6 misses
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q One word blocks, cache size = 1K words (or 4KB)
MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit
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Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

20

20Tag

Hit Data

32

Block offset

q Four  words/block, cache size = 1K words

What kind of locality are we taking advantage of?
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Taking Advantage of Spatial Locality 

0

q Let cache block hold more than one word
0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

Start with an empty cache - all 
blocks initially marked as not valid
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Taking Advantage of Spatial Locality 

0

q Let cache block hold more than one word
0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss
00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

01 5 4
hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

miss

11 15 14

Start with an empty cache - all 
blocks initially marked as not valid

● 8 requests, 4 misses
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Cache Field Sizes
q The number of bits in a cache includes both the storage 

for data and for the tags
● 32-bit address
● For a direct mapped cache with 2n blocks, n bits are used for the 

index
● For a block size of 2m words (2m+2 bytes), m bits are used to 

address the word within the block and 2 bits are used to address 
the byte within the word

q What is the size of the tag field?
32 – (n + m +2)

q The total number of bits in a direct-mapped cache is then
2n x (block size + tag field size + valid field size)
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EX: Bits in a Cache
q How many total bits are required for a direct mapped 

cache with 16KB of data and 4-word blocks assuming a 
32-bit address?
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q Read hits (I$ and D$)
● this is what we want!

q Write hits (D$ only)
● require the cache and memory to be consistent

- always write the data into both the cache block and the next level in 
the memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy – so 
slow! – or can use a write buffer and stall only if the write buffer is full

● allow cache and memory to be inconsistent
- write the data only into the cache block (write-back the cache block to 

the next level in the memory hierarchy when that cache block is 
“evicted”)

- need a dirty bit for each data cache block to tell if it needs to be 
written back to memory when it is evicted – can use a write buffer to 
help “buffer” write-backs of dirty blocks

Handling Cache Hits



CEG3420  L08.29 Spring 2016

Handling Cache Misses (Single Word Blocks)
q Read misses (I$ and D$)

● stall the pipeline, fetch the block from the next level in the memory 
hierarchy, install it in the cache and send the requested word to 
the processor, then let the pipeline resume

q Write misses (D$ only)
1. stall the pipeline, fetch the block from next level in the memory 

hierarchy, install it in the cache (which may involve having to evict 
a dirty block if using a write-back cache), write the word from the 
processor to the cache, then let the pipeline resume

Or (normally used in write-back caches)
2. Write allocate – just write the word into the cache updating both 

the tag and data, no need to check for cache hit, no need to stall
Or (normally used in write-through caches with a write buffer)
3. No-write allocate – skip the cache write (but must invalidate that 

cache block since it will now hold stale data) and just write the 
word to the write buffer (and eventually to the next memory level), 
no need to stall if the write buffer isn’t full
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Measuring Cache Performance
q Assuming cache hit costs are included as part of the 

normal CPU execution cycle, then
CPU time = IC × CPI × CC

=  IC × (CPIideal + Memory-stall cycles) × CC

CPIstall

q Memory-stall cycles come from cache misses (a sum of 
read-stalls and write-stalls)

Read-stall cycles  =   reads/program × read miss rate       
× read miss penalty

Write-stall cycles   =  (writes/program × write miss rate     
× write miss penalty)
+  write buffer stalls

q For write-through caches, we can simplify this to
Memory-stall cycles = accesses/program × miss rate × miss penalty
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Reducing Cache Miss Rates #1
1. Allow more flexible block placement

q In a direct mapped cache a memory block maps to 
exactly one cache block

q At the other extreme, could allow a memory block to be 
mapped to any cache block – fully associative cache

q A compromise is to divide the cache into sets each of 
which consists of n “ways” (n-way set associative).  A 
memory block maps to a unique set (specified by the 
index field) and can be placed in any way of that set (so 
there are n choices)

(block address) modulo (# sets in the cache)
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Another Reference String Mapping

0 4 0 4

0 4 0 4

q Consider the main memory word reference string
0   4   0   4   0   4   0   4Start with an empty cache - all 

blocks initially marked as not valid
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Another Reference String Mapping

0 4 0 4

0 4 0 4

q Consider the main memory word reference string
0   4   0   4   0   4   0   4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4 01    Mem(4)0

00
00    Mem(0)

01 4

00    Mem(0)
01 4

00    Mem(0)
01 401    Mem(4)0

00
01    Mem(4)

000

Start with an empty cache - all 
blocks initially marked as not valid

q Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

● 8 requests, 8 misses
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Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order 
memory address bit to 
determine which 
cache set (i.e., modulo 
the number of sets in 
the cache)

Tag Data

Q1: Is it there?

Compare all the cache 
tags in the set to the 
high order 3 memory 
address bits to tell if 
the memory block is in 
the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1
0
1

Way

0

1

One word blocks
Two low order bits 
define the byte in the 
word (32b words)
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EX: 2-way set associate

0 4 0 4

q Consider the main memory word reference string, how 
many misses?

0   4   0   4   0   4   0   4Start with an empty cache
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EX: 2-way set associate

0 4 0 4miss miss hit hit

000    Mem(0) 000    Mem(0)

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

q Solves the ping pong effect in a direct mapped cache 
due to conflict misses since now two memory locations 
that map into the same cache set can co-exist!

● 8 requests, 2 misses

q Consider the main memory word reference string, how 
many misses?

0   4   0   4   0   4   0   4Start with an empty cache
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Four-Way Set Associative Cache
q 28 = 256 sets each with four ways (each with one block)

31 30       . . .        11 10  9     . . .        2  1  0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3
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Range of Set Associative Caches
q For a fixed size cache, each increase by a factor of two 

in associativity doubles the number of blocks per set (i.e., 
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases 
the size of the tag by 1 bit

Block offset Byte offsetIndexTag
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Range of Set Associative Caches
q For a fixed size cache, each increase by a factor of two 

in associativity doubles the number of blocks per set (i.e., 
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases 
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a 
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Costs of Set Associative Caches
q When a miss occurs, which way’s block do we pick for 

replacement?
● Least Recently Used (LRU): the block replaced is the one that    

has been unused for the longest time
- Must have hardware to keep track of when each way’s block was   

used relative to the other blocks in the set
- For 2-way set associative, takes one bit per set → set the bit when a 

block is referenced (and reset the other way’s bit)

q N-way set associative cache costs
● N comparators (delay and area)
● MUX delay (set selection) before data is available
● Data available after set selection (and Hit/Miss decision).   In a 

direct mapped cache, the cache block is available before the 
Hit/Miss decision

- So its not possible to just assume a hit and continue and recover later 
if it was a miss
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Reducing Cache Miss Rates #2
2. Use multiple levels of caches

q With advancing technology have more than enough 
room on the die for bigger L1 caches or for a second 
level of caches – normally a unified L2 cache (i.e., it 
holds both instructions and data) and in some cases 
even a unified L3 cache

q For our example, CPIideal of 2, 100 cycle miss penalty 
(to main memory) and a 25 cycle miss penalty (to 
UL2$), 36% load/stores, a 2% (4%) L1 I$ (D$) miss 
rate, add a 0.5% UL2$ miss rate

CPIstalls =  2  +  (.02×25 +  .005×100)  
+  (.36×.04×25  + .36×.005×100)  =  3.54

(as compared to 5.44 with no L2$)


