
CENG3420 L03 ISA.1 Spring 2016

CENG 3420
Computer Organization and Design

Lecture 03: Instruction Set Architecture
Review

Bei Yu

CENG3420 L03 ISA.2 Spring 2016

Review: Processor Organization
q Control needs to have circuitry to

● Decide which is the next instruction
and input it from memory

● Decode the instruction
● Issue signals that control the way

information flows between datapath components
● Control what operations the datapath’s functional units

perform

● Execute instructions - functional units (e.g., adder) and
storage locations (e.g., register file)

● Interconnect the functional units so that the instructions can
be executed as required

● Load data from and store data to memory

qDatapath needs to have circuitry to

Fetch

DecodeExec

CENG3420 L03 ISA.3 Spring 2016

Abstract Implementation View

Address Instruction

Instruction
Memory

Write Data

Write Addr

Read Addr

Read Addr

Register

File ALU
Data

Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

CENG3420 L03 ISA.4 Spring 2016

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

q Holds thirty-two 32-bit registers
● Two read ports and
● One write port

q Registers are
● Faster than main memory

- But register files with more locations
are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically
● Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

● Can hold variables so that
- code density improves (since register are named with fewer bits

than a memory location)

write control

CENG3420 L03 ISA.5 Spring 2016

RISC - Reduced Instruction Set Computer
q RISC philosophy

● fixed instruction lengths
● load-store instruction sets
● limited number of addressing modes
● limited number of operations

q MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC …

q Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

qCISC (C for complex), e.g., Intel x86

CENG3420 L03 ISA.6 Spring 2016

MIPS-32 ISA

q Instruction Categories
● Computational
● Load/Store
● Jump and Branch
● Floating Point
● Memory Management
● Special

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CENG3420 L03 ISA.7 Spring 2016

q MIPS fields are given names to make them easier to
refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

6 5 5 5 5 6

CENG3420 L03 ISA.8 Spring 2016

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

CENG3420 L03 ISA.9 Spring 2016

MIPS Arithmetic Instructions
q MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

q Each arithmetic instruction performs one operation

q Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0,$s1,$s2)

destination = source1 op source2

q Instruction Format (R format)

0 17 18 8 0 0x22

CENG3420 L03 ISA.10 Spring 2016

MIPS Arithmetic Instructions
q MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

q Each arithmetic instruction performs one operation

q Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0,$s1,$s2)

destination = source1 op source2

q Instruction Format (R format)

0 17 18 8 0 0x22

CENG3420 L03 ISA.11 Spring 2016

MIPS Memory Access Instructions
q MIPS has two basic data transfer instructions for

accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

q The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

q The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value
● A 16-bit field meaning access is limited to memory locations

within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

± ±

CENG3420 L03 ISA.12 Spring 2016

q Load/Store Instruction Format (I format):

lw $t0, 24($s3)

Machine Language - Load Instruction

35 19 8 2410

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

CENG3420 L03 ISA.13 Spring 2016

Byte Addresses
q Since 8-bit bytes are so useful, most architectures

address individual bytes in memory
● Alignment restriction - the memory address of a word must be

on natural word boundaries (a multiple of 4 in MIPS-32)

q Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

q Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

CENG3420 L03 ISA.14 Spring 2016

Aside: Loading and Storing Bytes
q MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

0x28 19 8 16 bit offset

q What 8 bits get loaded and stored?
● load byte places the byte from memory in the rightmost 8 bits of

the destination register
- what happens to the other bits in the register?

● store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

- what happens to the other bits in the memory word?

CENG3420 L03 ISA.15 Spring 2016

EX-1:
q Given following code sequence and memory state what is

the state of the memory after executing the code?
add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0x 0 0 9 0 1 2 A 0
Data Word

Address (Decimal)

0
4
8
12
16
20
24

0x F F F F F F F F
0x 0 1 0 0 0 4 0 2
0x 1 0 0 0 0 0 1 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0

q What value is left in $t0?

q What if the machine was little
Endian?

q What word is changed in Memory
and to what?

CENG3420 L03 ISA.16 Spring 2016

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

q Machine format (I format):

MIPS Immediate Instructions

0x0A 18 8 0x0F

q Small constants are used often in typical code

q Possible approaches?
● put “typical constants” in memory and load them
● create hard-wired registers (like $zero) for constants like 1
● have special instructions that contain constants !

q The constant is kept inside the instruction itself!
● Immediate format limits values to the range +215–1 to -215

CENG3420 L03 ISA.17 Spring 2016

q MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0!=$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

● Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

q Instruction Format (I format):

0x05 16 17 16 bit offset

q How is the branch destination address specified?

CENG3420 L03 ISA.18 Spring 2016

q MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

q Instruction Format (J Format):
0x02 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

CENG3420 L03 ISA.19 Spring 2016

EX-2: Branching Far Away
q What if the branch destination is further away than can

be captured in 16 bits?

beq $s0, $s1, L1

