
CENG 3420 Homework 3 Solutions

Due: Apr. 11, 2016

Question 1

1. Dependency between instructions happens due to sharing common registers.

Figure 1: Dependency of instructions

2. Only RAW dependences can become data hazards. With forwarding, only RAW de-
pendences from a load to the very next instruction become hazards. Without forward-
ing, any RAW dependence from an instruction to one of the following 3 instructions
becomes a hazard:

Figure 2: Data hazards

3. With forwarding, only RAW dependences from a load to the next two instructions
become hazards because the load produces its data at the end of the second MEM
stage. Without forwarding, any RAW dependence from an instruc- tion to one of the
following 4 instructions becomes a hazard:

Figure 3: Data hazards of 6-stage pipeline

1



Question 2

1. Each transaction requires 10000 * 5 = 50000 instructions.
System A: CPU limit: 400M / 50K = 8000 transactions/second.
The I/O limit for A is 1500/5 = 300 transactions/second.
System B: CPU limit: 500M / 50K = 10000 transactions/second.
The I/O limit for B is 1000/5 = 200 transactions/second.

Question 3

1. For a: The asynchronous bus should be selected. Mouse inputs are relatively infre-
quent in comparison to other inputs. The mouse device is electrically distant from the
CPU.
For b: we choose synchronous bus. The memory controller is electrically close to the
CPU and throughput to memory must be high.

2. For all devices in the table, problems with long, synchronous buses are the same.
Specifically, long synchronous buses typically use parallel cables that are subject to
noise and clock skew. The longer a parallel bus is, the more susceptible it is to envi-
ronmental noise. Balanced cables can prevent some of these issues, but not without
significant expense. Clock skew is also a problem with the clock at the end of a long
bus being delayed due to transmission distance or distorted due to noise and transmis-
sion issues. If a bus is electrically long, then an asynchronous bus is usually best.

3. The only real drawback to an asynchronous bus is the time required to transmit bulk
data. Usually, asynchronous buses are serial. Thus, for large data sets, transmission
can be quite high. If a device is time sensitive, then an asynchronous bus may not be
the right choice. There are certainly exceptions to this rule-of-thumb such as FireWire,
an asynchronous bus that has excellent timing properties.

Question 4

1. Yes. The CPU initiates the data transfer, but once the data transfer starts, the device
and memory communicate directly with no intervention from the CPU.

2. For a: No. The mouse controller does not write back to system memory.
For b: No. The ethernet controller does not write back to system memory.
Basically, any device that writes to memory directly can cause the data in memory to
differ from what is stored in cache.

3. Virtual memory swaps memory pages in and out of physical memory based on loca-
tions being addressed. If a page is not in memory when an address associated with it is
accessed, the page must be loaded, potentially displacing another page. Virtual mem-
ory works because of the principle of locality. Specifically, when memory is accessed,
the likelihood of the next access being nearby is high. Thus, pulling a page from disk to
memory due to a memory access not only retrieves the memory be accessed, but likely
the next memory element being access. Any of the devices listed in the table could
cause potential problems if it causes virtual memory to thrash, continuously swapping
in and out pages from physical memory. This would happen if the locality principle
is violated by the device. Careful design and sufficient physical memory will almost
always solve this problem.

2



Question 5

1.

2.

Question 6

1. Option 1, because Option 2 results in a race condition. If the race condition was not
an issue, Option 1 would still be better because we would pay the overhead of forking
and joining multiple threads only once, instead of each time within the outer loop (as
in Option 2).

Question 7

1. This problem is a divide and conquer problem, but utilizes recursion to produce a very
compact piece of code. When the number of cores is small, we spawn a thread for the
computation of left in the MergeSort code, and spawn a thread for the computation of
the right. If we consider this recursively, for m initial elements in the array, we can
utilize 1 + 2 + 4 + 8 + 16 + .... log2(m) processors to obtain speed-up.

2. log2(m) is the largest value of Y for which we can obtain any speed-up without re-
structuring. But if we had m cores, we could perform sorting using a very different
algorithm. For instance, if we have greater than m/2 cores, we can compare all pairs of
data elements, swap the elements if the left element is greater than the right element,
and then repeat this step m times. So this is one possible answer for the question.
It is known as parallel comparison sort. Various comparison sort algorithms include
odd-even sort and cocktail sort.

Question 8

1. Possible results

x = 2, y = 2, w = 1, z = 0
x = 2, y = 2, w = 3, z = 0

3



x = 2, y = 2, w = 5, z = 0
x = 2, y = 2, w = 1, z = 2
x = 2, y = 2, w = 3, z = 2
x = 2, y = 2, w = 5, z = 2
x = 2, y = 2, w = 1, z = 4
x = 2, y = 2, w = 3, z = 4
x = 3, y = 2, w = 5, z = 4

2. We could set synchronization instructions after each operation so that all cores see the
same value on all nodes.

4


