CENG 3420
Computer Organization and Design

Lecture 03: Instruction Set Architecture

Bei Yu

FEFT XLXF

e Chinese University of Hong Kong

1

CENG3420 L03 ISA.1 Spring 2016

Review: ProcessorOrganization

0 Control needs to have circuitry to @

@ Decide which is the next instruction
and input it from memory

® Decode the instruction @

@ Issue signals that control the way
information flows between datapath components

e Control what operations the datapath’s functional units
perform

0 Datapath needs to have circuitry to

e Execute instructions - functional units (e.g., adder) and
storage locations (e.g., register file)

® Interconnect the functional units so that the instructions can
be executed as required

e Load data from and store data to memory

CENG3420 LO3 ISA.2 Spring 2016

Two Key Principles of Machine Design

1. Instructions are represented as numbers and, as
such, are indistinguishable from data

2. Programs are stored in alterable memory (that can
be read or written t0) Memory

just like data

. Accounting prg

' (machine code)

0 Stored-program concept
e Programs can be shipped as files C compiler

of binary numbers — binary (maCh'”eCOde)

Compat|b|||ty ;_._._._._._._._._._._._._.:

@ Computers can inherit ready-made | data .
software provided they are e i
compatible with an existing ISA— " Source code in !

leads industry to align around a é C for Acct prg :

small number of ISAs

CENG3420 LO3 ISA.3 Spring 2016

Assembly Language Instructions

0 The language of the machine

e Want an ISA that makes it easy to build the hardware and the
compiler while maximizing performance and minimizing cost

2 Qur target: the MIPS ISA

e similar to other ISAs developed since the 1980's
e used by Broadcom, Cisco, NEC, Nintendo, Sony, ...

Design goals: maximize performance, minimize cost,
reduce design time (time-to-market), minimize memory
space (embedded systems), minimize power
consumption (mobile systems)

CENG3420L03ISA.4 Spring 2016

RISC - Reduced Instruction Set Computer
0 RISC philosophy

o fixed instruction lengths

@ load-store instruction sets
@ limited number of addressing modes
@ limited number of operations

o MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...

2 Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

2 CISC (C for complex), e.g., Intel x86

CENG3420 LO3 ISA.5 Spring 2016

MIPS (RISC) Design Principles

Q Simplicity favors regularity
o fixed size instructions
e small number of instruction formats
® opcode always the first 6 bits

Q Smaller is faster
@ limited instruction set
e limited number of registers in register file
@ limited number of addressing modes

0 Make the common case fast
e arithmetic operands from the register file (load-store machine)
@ allow instructions to contain immediate operands

0 Good design demands good compromises
@ three instruction formats

CENG3420L03 ISA.6 Spring 2016

MIPS Instruction Classes Distribution

2 Frequency of MIPS instruction classes for SPEC2006

- Integer Ft. Pt.

Arithmetic 16% 48%
Data transfer 35% 36%
Logical 12% 4%
Cond. Branch 34% 8%

Jump

2%

0%

CENG3420 L03 ISA.7

Spring 2016

MIPS-32 ISA

0 Instruction Categories Registers
e Computational
RO - R31
e Load/Store
® Jump and Branch
® Floating Point
- coprocessor PC
® Memory Management Hi
e Special LO
3 Instruction Formats: all 32 bits wide
op rs rt rd sa funct R format
op rs rt immediate | format
op jump target J format

CENG3420 LO3 ISA.8

Spring 2016

MIPS Arithmetic Instructions

0 MIPS assembly language arithmetic statement
add St0, S$sl1, S$s2
sub St0, S$Ssl, $s?2

2 Each arithmetic instruction performs one operation

2 Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0, $s1, $s2)

destination = source1 op source2

2 Instruction Format (R format)

0 17 18 8 0 0x22

CENG3420 LO3 ISA.9 Spring 2016

MIPS Arithmetic Instructions

0 MIPS assembly language arithmetic statement

2 Each arithmetic instriction ms C e operation

0 Each specifies exattly thfee ¢ ds that are all
contained in the datapsz h’ file ($t0, $s1, $s2)

destination = so ce1 source2

-
./
J

2 Instruction Format (R formyat

0 17 18 8 0 0x22

CENG3420 LO3ISA.10 Spring 2016

MIPS Instruction Fields

o MIPS fields are given names to make them easier to

refer to
6) 5) 3 6
op rs rt rd shamt funct
op 6-bits opcode that specifies the operation
rs o-bits register file address of the first source operand
rt o-bits register file address of the second source operand
rd 9-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

CENG3420 L03 ISA.11

Spring 2016

MIPS Register File

: : : Register File
0 Holds thirty-two 32-bit registers . 32bits |
e Two read ports and srel addr 2 1|32 sref
® One write port 5 data
src2 addr —— 32
5 locations
_ dst addr —/—,
0 Reqgisters are - date 32 E ZrCZ
, write data ~7—> ata
e Faster than main memory v

- But register files with more locations Tt ol
are slower (e.g., a 64 word file could write contro
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically

e Easier for a compiler to use

- e.g., (A*B) — (C*D) — (E*F) can do multiplies in any order vs.
stack

® Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

CENG3420 L03ISA.12 Spring 2016

Aside: MIPS Register Convention

Name | Register Usage Preserve

Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 |temporaries no
$s0 - $s7 | 16-23 |saved values yes
$t8 - $t9 24-25 |temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

CENG3420 LO3 ISA.13

Spring 2016

MIPS Memory Access Instructions

2 MIPS has two basic data transfer instructions for
accessing memory

lw St0, 4($s3) #load word from memory

sw $t0, 8($s3) +#store word to memory

0 The data is loaded into (Ilw) or stored from (sw) a register
in the register file —a 5 bit address

2 The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

e A 16-bit field meaning access is limited to memory locations

within a region of £2'3 or 8,192 words (£2'° or 32,768 bytes) of
the address in the base register

CENG3420 LO3ISA.14 Spring 2016

Machine Lanquage - Load Instruction

0 Load/Store Instruction Format (! format):

(Lwoet0, 241es3)

35 19 8 o4
Memory

2410 + 583 = OXFFffffff

... 0001 1000 P 012004050
+...1001 0100

. 1010 1100 = $s3— 0x12004094

0x120040ac

0x0000000c¢

0x00000008

0x00000004

0x00000000

data word address (hex%
CENG3420L03ISA.15 Spring 201

Byte Addresses

0 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

e Alignment restriction - the memory address of a word must be
on natural word boundaries (a multiple of 4 in MIPS-32)

a Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Q Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte 0
3 2 1 0

msb Isb

0 1 2 3
big endian byte 0

CENG3420 LO3ISA.16 Spring 2016

Aside: Loading and Storing Bytes

2 MIPS provides special instructions to move bytes
1b St0, 1(S$Ss3) #load byte from memory

sb St0, 6($s3) #store byte to memory

0x28 19 8 16 bit offset

2 What 8 bits get loaded and stored?

@ load byte places the byte from memory in the rightmost 8 bits of
the destination register

- what happens to the other bits in the register?

@ store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

- what happens to the other bits in the memory word?

CENG3420 LO3 ISA.17 Spring 2016

EX-1:

0 Given following code sequence and memory state what is
the state of the memory after executing the code?

add S$s3, Szero, Szero
1b St0, 1($s3)

sb St0, 6($s3) . .
2 What value is left in $t0?

Memory

Ox00000000 | 24

0x00000000 | 20 = What word is changed in Memory
?
0x00000000 | 16 and to what

0x10000010 | 12
0x01000402 | 8 3 What if the machine was little

OXFFFFFFFF| 4 Endian?
0x009012A0 | O
Data Word

Address (Decimal)

CENG3420 LO3 ISA.18 Spring 2016

MIPS Immediate Instructions

0 Small constants are used often in typical code

0 Possible approaches?

e put “typical constants” in memory and load them
e create hard-wired registers (like $zero) for constants like 1
® have special instructions that contain constants !

addi Ssp,
slti StO,

2 Machine format (| format):

Ssp,

#Ssp
#St0

Ssp + 4

1 1if $s2<15

Ox0A

18

8

Ox0F

0 The constant is kept inside the instruction itself!
e Immediate format limits values to the range +2%-1 to -2"°

CENG3420 LO3 ISA.19

Spring 2016

Aside: How About Larger Constants?

0 We'd also like to be able to load a 32 bit constant into a
reqgister, for this we must use two instructions

2 a new "load upper immediate" instruction

lui $t0, 1010101010101010

16 0 8 1010101010101010,

2 Then must get the lower or
ori St0, $tO0,

r bits right, use
10101010101010

1010101010101010 OOOOOOO?OOOOOOOO
0000000000000000 1010101010101010

1010101010101010 1010101010101010

CENG3420 L03 ISA.20 Spring 2016

MIPS Shift Operations

2 Need operations to pack and unpack 8-bit characters into
32-bit words

2 Shifts move all the bits in a word left or right
sll st2, $s0, 8 #St2 = S$s0 << 8 bits
srl $St2, S$s0, 8 #St2 = Ss0 >> 8 bits

2 Instruction Format (R format)

0 16 10 8 0x00

2 Such shifts are called logical because they fill with
Zeros

@ Notice that a 5-bit shamt field is enough to shift a 32-bit value
25— 1 or 31 bit positions

CENG3420 L03 ISA.21 Spring 2016

MIPS Logical Operations

2 There are a number of bit-wise logical operations in the

MIPS ISA
and $t0, tl, St2 #S$t0 = Stl & St2
or St0, $tl, $t2 #St0 = Stl | $t2
nor $t0, Stl, St2 #St0 = not(Stl | S$St2)
2 Instruction Format (R format)
0 9 10 8 0 0x24
andi $t0, Stl, OxFFO0O #5t0 = Stl & ££00
ori $t0, $tl, OxFFO00 #$tO0 = S$tl | f£f00
0 Instruction Format (I format)
0x0D 9 8 0xFF00

CENG3420 L03 ISA.22

Spring 2016

MIPS Control Flow Instructions

2 MIPS conditional branch instructions:

bne $s0,
beg $s0,

o Ex

Lbll:

Ssl, ILbl #go to Lbl if $s0!=$sl

$Ssl, Lbl #go to Lbl if $s0=S$sl

if (1==3)

bne $s0,
add $s3,

h:

Ssl,
SsO,

i +

Lbl
Ssl

2 Instruction Format (I format):

77

1

0x05

16

17

16 bit offset

2 How is the branch destination address specified?

CENG3420 L03 ISA.23

Spring 2016

Specifying Branch Destinations

0 Use a register (like in lw and sw) added to the 16-bit offset

@ which register? Instruction Address Register (the PC)

- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

@ limits the branch distance to -2'° to +2'°-1 (word) instructions from
the (instruction after the) branch instruction, but most branches are
local anyway

from the low order 16 bits of the branch instruction

416

offset
sign-extenidr\
\ \ 4 OO
Wi > L s branch dst
32 £, 32\Add address
PC 32 Add [—2 32
432 4 37 6)

CENG3420 LO3 ISA.24 Spring 2016

In Support of Branch Instructions

0 We have beq, bne, but what about other kinds of
branches (e.g., branch-if-less-than)? For this, we need yet
another instruction, s1t

0 Set on less than instruction:

slt $t0, $s0, $sl # 1if SsO0 < Ssl then
St0 =1 else
$t0 = 0

2 Instruction format (R format):

0 16 17 8 0x24
2 Alternate versions of s1t
slti $t0, S$s0, 25 # 1if SsO0 < 25 then S$St0=1 ...

sltu $t0, $s0, Ssl # 1if $sO0 < S$sl1 then $St0=1 ...
sltiu $t0, $s0, 25 # 1f $sO0 < 25 then St0=1 ...

CENG3420 L03 ISA.25 Spring 2012

Aside: More Branch Instructions

0 Can use slt, beqg, bne, and the fixed value of O in
register $zero to create other conditions

® less than blt S$Ssl1, S$s2, Label

slt Sat, Ssl, Ss?2 #Sat set to 1 if
bne Sat, Szero, Label #S$sl < $s2

@ less than or equal to ble $sl1, S$s2, Label
@ greater than bgt $sl1, $s2, Label
® great than or equal to bge $sl1, $s2, Label

2 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the

assembler
e Its why the assembler needs a reserved register (Sat)

CENG3420 LO3 ISA.26 Spring 2016

Bounds Check Shortcut

0 Treating signed numbers as if they were unsigned gives
a low cost way of checking if 0 <x <y (index out of
bounds for arrays)

sltu $t0, S$sl1, St2 St0 = 0 1if
Ssl > St2 (max)

or $s1 < 0 (min)

beq $t0, $zero, IOOB go to IOOB if

$t0 = 0

= S S 3E S

2 The key is that negative integers in two’'s complement
look like large numbers in unsigned notation. Thus, an
unsigned comparison of x <y also checks if x is negative
as well as if x is less than y.

CENG3420 L03 ISA.27 Spring 2016

Other Control Flow Instructions

0 MIPS also has an unconditional branch instruction or
Jjump instruction:

J label #fgo to label

2 Instruction Format (J Format):

0x02 26-bit address

from the low order 26 bits of the jump instruction

426

A 00

A
32

CENG3420 L03 ISA.28 Spring 2016

\4

EX-2: Branching Far Away

0 What if the branch destination is further away than can
be captured in 16 bits?

beg $s0, $sl1, Ll

!

CENG3420 L03 ISA.29 Spring 2016

Instructions for Accessing Procedures

2 MIPS procedure call instruction:

Jal

0 Saves PC+4 in register $ra to have a link to the next

ProcedureAddress

instruction for the procedure return

2 Machine format (J format):

0x03

26 bit address

2 Then can do procedure return with a

jr Sra freturn
2 Instruction format (R format):
0 31 0x08

CENG3420 L03 ISA.30

#jump and link

Spring 2016

Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place
where the procedure (callee) can access them

® 35a0 - $a3: four argument registers

2. Caller transfers control to the callee
3. Callee acquires the storage resources needed
4. Callee performs the desired task

5. Callee places the result value in a place where the
caller can access it

® 35v0-svl: two value registers for result values

6. Callee returns control to the caller
® Sra:one return address register to return to the point of origin

CENG3420 L03 ISA.31 Spring 2016

Basic Procedure Flow

2 For a procedure that computes the GCD of two values
i(in $t0) and j (in $t1)

gcd(1,3);

0 The caller puts the i and j (the parameters
values) in $a0 and $Sal andissues a

jal gcd #jump to routine gcd

0 The callee computes the GCD, puts the result
In $v0, and returns control to the caller using

ged: . . . fcode to compute gcd

jr Sra freturn

CENG3420 L03 ISA.32 Spring 2016

Spilling Registers

2 What if the callee needs to use more registers than
allocated to argument and return values?

® callee uses a stack — a last-in-first-out queue

high addr

2 One of the general registers, $sp

top of stack

<—$5p

U

low addr

CENG3420 LO3 ISA.33

($29), is used to address the stack
(which “grows” from high address
to low address)

® add data onto the stack — push

Ssp=5Ssp—4
data on stack at new $sp

@ remove data from the stack — pop

data from stack at $sp
Ssp=S$spt+4

Spring 2016

Compiling a C Leaf Procedure

0 Leaf procedures are ones that do not call other
procedures. Give the MIPS assembler code for

int leaf ex (int g, int h, int i, 1int Jj)
{ 1nt £;

f = (gth) - (1+3);

return £, }

where g, h, i, and j are in $a0, $al, $Sa2, $a3

leaf ex: addi $sp, Ssp, -8 #fmake stack room
SW Stl,4(Ssp) #save $Stl on stack
SW $t0,0(Ssp) #save S$St0 on stack

add st0, sa0, sal
add stl, Saz2, sas3

sub sv0,$t0,stl

1w $t0,0($sp) frestore $t0

1w Stl,4(Ssp) #frestore Stl

addi $sp, $sp, 8 #fadjust stack ptr

jr Sra
CENG3420L03I1SA.34 Spring 2016

Nested Procedures

2 What happens to return addresses with nested

procedures?
(int 1)

== 0)

int rt 1

1f (1

return 0;

else return rt 2(1-1); }

caller: 7jal
next:
rt 1: bne
N add
Jr
to 2: addil
Jjal
Jr

rt 2:

CENG3420 LO3 ISA.35

rt_l

sal0,
$vO0,
Sra
sag,
rt 2
Sra

to 2
Szero

Szero,
Szero,

sa0, -1

Spring 2016

Nested Procedures Outcome
caller: jal rt 1

next:

rt 1: bne $al0, S$Szero, to 2
add $v0, Szero, $zero
jr Sra

to 2: addi S$Sa0, Sa0, -1
Jal rt 2
Jjr Sra

rt 2:

a0Onthecallto rt 1,the return address (next
In the caller routine) gets stored in Sra. What
happens to the value in $ra (when $a0!=0)
when rt 1 makesacalltort 27

CENG3420 LO3 ISA.36 Spring 2016

Saving the Return Address, Part 1

2 Nested procedures (i passed in $a0, return value

high addr

old TOS
caller rt addr
old $a0 <—Ssp
low addr
bk 2 $ra

CENG3420 L03 ISA.37

rt

bk

1:

2

2

bne
add

Jr
addi
SW
SW
addi
Jjal
1w
1w
addi

] r

in $vO0)

$al,
$vO0,
Sra
Ssp,
Sra,
$al,
$al,
rt 2
$al,
Sra,
Ssp,
Sra

$zero, to 2

Szero, S$Szero
:SSE)I -3

4 (Ssp)

0 (Ssp)

sa0, -1

0 ($sp)
4 (Ssp)
Ssp, 8

Spring 2016

Saving the Return Address, Part 2
2 Nested procedures (i passed in $a0, return value in $v0)

high addr rt l:bne $al0, S$Szero, to 2

add S$v0, Szero, S$Szero

0ld TOS <$sp jr sSra

caller rt addr to 2:add1 $Sp, $Sp, _8
old $a0 : —

SW Sra, 4($Ssp)
SW Sal0, 0(Ssp)
addi Sa0, Sa0, -1
Jal rt 2

bk 2:1w $al0, 0 (Ssp)
1w Sra, 4($sp)

addi $sp, $sp, 8

low addr

caller rt addr |Sra

jr Sra

CENG3420 LO3 ISA.38 Spring 2016

Compiling a Recursive Procedure
2 A procedure for calculating factorial

int fact (int n) {
1f (n < 1) return 1;
else return (n * fact (n-1)),; }

2 A recursive procedure (one that calls itself!)

fact (0) =1
fact(1)=1*1=1
fact(2)=2 1*1=2
fact(3)=3*2*1*1=6
fact(4)=4*3*2*1*1=24

2 Assume n is passed in $a0; result returned in $SvO0

CENG3420 L03 ISA.39 Spring 2016

Compiling a Recursive Procedure

fact: addi
SW
SW
slti
beg
addi
addi
Jr

Ll: addi
Jal

bk f£: 1w
1w
addi
mu l
Jr

CENG3420 L031SA.40

$sp, $sp, -8
Sra, 4($sp)
$a0, 0(Ssp)
$t0, S$Sa0, 1
$t0, S$Szero, L1
sv0, Szero, 1
$sp, Ssp, 8
Sra

$a0, $a0, -1
fact

$al0, 0($sp)
Sra, 4($sp)
Ssp, $sp, 8

Sv0, $a0, S$v0
Sra

#adjust stack pointer
#save return address
#save argument n

#ftest for n < 1

#if n >=1, go to L1
#felse return 1 in $vO
#adjust stack pointer
#return to caller

#fn >=1, so decrement n
#call fact with (n-1)
#this is where fact returns
#restore argument n
#frestore return address
#adjust stack pointer
#Sv0 = n * fact(n-1)
#return to caller

Spring 2016

A Look at the Stack for $a0 = 2, Part 1

0 Stack state after
old TOS : . .
SR P — execution of first
520 = 2 —Ssp encounter with the jal

iInstruction (second call to
fact routine with $a0 now

holding 1)

® saved return address to
caller routine (i.e., location
In the main routine where

— . first call to fact is made) on
= the stack

$a0 @ saved original value of
Sa0 on the stack

Sv0

CENG3420 L03 ISA.41 Spring 2016

A Look at the Stack for $a0 = 2, Part 2

oS 0 Stack state after

caller rt addr execution of second
w02 encounter with the jal
| instruction (third call to

fact routine with $a0
now holding 0)
® saved return address of

instruction in caller routine
(instruction after jal) on

ok Sra the stack
® saved previous value of
$a0 Sa0 on the stack

Sv0

CENG3420 L03 ISA.42 Spring 2016

A Look at the Stack for $a0 = 2, Part 3

old TOS 0 Stack state after
caller rt addr execution of first
— encounter with the first
520 = 1 —$sp Jjr instruction ($v0
bk_£ initialized to 1)
— | @ stack pointer updated to
point to third call to fact

bk f $ra
0 Sal
1 Sv0

CENG3420 L0O3ISA.43 Spring 2016

A Look at the Stack for $a0 = 2, Part 4

old TOS

caller rt addr

Sal = 2

bk £

Sal = 1

bk f

Sal0 = 0

CENG3420 LO3 ISA.44

0 Stack state after execution
of first encounter with the
<$sp second jr instruction

(return from fact routine
after updating svoto 1 * 1)

® return address to caller
routine (bk £ in fact routine)
restored to Sra from the

stack

® previous value of $a0
restored from the stack

$a0 @ stack pointer updated to point
to second call to fact

Sra

Sv0

Spring 2016

A Look at the Stack for $a0 = 2, Part 5

Tatos oo, 4 Stack state after
caller rt addr execution of second
520 = 2 | encounter with the second
—— j r instruction (return from
bk_£ fact routine after updating
520 = 0 Svoto2*1*1)
@ return address to caller
routine (main routine)

restored to $ra from the

caller rt addr | Sra stack
@ original value of $a0
2 $a0 restored from the stack
@ stack pointer updated to
CIRERE AL point to first call to fact

CENG3420 LO3 ISA.45 Spring 2016

Aside: Allocating Space on the Stack

0 The segment of the stack
containing a procedure’s
figh addr saved registers and local
variables is its procedure
frame (aka activation record)

e The frame pointer ($ £p) points

Saved return addr to the first word of the frame of a
Saved local regs procedure — providing a stable
(1f any) “base” reqister for the procedure
Local atrays & - Sfpis initialized using $sp on a
structures (if call and $sp is restored using
any) Sfpon a return
«—S Sp
low addr

CENG3420 LO3 ISA.46 Spring 2016

Aside: Allocating Space on the Heap

0 Static data segment for
constants and other static

variables (e.g., arrays) Ssp

2 Dynamic data segment
(aka heap) for structures
that grow and shrink (e.g.,
linked lists)

@ Allocate space on the heap
with malloc () and free it

in C

$gp
with free ()

PC

CENG3420 L03 ISA.47

»

Ox7ffffffc

10x 1000 8000
-10x 1000 0000

— 0x 0040 0000
~10x 0000 0000

Spring 2016

Atomic Exchange Support

2 Need hardware support for synchronization mechanisms
to avoid data races where the results of the program can
change depending on how events happen to occur

@ Two memory accesses from different threads to the same
location, and at least one is a write

0 Atomic exchange (atomic swap) — interchanges a value
In a register for a value in memory atomically, i.e., as one
operation (instruction)

e Implementing an atomic exchange would require both a memory
read and a memory write in a single, uninterruptable instruction.
An alternative is to have a pair of specially configured
instructions

11 stl, 0($sl)#load linked
sc S5t0, 0($sl) #store conditional

CENG3420 L0O3I1SA.48 Spring 2016

Automic Exchange with 11 and sc

2 If the contents of the memory location specified by the
11 are changed before the sc to the same address
occurs, the sc fails (returns a zero)

try: add $t0, Szero, $s4 #5t0=5s4 (exchange value)
11 s$tl, 0(S$sl) #load memory value to S$tl
sc $t0, 0(S$sl) #try to store exchange

#value to memory, if fail
#5t0 will be 0

beq $t0, S$zero, try #try again on failure
add $s4, Szero, S$tl #load value in S$s4

2 If the value in memory between the 11 and the sc
Instructions changes, then sc returns a0 in $t0 causing
the code sequence to try again.

CENG3420 L03 ISA.49 Spring 2016

The C Code Translation Hierarchy

C program

N

assembly code

N

assembler

object code

library routines

N

o

machine code

executable

CENG3420 L03 ISA.50

N

memory

Spring 2016

Compiler Benefits

0 Comparing performance for bubble (exchange) sort

® To sort 100,000 words with the array initialized to random values
on a Pentium 4 with a 3.06 clock rate, a 533 MHz system bus,
with 2 GB of DDR SDRAM, using Linux version 2.4.20

gcc opt Relative Clock Instr count CPI
performance | cycles (M) (M)

None 1.00 158,615 114,938 1.38

O1 (medium) 2.37 66,990 37,470 1.79

O2 (full) 2.38 66,521 39,993 1.66

O3 (proc mig) 2.41 65,747 44,993 1.46

2 The un-optimized code has the best CPI, the O1 version
has the lowest instruction count, but the O3 version is the

fastest. Why?

CENG3420 L03 ISA.51

Spring 2016

Addressing Modes lllustrated

1. Register addressing

op rs rt rd

funct

Register

2. Base (displacement) addressing

op rs rt offslet

A 4

word operand

A 4

Memory

y [

base reqister

3. Immediate addressing

op rs rt operand

4. PC-relative addressing

op rs rt offslet

A 4

word or byte operand

A 4

Memory

Program Counter (PC)

5. Pseudo-direct addressing

op jump gddress

A 4

branch destination instruction

Memory

V.V

Program Counter (PC)

CENG3420 L03 ISA.52

jump destination instruction

Spring 2016

MIPS Organization So Far

Processor
Memory
Register File N
1...1100
src1 addr-<» |+, srct
S 5o data
src2 addr—4» 392
dst add 5 registers _
staddr Z="¢zero - $ra) read/write
te data -2 7 Gt addr
write data73-§> 1152 data > R 230
" 32bits 2 words
branch offset Aread datg
) 32
write data . 0...1100
‘32 g 0...1000
4 |5 [6 |7 10...0100
‘0/;71 2 13 ‘0...0000 v
) / 32 bits ~ word address
(binary)
byte address
(big Endian)

CENG3420 L03ISA.53 Spring 2016

