Private-key encryption is perhaps the most basic cryptographic task. In the simplest model of encryption there are two honest participants, Alice and Bob, who interact over a communication channel. The channel interaction is observed by a third party Eve who may be malicious. Alice’s goal is to send a single message M to Bob so that Bob can recover the message but Eve cannot obtain information about what was sent.

In the private-key setting, Alice and Bob are assumed to have agreed upon a common key K that is not known to Eve. Let us model messages and keys as binary strings: The message M can be any string from the message space $\{0,1\}^m$, and the key K is a uniformly random string from $\{0,1\}^n$.

If n is at least as large as m, the following simple solution called the one-time pad achieves perfect secrecy: Alice encrypts the message M under key K into the ciphertext $M \oplus K$ obtained by taking the pairwise XOR of the bits of M and K. Upon receiving C, Bob decrypts to $C \oplus K$. Clearly the decryption is correct. Intuitively, it is also secret because no matter what M is, $M \oplus K$ is a uniformly random string in $\{0,1\}^m$, so the distribution that Eve observes is completely independent of the message being sent.

However the assumption that n is at least as large as m is often unrealistic. In usual applications Alice and Bob want to agree on a fairly short key (at most several thousand bits) and use it to encrypt much longer messages (megabytes or gigabytes long). But even if $m = n + 1$ it is impossible to make the encryption of a message statistically independent of the message.

The solution is to extend the n-bit key K into an m-long bit string $G(K)$ which “looks” uniformly random, even though it is statistically far from being random. Alice now encrypts by sending $M \oplus G(K)$, and Bob decrypts by computing $C \oplus G(K)$. From Eve’s perspective, $G(K)$ looks like a uniformly random string in $\{0,1\}^n$, and so does $M \oplus G(K)$.

1 Pseudorandom generators and one-way permutations

What does it mean for a string y coming from some distribution over $\{0,1\}^m$ to “look” uniformly random? Let’s ask the opposite question – what does it mean for y to not look random? It means that we should have some way of distinguishing y from a uniformly random string u of the same length. In computational complexity and cryptography, we model the distinguisher as an efficient algorithm that takes y or u as an input, tends to accept when its input is y, and tends to reject when its input is u.

This suggests the following definition: A distribution \mathcal{Y} over $\{0,1\}^m$ is (s, ε)-pseudorandom if for every algorithm D of complexity at most s,

$$\Pr_{y \sim \mathcal{Y}}[D(y) \text{ accepts}] - \Pr_{u \sim \{0,1\}^m}[D(u) \text{ accepts}] \leq \varepsilon.$$

We won’t define complexity formally, but you can think of it as the size of the program for D plus the worst-case running time of this program on inputs of length m. A pseudorandom generator is an algorithm that takes n uniformly random bits and expands them deterministically into m pseudorandom bits.
Definition 1. A function $G : \{0, 1\}^n \rightarrow \{0, 1\}^m$, where $m > n$, is an (s, ε) pseudorandom generator if for every algorithm D of complexity at most s,

$$\Pr_{x \sim \{0, 1\}^n}[D(G(x)) \text{ accepts}] - \Pr_{u \sim \{0, 1\}^m}[D(u) \text{ accepts}] \leq \varepsilon.$$

In a typical application like private-key encryption, we may think of the input length n as being 1000 or 2000 bits long, while s as much larger and ε as tiny, e.g. $s = 2^{100}$ and $\varepsilon = 2^{-100}$. What about the output length m? Once we have a pseudorandom generator that produces $n + 1$ bits of output, we can bootstrap it to obtain as many output bits as we want, so we will focus on the case $m = n + 1$.

It is somewhat tricky to construct pseudorandom generators because the definition requires us to argue about all possible distinguishers D and we may not know how such a distinguisher works. It may be easier to build pseudorandom generators out of potentially more primitive objects.

One such object are one-way permutations. A one-way function is a function that is easy to compute, but hard to invert, even for random inputs. A one-way permutation is a pseudorandom function that is also a permutation, i.e. every output comes from exactly one input.

Definition 2. A permutation $\pi : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is (s, ε)-one-way if for every algorithm Inv of complexity at most s, $\Pr_{x \sim \{0, 1\}^n}[Inv(\pi(x)) = x] \leq \varepsilon$.

In 1982 Yao showed how to obtain a pseudorandom generator from any one-way permutation. His construction was simplified considerably by Goldreich and Levin who proved the following theorem:

Theorem 3 (Goldreich and Levin). If $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a $(\poly(n/\varepsilon)(s + s_\pi), \varepsilon/2)$ one-way permutation of complexity s_π, then the function $G : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n+1}$ given by

$$G(x, r) = (\pi(x), r, \langle x, r \rangle)$$

is an (s, ε)-pseudorandom generator.

2 Fourier analysis of the Hadamard code

The proof of the Goldreich-Levin theorem is closely related to algorithmic aspects of decoding the $[2^n, n, 2^n/2]$ Hadamard code. (We now change convention and use n to denote message length and not block length as before.) Suppose we are given a corrupted codeword f of the Hadamard code. We can decode f by brute force: Look at all 2^n possible codewords Had_a, compute their distances to f and output the one that is closest to f. Since the block length is 2^n, the running time of this decoding algorithm is about 2^{2n}.

Can we decode any faster? The corrupted codeword f is 2^n bits long, so merely inspecting the whole codeword will take 2^n time. This suggests we may not be able to substantially improve upon the brute-force algorithm. However, this intuition is incorrect: We will show how to perform the decoding by only inspecting a small number of random entries inside the codeword.

We will in fact solve a more general problem called *list-decoding*. Recall that in a code of distance d, decoding is only possible (in the worst case) if the number of errors t is at most $(d - 1)/2$. If t is larger, there may be ambiguity in the decoding as there can be more than one answer within
distance \(t \) of the corrupted codeword. In this setting, a sensible possibility would be to ask for a description of all codewords within distance \(t \). The maximum number of such codewords is called the list size of the code at radius \(t \).

Recall that the Hadamard encoding of a message \(a \) in \(\{0, 1\}^n \) consists of the evaluations \(\langle a, x \rangle \mod 2 \) over all \(x \) in \(\{0, 1\}^n \). Let’s represent the codeword entries by \(\{1, -1\} \) instead of \(\{0, 1\} \). Then the encoding of \(a \) consists of the evaluations of the character function \(\chi_a(x) = (-1)^{\langle a, x \rangle} \). We will identify the codewords of the Hadamard code with the character functions.

Under this convention, a corrupted codeword can be viewed as some function \(f : \{0, 1\}^n \to \{1, -1\} \). The list decoding problem asks us to find all codewords \(\chi_a \) that has large agreement with the function \(f \); specifically, given an agreement parameter \(\varepsilon > 0 \), we want all \(a \) such that \(\Pr_{x \sim \{0, 1\}^n}[f(x) = \chi_a(x)] \geq (1 + \varepsilon)/2 \), or equivalently all \(a \) such that

\[
\hat{f}_a = \mathbb{E}[f(x) \chi_a(x)] \geq \varepsilon.
\]

From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded immediately via Parseval’s identity: Every codeword \(\chi_a \) in the list must contribute \(\hat{f}_a^2 \geq \varepsilon^2 \) to the square sum of the Fourier coefficients, so the list size of the Hadamard code can be at most \(1/\varepsilon^2 \).

3 The Kushilevitz-Mansour algorithm

We will generalize our objective a little bit and seek to find all \(a \) such that \(\hat{f}_a^2 \geq \varepsilon^2 \), and maybe even allow for a few \(a \)'s that don’t quite satisfy this condition. The idea is to try to locate these relevant \(a \)'s by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search process along the following full binary tree of depth \(n \). The root of this binary tree is labeled by the sum \(\sum_{a \in \{0, 1\}^n} \hat{f}_a^2 \). Its left and right children are labeled by the partial sums

\[
\sum_{a : a_1 = 0} \hat{f}_a^2 \quad \text{and} \quad \sum_{a : a_1 = 1} \hat{f}_a^2.
\]

In general, a node at level \(i \) is indexed by a string \(v \in \{0, 1\}^i \) and is labeled by the value

\[
\sum_{a : a_1 = v_1, \ldots, a_i = v_i} \hat{f}_a^2,
\]

so that the leaf indexed by \(a \) is labeled by \(\hat{f}_a^2 \).

Let’s say a node \(v \) is relevant if its label is at least \(\varepsilon^2 \). Although there are exponentially many nodes in the tree, there can be at most \(n/\varepsilon^2 \) relevant ones because the labels in each level sum to 1. If we could calculate the labels, it would be easy to identify all the relevant nodes via depth-first search starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula

\[
\hat{f}_a = \mathbb{E}[f(x) \chi_a(x)] \quad (1)
\]

can obtain these values in time exponential in \(n \). But if we are willing to settle for a probabilistic approximation, we can do much better. Let’s start at the leaves. From the formula (1) we get

\[
\hat{f}_a^2 = \mathbb{E}[f(x) \chi_a(x)] \mathbb{E}[f(y) \chi_a(y)] = \mathbb{E}[f(x)f(y)\chi_a(x + y)].
\]
This suggests that to estimate \(f_a^2 \), we ought to sample some number of random pairs \((x, y)\) and output the average of the values \(f(x)f(y)\chi_a(x + y)\).

Now let \(v \in \{0, 1\}^i \) be an arbitrary node in the tree at level \(i \) and \(FIX(v) \) be the set of those \(a \in \{0, 1\}^n \) with \(a_1 = v_1, \ldots, a_i = v_i \). We want to estimate the value

\[
\sum_{a \in FIX(v)} \hat{f}_a^2 = \mathbb{E}\left[f(x)f(y) \sum_{a \in FIX(v)} \chi_a(x + y) \right].
\]

The set \(FIX(v) \) could be exponentially large so we have to be a bit careful here. Recall that \(\chi_a(z) = (-1)^{(a,z)} \) so:

\[
\sum_{a \in FIX(v)} \chi_a(z) = \sum_{a \in FIX(v)} (-1)^{(a,z)}
\]

If \(z \) is nonzero along any of the coordinates \(i + 1 \) up to \(n \), this sum vanishes; otherwise, it equals \(2^{n-i} \chi_v(z) \). So the only \((x, y)\) pairs that contribute to the sum are those in which \(x \) and \(y \) agree on the last \(n - i \) coordinates, and we can rewrite the identity as

\[
\sum_{a \in FIX(v)} \hat{f}_a^2 = \mathbb{E}_{x', y' \sim \{0, 1\}^i, u \sim \{0, 1\}^{n-i}} [f(x'u)f(y'u)\chi_v(x' + y')].
\]

Here, the first \(i \) bits \(x' \) and \(y' \) of \(x \) and \(y \) are chosen independently at random, while the last \(n - i \) bits are random but identical in \(x \) and \(y \). (When \(i = 0 \) the right side equals \(\mathbb{E}[f(u)^2] = 1 \), which is a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a probabilistic procedure \(\hat{Samp}(f, v) \) which estimates the label of node \(v \) as follows: Sample \(O(n/\varepsilon^6) \) random triples \((x', y', u)\) and output the average of the values \(f(x'u)f(y'u)\chi_v(x' + y')\).

Lemma 4. With probability at least \(1 - \varepsilon^2/20n \), \(\hat{Samp}(f, v) \) outputs a value between \(\ell(v) - \varepsilon^2/3 \) and \(\ell(v) + \varepsilon^2/3 \), where

\[
\ell(v) = \sum_{a: a_1=v_1,\ldots,a_i=v_i} \hat{f}_a^2.
\]

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KM: On input a function \(f: \{0, 1\}^n \rightarrow \{1, -1\} \) and \(\varepsilon > 0 \),

Apply the following recursive procedure \(P(v) \) starting with \(v \) equal to the empty string:

- If \(\hat{Samp}(f, v) \geq \varepsilon^2/3 \):
 - If \(v \) has length \(n \), output \(v \).
 - Otherwise, call \(P(v0) \) and \(P(v1) \).

Theorem 5. With probability at least \(1/2 \), the outputs of \(KM(f, \varepsilon) \) include all \(a \) such that \(\hat{f}_a^2 \geq \varepsilon^2 \), but it produces no more than \(O(n/\varepsilon^2) \) outputs in total.

Proof. Let \(v \) be any node such that \(\ell(v) \geq \varepsilon^2 \). By Lemma 4,

\[
\Pr[\hat{Samp}(f) < 2\varepsilon^2/3] \leq \varepsilon^2/20n
\]

Since there are at most \(n/\varepsilon^2 \) such nodes \(v \), by a union bound we have

\[
\Pr[\hat{Samp}(f) < 2\varepsilon^2/3 \text{ for some } v \text{ s.t. } \ell(v) \geq \varepsilon^2] \leq \frac{n}{\varepsilon^2} \cdot \frac{\varepsilon^2}{20n} \leq \frac{1}{20}.
\]
Therefore, all \(a \in \{0, 1\}^n \) such that \(\ell(a) = \bar{f}_a^2 \geq \varepsilon^2 \) will be included in the output of \(\text{KM}(f, \varepsilon) \) with probability at least \(1 - 1/20 = 19/20 \).

Let \(B \) be the set of nodes whose label exceeds \(\varepsilon^2/3 \) and \(B' \) be the set of nodes outside \(B \) whose parent node is in \(B \). Since the nodes in \(B \) form a tree, we must have \(|B'| \leq |B| + 1 \). There must be fewer than \(3n/\varepsilon^2 \) nodes in \(B \), so \(B' \) can have at most \(3n/\varepsilon^2 + 1 \) nodes. By a very similar calculation as above,

\[
\Pr[\hat{\text{Samp}}(f, v) \geq 2\varepsilon^2/3 \text{ for some } v \text{ in } B'] \leq \left(\frac{3n}{\varepsilon^2} + 1 \right) \cdot \frac{\varepsilon^2}{20n} \leq \frac{1}{5}.
\]

Therefore, with probability at least \(4/5 \), \(\hat{\text{Samp}}(f, v) \) will output a value smaller than \(2\varepsilon^2/3 \) on all nodes \(v \) in \(B' \), so \(\text{KM}(f, \varepsilon) \) will not make any recursive calls to \(\text{P} \) on a node outside \(B \cup B' \).

Since there are at most \(O(n/\varepsilon^2) \) nodes inside \(B \cup B' \), \(\text{KM}(f, \varepsilon) \) can produce at most this many outputs.

With probability at least \(1 - 1/20 - 1/5 = 1/2 \), both of these conditions are met.

It remains to prove Lemma 4. We make use of Chebyshev’s inequality:

Theorem 6 (Chebyshev’s inequality). For any random variable \(X \) and \(t > 0 \),

\[
\Pr[|X - E[X]| > t\sqrt{\text{Var}[X]}] < 1/t^2.
\]

Proof of Lemma 4. Let \(X_i = f(x'_i u_i) f(y'_i u_i) \chi_v(x'_i + y'_i) \), where \((x'_i, y'_i, u_i) \) is the \(i \)-th sample. \(\hat{\text{Samp}}(f, v) \) outputs the value \(X = \frac{1}{m}(X_1 + \cdots + X_m) \), where \(m \) is the number of samples used. By linearity of expectation,

\[
E[X] = \frac{1}{m}(E[X_1] + \cdots + E[X_m]) = E[f(x' u) f(y' u) \chi_v(x' + y')] = \ell(v)
\]

and by independence of \(X_i \) and \(X_j \) for every pair \(i \neq j \),

\[
\text{Var}[X] = \frac{1}{m^2} (\text{Var}[X_1] + \cdots + \text{Var}[X_m]) \leq \frac{1}{m}
\]

since the variables \(X_1, \ldots, X_m \) are \(\{-1, 1\} \) valued and can have variance at most 1. From Chebyshev’s inequality we get that

\[
\Pr[|X - \ell(v)| > t/\sqrt{m}] < 1/t^2.
\]

To get the desired conclusion, we choose \(m \) and \(t \) so that \(t/\sqrt{m} = \varepsilon^2/3 \) and \(1/t^2 = \varepsilon^2/20n \).

4 Proof of the Goldreich-Levin theorem

We prove the contrapositive statement: Suppose that \(G \) is not an \((s, \varepsilon)\)-pseudorandom generator, namely there is a distinguisher \(D \) of complexity \(s \) such that

\[
\Pr_{x,r \sim \{0,1\}^n}[D(G(x, r)) \text{ accepts}] - \Pr_{u \sim \{0,1\}^{2n+1}}[D(u) \text{ accepts}] > \varepsilon.
\]

We will argue that there is then an algorithm \(\text{Inv} \) of complexity \(\text{poly}(n/\varepsilon)(s + s_r) \) such that

\[
\Pr_{x \sim \{0,1\}^n}[\text{Inv}(\pi(x)) = x] > \varepsilon/2.
\]
and so \(\pi \) is not \((\text{poly}(n/\varepsilon)(s + s_\pi), \varepsilon/2)\)-one-way.

Without loss of generality, let us assume that \(D \) outputs 1 when it accepts and \(-1 \) when it rejects. Because \(E[D(\cdot)] = 2 \Pr[D(\cdot) = 1] - 1 \), we can rewrite our assumption on \(D \) as

\[
E_{x,r \sim \{0,1\}^n}[D(G(x,r))] - E_{u \sim \{0,1\}^{2n+1}}[D(u)] > 2\varepsilon.
\]

Unwinding the definition of \(G \), we get

\[
E_{x,r \sim \{0,1\}^n}[D(\pi(x),r,\langle x, r \rangle)] - E_{u \sim \{0,1\}^{2n+1}}[D(u)] > 2\varepsilon.
\]

We can write \(u \) in the form \((\pi(x),r,b)\), where \(x,r \sim \{0,1\}^n \) and \(b \sim \{0,1\} \) are independent. (Since \(\pi \) is a permutation, \((\pi(x),r,b)\) is uniformly distributed in \(\{0,1\}^{2n+1} \).)

Thus

\[
E_{x,r \sim \{0,1\}^n}[D(\pi(x),r,\langle x, r \rangle)] - E_{x,r \sim \{0,1\}^n,b \sim \{0,1\}^{2n+1}}[D(\pi(x),r,b)] > 2\varepsilon.
\]

We now make use of the following technical lemma. This lemma tells us that if \(F(X) \) is distinguishable from \(F(\tilde{X}) \), then \(\tilde{X}F(\tilde{X}) \) can predict \(X \) to some advantage.

Lemma 7. Let \(F(-1), F(1) \sim \mathbb{R} \) and \(X \sim \{-1,1\} \) be (possibly dependent) random variables, and \(\tilde{X} \sim \{-1,1\} \) be uniformly random and independent of \(F \) and \(X \). Then

\[
E[\tilde{X}F(\tilde{X}) \cdot X] = E[F(X)] - E[F(\tilde{X})].
\]

Applying the lemma to \(F(\cdot) = D(\pi(x),r,\cdot) \), \(X = (-1)^{\langle x, r \rangle} \), and \(\tilde{X} = (-1)^b \) we get that

\[
E_{x,b,r}[(-1)^b D(\pi(x),r,\langle x, r \rangle)] > 2\varepsilon
\]

from where

\[
E_{x,b,r}[E_r[(-1)^b D(\pi(x),r,\langle x, r \rangle)]] > 2\varepsilon
\]

It follows that with probability at least \(\varepsilon \) over the choice of \(x \) and \(b \), we must have

\[
E_r[(-1)^b D(\pi(x),r,\langle x, r \rangle)] > \varepsilon. \tag{2}
\]

Now consider the following algorithm \texttt{Inv}: On input \(\pi(x) \), choose a random \(b \) and run \texttt{KM}(f, \varepsilon), where \(f(r) = (-1)^b D(\pi(x),r,b) \). If the output of \texttt{KM}(f, \varepsilon) contains an \(a \) such that \(\pi(a) = \pi(x) \), output this \(a \).

If \(x \) and \(b \) satisfy (2), then by Theorem 5 with probability at least \(1/2 \), the output of \texttt{KM}(f, \varepsilon) will contain \(x \), and \texttt{Inv}(\pi(x)) outputs \(x \) with probability at least \(\varepsilon/2 \).

We now analyze the running time of \texttt{Inv}. From Theorem 5 (more precisely, from its proof) it follows that algorithm \texttt{KM} makes no more than \(O(n/\varepsilon^2) \) calls to \texttt{Samp}, and each of these calls results in \(O(n/\varepsilon^6) \) evaluations of \(D \). Since each evaluation of \(G \) has complexity \(s \), the complexity of this part of the algorithm is \(O(n^2/\varepsilon^8) \cdot s \). In addition, \texttt{Inv} evaluates \(\pi \) on the \(O(n/\varepsilon^2) \) outputs of \texttt{KM}. This part has complexity \(O(n/\varepsilon^2) \cdot s_{\pi} \). Thus \texttt{Inv} has complexity \(O(n/\varepsilon^2)s_{\pi} + O(n^2/\varepsilon^8) = \text{poly}(n/\varepsilon)(s + s_{\pi}) \).

Proof of Lemma 7. Let \(P = F(\tilde{X})(1 + X\tilde{X}) \). Since \(\tilde{X} \) is random and independent of \(F,X \) we have

\[
E[P] = \frac{1}{2} E[P \mid X = \tilde{X}] + \frac{1}{2} E[P \mid X \neq \tilde{X}] = \frac{1}{2} E[2F(X)] + \frac{1}{2} \cdot 0 = E[F(X)].
\]

Therefore \(E[F(\tilde{X})(1 + X\tilde{X})] = E[F(X)] \). The lemma follows by linearity of expectation. \(\square \)