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Review:  Processor Organization
q Control needs to have circuitry to

● Decide which is the next instruction                                                  
and input it from memory

● Decode the instruction
● Issue signals that control the way                                       

information flows between datapath components
● Control what operations the datapath’s functional units 

perform

● Execute instructions - functional units (e.g., adder) and 
storage locations (e.g., register file) 

● Interconnect the functional units so that the instructions can 
be executed as required

● Load data from and store data to memory

qDatapath needs to have circuitry to

Fetch

DecodeExec
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Abstract Implementation View
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MIPS Register File
Register File
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q Holds thirty-two 32-bit registers
● Two read ports and
● One write port

q Registers are
● Faster than main memory

- But register files with more locations                                            
are slower (e.g., a 64 word file could                                              
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically
● Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs. 
stack

● Can hold variables so that
- code density improves (since register are named with fewer bits 

than a memory location)

write control
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RISC - Reduced Instruction Set Computer
q RISC philosophy

● fixed instruction lengths
● load-store instruction sets
● limited number of addressing modes
● limited number of operations

q MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC …

q Instruction sets are measured by how well compilers 
use them as opposed to how well assembly language 
programmers use them

qCISC (C for complex), e.g., Intel x86
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MIPS-32 ISA

q Instruction Categories
● Computational 
● Load/Store
● Jump and Branch
● Floating Point
● Memory Management
● Special

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format
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q MIPS fields are given names to make them easier to 
refer to

MIPS Instruction Fields

op           rs            rt            rd        shamt       funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

6 5 5 5 5 6



CENG3420 L03 ISA.8 Spring 2016

Aside:  MIPS Register Convention

Name Register 
Number

Usage Preserve 
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes
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MIPS Arithmetic Instructions
q MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

q Each arithmetic instruction performs one operation

q Each specifies exactly three operands that are all 
contained in the datapath’s register file ($t0,$s1,$s2) 

destination = source1    op source2

q Instruction Format (R format)

0             17           18           8             0           0x22
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MIPS Arithmetic Instructions
q MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

q Each arithmetic instruction performs one operation

q Each specifies exactly three operands that are all 
contained in the datapath’s register file ($t0,$s1,$s2) 

destination  = source1    op source2

q Instruction Format (R format)

0             17           18           8             0           0x22
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MIPS Memory Access Instructions
q MIPS has two basic data transfer instructions for 

accessing memory

lw $t0, 4($s3)  #load word from memory

sw $t0, 8($s3)  #store word to memory

q The data is loaded into (lw) or stored from (sw) a register 
in the register file – a 5 bit address

q The memory address – a 32 bit address – is formed by 
adding the contents of the base address register to the 
offset value
● A 16-bit field meaning access is limited to memory locations 

within a region of    213 or 8,192 words (   215 or 32,768 bytes) of 
the address in the base register

± ±
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q Load/Store Instruction Format (I format):

lw $t0, 24($s3)

Machine Language - Load Instruction

35            19             8                       2410

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0 
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Byte Addresses
q Since 8-bit bytes are so useful, most architectures 

address individual bytes in memory
● Alignment restriction - the memory address of a word must be 

on natural word boundaries (a multiple of 4 in MIPS-32)

q Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

q Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3          2          1           0

little endian byte 0

0          1          2           3
big endian byte 0
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Aside: Loading and Storing Bytes
q MIPS provides special instructions to move bytes

lb $t0, 1($s3)  #load byte from memory

sb $t0, 6($s3)  #store byte to  memory

0x28          19             8                 16 bit offset

q What 8 bits get loaded and stored?
● load byte places the byte from memory in the rightmost 8 bits of 

the destination register
- what happens to the other bits in the register?

● store byte takes the byte from the rightmost 8 bits of a register 
and writes it to a byte in memory

- what happens to the other bits in the memory word?
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EX-1:
q Given following code sequence and memory state what is 

the state of the memory after executing the code?
add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0x 0 0 9 0 1 2 A 0
Data Word

Address (Decimal)

0
4
8
12
16
20
24

0x F F F F F F F F
0x 0 1 0 0 0 4 0 2
0x 1 0 0 0 0 0 1 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0

q What value is left in $t0?

q What if the machine was little 
Endian?

q What word is changed in Memory 
and to what?
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addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

q Machine format (I format):

MIPS Immediate Instructions

0x0A          18          8                     0x0F

q Small constants are used often in typical code

q Possible approaches?
● put “typical constants” in memory and load them 
● create hard-wired registers (like $zero) for constants like 1
● have special instructions that contain constants !

q The constant is kept inside the instruction itself!
● Immediate format limits values to the range +215–1 to -215
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q MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0!=$s1 
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

● Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

q Instruction Format (I format):

0x05           16          17              16 bit offset

q How is the branch destination address specified?
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q MIPS also has an unconditional branch instruction or 
jump instruction:

j  label #go to label

Other Control Flow Instructions

q Instruction Format (J Format):
0x02                                  26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction
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EX-2:  Branching Far Away
q What if the branch destination is further away than can 

be captured in 16 bits?

beq $s0, $s1, L1


