CENG 3420
Computer Organization and Design

Lecture 03: Instruction Set Architecture

Review
Bei Yu
K| #%v ke
1&H ¢ The Chinese University of Hong Kong

q!“.

CENG3420 L03 ISA.1 Spring 2016

Review: ProcessorOrganization

0 Control needs to have circuitry to @

@ Decide which is the next instruction
and input it from memory

® Decode the instruction @

@ Issue signals that control the way
information flows between datapath components

e Control what operations the datapath’s functional units
perform

0 Datapath needs to have circuitry to

e Execute instructions - functional units (e.g., adder) and
storage locations (e.g., register file)

® Interconnect the functional units so that the instructions can
be executed as required

e Load data from and store data to memory

CENG3420 LO3 ISA.2 Spring 2016

Abstract Implementation View

PC

Instruction
Memory

Register

File

"

Data
Memory

CENG3420 LO3 ISA.3

Spring 2016

MIPS Register File

: : : Register File
0 Holds thirty-two 32-bit registers . 32bits |
e Two read ports and srel addr 2 1|32 sref
® One write port 5 data
src2 addr —— 32
5 locations
_ dst addr —/—,
0 Reqgisters are - date 32 E ZrCZ
, write data ~7—> ata
e Faster than main memory v

- But register files with more locations Tt ol
are slower (e.g., a 64 word file could write contro
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically

e Easier for a compiler to use

- e.g., (A*B) — (C*D) — (E*F) can do multiplies in any order vs.
stack

® Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

CENG3420 L03ISA.4 Spring 2016

RISC - Reduced Instruction Set Computer
0 RISC philosophy

o fixed instruction lengths

@ load-store instruction sets
@ limited number of addressing modes
@ limited number of operations

o MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...

2 Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

2 CISC (C for complex), e.g., Intel x86

CENG3420 LO3 ISA.5 Spring 2016

MIPS-32 ISA

0 Instruction Categories Registers
e Computational
RO - R31
e Load/Store
® Jump and Branch
® Floating Point
® Memory Management PC
® Special H
LO
3 Instruction Formats: all 32 bits wide
op rs rt rd sa funct R format
op rs rt immediate | format
op jump target J format

CENG3420L03

ISA.6

Spring 2016

MIPS Instruction Fields

o MIPS fields are given names to make them easier to

refer to
6) 5) 3 6
op rs rt rd shamt funct
op 6-bits opcode that specifies the operation
rs o-bits register file address of the first source operand
rt o-bits register file address of the second source operand
rd 9-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

CENG3420 LO3 ISA.7

Spring 2016

Aside: MIPS Register Convention

Name | Register Usage Preserve

Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 |temporaries no
$s0 - $s7 | 16-23 |saved values yes
$t8 - $t9 24-25 |temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

CENG3420 LO3 ISA.8

Spring 2016

MIPS Arithmetic Instructions

0 MIPS assembly language arithmetic statement
add St0, S$sl1, S$s2
sub St0, S$Ssl, $s?2

2 Each arithmetic instruction performs one operation

2 Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0, $s1, $s2)

destination = source1 op source2

2 Instruction Format (R format)

0 17 18 8 0 0x22

CENG3420 LO3 ISA.9 Spring 2016

MIPS Arithmetic Instructions

0 MIPS assembly language arithmetic statement

2 Each arithmetic instriction ms C e operation

0 Each specifies exattly thfee ¢ ds that are all
contained in the datapsz h’ file ($t0, $s1, $s2)

destination = so ce1 source2

-
./
J

2 Instruction Format (R formyat

0 17 18 8 0 0x22

CENG3420 LO3ISA.10 Spring 2016

MIPS Memory Access Instructions

2 MIPS has two basic data transfer instructions for
accessing memory

lw St0, 4($s3) #load word from memory

sw $t0, 8($s3) +#store word to memory

0 The data is loaded into (Ilw) or stored from (sw) a register
in the register file —a 5 bit address

2 The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

e A 16-bit field meaning access is limited to memory locations

within a region of £2'3 or 8,192 words (£2'° or 32,768 bytes) of
the address in the base register

CENG3420 L03 ISA.11 Spring 2016

Machine Lanquage - Load Instruction

0 Load/Store Instruction Format (! format):

(Lwoet0, 241es3)

35 19 8 o4
Memory

2410 + 583 = OXFFffffff

... 0001 1000 P 012004050
+...1001 0100

. 1010 1100 = $s3— 0x12004094

0x120040ac

0x0000000c¢

0x00000008

0x00000004

0x00000000

data word address (hex%
CENG3420L03ISA.12 Spring 201

Byte Addresses

0 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

e Alignment restriction - the memory address of a word must be
on natural word boundaries (a multiple of 4 in MIPS-32)

a Big Endian: leftmost byte is word address

Q Little Endian: rightmost byte is word address
)

little endian byte 0
3 2 1 0

msb Isb

0 1 2 3
big endian byte 0

CENG3420 LO3 ISA.13 Spring 2016

Aside: Loading and Storing Bytes

2 MIPS provides special instructions to move bytes
1b St0, 1(S$Ss3) #load byte from memory

sb St0, 6($s3) #store byte to memory

0x28 19 8 16 bit offset

2 What 8 bits get loaded and stored?

@ load byte places the byte from memory in the rightmost 8 bits of
the destination register

- what happens to the other bits in the register?

@ store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

- what happens to the other bits in the memory word?

CENG3420 LO3ISA.14 Spring 2016

EX-1:

0 Given following code sequence and memory state what is
the state of the memory after executing the code?

add S$s3, Szero, Szero
1b St0, 1($s3)

sb St0, 6($s3) . .
2 What value is left in $t0?

Memory

Ox00000000 | 24

0x00000000 | 20 = What word is changed in Memory
?
0x00000000 | 16 and to what

0x10000010 | 12
0x01000402 | 8 3 What if the machine was little

OXFFFFFFFF| 4 Endian?
0x009012A0 | O
Data Word

Address (Decimal)

CENG3420 LO3 ISA.15 Spring 2016

MIPS Immediate Instructions

0 Small constants are used often in typical code

0 Possible approaches?

e put “typical constants” in memory and load them
e create hard-wired registers (like $zero) for constants like 1
® have special instructions that contain constants !

addi Ssp,
slti StO,

2 Machine format (| format):

Ssp,

#Ssp
#St0

Ssp + 4

1 1if $s2<15

Ox0A

18

8

Ox0F

0 The constant is kept inside the instruction itself!
e Immediate format limits values to the range +2%-1 to -2"°

CENG3420 LO3ISA.16

Spring 2016

MIPS Control Flow Instructions

2 MIPS conditional branch instructions:

bne $s0,
beg $s0,

o Ex

Lbll:

Ssl, ILbl #go to Lbl if $s0!=$sl

$Ssl, Lbl #go to Lbl if $s0=S$sl

if (1==3)

bne $s0,
add $s3,

h:

Ssl,
SsO,

i +

Lbl
Ssl

2 Instruction Format (I format):

77

1

0x05

16

17

16 bit offset

2 How is the branch destination address specified?

CENG3420 LO3 ISA.17

Spring 2016

Other Control Flow Instructions

0 MIPS also has an unconditional branch instruction or
Jjump instruction:

J label #fgo to label

2 Instruction Format (J Format):

0x02 26-bit address

from the low order 26 bits of the jump instruction

426

A 00

A
32

CENG3420 LO3 ISA.18 Spring 2016

\4

EX-2: Branching Far Away

0 What if the branch destination is further away than can
be captured in 16 bits?

beg $s0, $sl1, Ll

!

CENG3420 LO3 ISA.19 Spring 2016

