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Abstract

We consider the problem of testing 3-colorability in the bounded-degree model. A
3-colorability tester is an algorithm A that is given oracle access to the adjacency list
representation of a graph G of maximum degree d with n vertices; A is required to, say,
accept with probability at least 2/3 if G is 3-colorable, and to accept with probability
at most 1/3 if G is ε-far from 3-colorable (meaning that at least an ε fraction of edges
must be removed from G to make it 3-colorable); there is no requirement on A in the
remaining cases. If A accepts 3-colorable graphs with probability one, then it is said to
have one-sided error.

For sufficiently small ε, the testing problem is NP-complete, so it is unlikely that
polynomial-time, or even sub-exponential time testers exist. In this paper we are inter-
ested in unconditional lower bounds on query complexity. The strongest known lower
bound is due to Goldreich and Ron, who show that, for small enough ε, every tester
must have query complexity Ω(

√
n).

In this paper we show unconditionally that, for small enough ε, every tester for 3-
colorability must have query complexity Ω(n). This is the first linear lower bound for
testing a natural graph property in the bounded-degree model.

For one-sided error testers, we also show an Ω(n) lower bound for testers that dis-
tinguish 3-colorable graphs from graphs that are (1/3 − α)-far from 3-colorable, for
arbitrarily small α. In contrast, a polynomial time algorithm by Frieze and Jerrum
distinguishes 3-colorable graphs from graphs that are 1/5-far from 3-colorable.

As a by-product of our techniques, we obtain tight unconditional lower bounds on
the approximation ratios achievable by sub-linear time algorithms for Max E3SAT and
Max E3LIN-2.
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1 Introduction

A property testing algorithm A for a graph property P is an algorithm that, given an
approximation parameter ε and oracle access to the representation of a graph G, accepts
with probability 2/3 if G has property P and rejects with probability 2/3 if G is ε-far
from every graph having property P. There is no requirement on A if G satisfies neither
condition. Graphs G and H are ε-close if a representation of H can be obtained by modifying
an ε-fraction of the representation of G.

The complexity of graph property testing problems is highly dependent on the represen-
tation. In the adjacency matrix representation, introduced in the original paper on graph
property testing [?], two graphs are ε-close if they differ in at most about εn2/2 edges.
This model is interesting for studying properties of dense graphs. To study sparse graph
properties, Goldreich and Ron [?] considered the model where a bounded-degree graph is
represented by its adjacency list. In this model, the vertex degrees are bounded by a con-
stant d independent on the number of vertices n. Two graphs are ε-close if they differ by
at most εdn/2 edges.

The difference in complexity between the two models can be striking. For example, for
ε = 1/100, bipartiteness can be tested in constant time in the adjacency matrix represen-
tation [?] but it requires Ω(

√
n) queries in the adjacency list representation [?], even for

d = 3.
Indeed, a wide variety of graph properties are known to be testable in time constant

in the number of vertices (dependent only on ε) in the adjacency matrix representation,1

while much fewer algorithms running even in sub-linear time (leave alone constant time) are
known for the adjacency list representation. This is particularly unfortunate considering
that bounded degree graphs are more likely to occur in settings where sub-linear time
testing algorithm are useful. Even fewer lower bounds are known for the adjacency list
model. Apart from the Ω(

√
n) lower bound on the query complexity of bipartiteness (which

extends trivially to 3-colorability and other problems), there is an Ω(n1/3) lower bound for
testing acyclicity in directed graphs [?]. We are not aware of any other nontrivial query
complexity bound in this model.2

In this paper, we prove a tight Ω(n) lower bound on the query complexity of testing
3-colorability in bounded-degree graphs.

The problem of 3-colorability is interesting not only as a natural extension of bipartite-
ness (whose query complexity was resolved in [?, ?], but also as a canonical problem from
which we obtain lower bounds for other problems using appropriate reductions.

Related results

Goldreich, Goldwasser and Ron [?] present a tester for 3-colorability in the adjacency matrix

representation that makes Õ(1/ε4) queries and runs in 2Õ(1/ε2) time. (Alon and Krivelevich

1For example, all graph properties recognized by finite-state automata [?] and all properties expressed
by a certain fragment of first-order logic [?] can be tested in time dependent only on ε.

2Bender and Ron [?] also prove an Ω(
√

n) lower bound for the problem of testing strong connectivity in
directed graphs, assuming that the adjacency list representation only contains outgoing edges; on the other
hand, a constant-time algorithm exists for the representation where both outgoing and incoming edges are
contained in each adjacency list.
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[?] have improved the number of queries to Õ(1/ε2) and the running time to 2Õ(1/ε).)
In the bounded-degree model, a testing algorithm must tell apart 3-colorable bounded-

degree graphs from bounded-degree graphs where every 3-coloring violates an ε-fraction of
the edges. For sufficiently small ε, this problem is NP-hard for general graphs [?]. Using
the reduction from Section 5 (that we introduce for a different purpose), this problem
can be shown to be NP-hard when restricted to bounded-degree graphs. This provides
strong evidence against the existence of polynomial-time algorithms (and consequently, sub-
linear time algorithms) for this problem. Using our reduction, together with the Polishuck-
Spielman version of the PCP theorem [?], it can be shown that the testing problem has
query complexity Ω(n1−εc

) for some constant c, assuming 3SAT on n variables has circuit

complexity 2n1−o(1)
. This is an extremely strong assumption (although a refutation of it

would constitute a major breakthrough).
Goldreich and Ron [?] prove an unconditional Ω(

√
n) lower bound on query complexity

for sufficiently small ε. On the positive side, Frieze and Jerrum [?] give a polynomial time
algorithm that distinguishes between 3-colorable graphs and graphs that are 1/5-far from
3-colorable.

Lower bound for one-sided error testers

Our goal is to prove that no property tester with one-sided error, given a degree-d graph
with n vertices, can look at fewer than δn entries of the adjacency list representation of
the graph, yet reject with constant probability graphs that are ε-far from 3-colorable. A
simple observation is that a one-sided error tester must accept whenever its “view” of the
graph is 3-colorable. In other words, it is sufficient to construct a graph G that is ε-far from
3-colorable, yet every one of its induced subgraphs on δn edges is 3-colorable.

In Section 3 we give a probabilistic construction of such graphs, based on a technique due
to Erdős [?]. For every α > 0, there are constants d = O(1/α2) and δ > 0 such that some
d-regular graph on n vertices is (1/3 − α)-far from 3-colorable, yet every subgraph induced
by ≤ δn edges is 3-colorable, for arbitrarily small α. The consequence is the following result.

Theorem 1 For every α > 0 there are constants d and δ > 0 such that if A is a one-sided
error tester for degree-d graphs that distinguishes 3-colorable graphs from graphs that are
(1/3 −α)-far from being 3-colorable, then the query complexity of A is at least δn, where n
is the number of vertices.

Notice that no graph is more than 1/3-far from being 3-colorable, so our result applies to
the full spectrum of gaps for which the testing problem is well defined.

Furthermore, for small enough α, the testing problem is solvable deterministically in
polynomial time with the Frieze-Jerrum algorithm [?]. This gives a separation of the testing
ability of polynomial time versus (one-sided error) sub-linear time algorithms for a natural
problem.

We consider the problem of constructing graphs that are simultaneously far from being
3-colorable, and free of small non-3-colorable subgraphs as an independently interesting
combinatorial question. In section 5 we give an explicit construction of d-regular graphs
that are ε-far from 3-colorable, yet any subgraph induced by a δ-fraction of edges is 3-
colorable, where d, ε > 0, δ > 0 are absolute constants. To this end, we first construct
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an instance of kCSP (a set of constraints over binary variables, with k variables per con-
straint) that is ε′-far from being satisfiable, yet every δ ′ fraction of constraints is satisfiable
(with k, δ′, ε′ constants, and each variable occurring in exactly two constraints). We then
apply a reduction from kCSP to 3SAT and from 3SAT to 3-coloring, and argue that the
reduction preserves distance from satisfiability (respectively, colorability) and the satisfia-
bility (respectively, 3-colorability) of small enough subsets of the instance. The reduction
from kCSP to 3SAT is the standard approximation-preserving reduction between the two
problems [?], while the reduction from 3SAT to 3-coloring is a new one (the new reduction
is needed to produce a constant-degree graph).

Lower bound for two-sided error testers

To prove a lower bound for two-sided error testers, by Yao’s principle, it is enough to
produce two distributions G3col and Gfar over bounded-degree graphs, such that graphs in
G3col are always 3-colorable, graphs in Gfar are typically far from being 3-colorable, and the
two distributions are indistinguishable for testers of sub-linear query complexity.

Towards this goal, we first create two distributions of instances of E3LIN-2, Dsat and
Dfar, such that instances in Dsat are always satisfiable and instances in Dfar are typically
far from satisfiable.3 yet the two distributions look the same to sub-linear time algorithms
with oracle access to their input. We then reduce E3LIN-2 to 3SAT and then 3SAT to
3-coloring and argue that the transformation preserves satisfiability/3-colorability, as well
as farness from satisfiability/3-colorability. Moreover, an oracle for a reduced instance can
be implemented in constant time given the original instance.

In order to define Dsat and Dfar, we first show that for every c there is a δ such that
there is a 3LIN-2 instance I with n variables and cn equations such that any subset of δn
equations are linearly independent. We do so using a probabilistic argument. Then we
define Dsat to be the distribution of instances obtained by first picking an assignment to the
variables, and then setting the right-hand side of I to be consistent with the assignment.
In Dfar we set the right-hand side of I uniformly at random. For algorithms that look at
less than a δ fraction of equations, the two distributions are identical, however instances
in Dsat are always satisfiable and instances in Dfar are about (1/2 − O(1/

√
c))-far from

satisfiable, except with negligibly small probability. In summary, we have a proof of the
following theorem.

Theorem 2 Constants δ, ε, d exist such that if A is a two-sided error tester for degree-d
graphs that distinguishes 3-colorable graphs from graphs that are ε-far from being 3-colorable,
then the query complexity of A is at least δn, where n is the number of vertices.

Other applications

Given a graph optimization problem, one can derive a property testing problem by first
turning the optimization problem into a decision problem. For example, in the property
testing version of Max CUT, one is given a fraction ρ and a parameter ε and wants to

3E3LIN-2 is the problem of deciding the satisfiability of a system of linear equations modulo 2, with three
variables per equation.
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distinguish graphs whose optimal cut cuts at least a ρ fraction of edges from graphs that
are ε-far from having the above property.

A more natural (and often equivalent) way of studying sublinear time algorithms for
graph optimization problems is to consider algorithms that produce in output an approxi-
mation of the cost of an optimal solution. For example, Goldreich, Goldwasser and Ron [?]
give an algorithm running in 2poly(1/ε) time that returns an estimate of the cost of the max
cut of a given graph within an additive error εn2, which is a good approximation for dense
graphs. Similar results are known for other problems in dense graphs [?].

Chazelle, Rubinfeld and Trevisan [?] show how to approximate within a multiplicative
error 1 + ε the cost of the minimum spanning tree in a given bounded-degree graph; the
algorithm runs in time Õ(dwε−2) where d is the maximum degree and the edge weights are
integers in the range {1, . . . , w}.

What about problems that can be approximated to within some constant in polynomial
time but that do not have a PTAS, such as Max SAT and Max CUT? Can one achieve
reasonably good approximation factors in sublinear time? Can unconditional inapproxima-
bility results be proved?

In Section 7 we show unconditional inapproximability results for sublinear time ap-
proximation algorithms that match the inapproximability results proved by H̊astad [?] for
polynomial time algorithms assuming P 6= NP .

Specifically, we prove that no sub-linear time approximation algorithm can approximate
Max E3SAT better than 7/8, Max E3LIN-2 better than 1/2, Vertex Cover better than 7/6,
Max CUT better than 16/17, or Max 2SAT better than 21/22.

2 Preliminaries and Definitions

Let X be a collection of combinatorial objects with distance function d : X → [0, 1], such
that diamd(X ) = 1. An instance X ∈ X is ε-far from property P ⊆ X if for any P ∈ P,
d(X,P ) > ε. An ε-tester for property P is a randomized algorithm that, given oracle access
to an object X ∈ X :

• If X ∈ P, accepts X with probability at least 2/3,

• If X is ε-far from P, rejects X with probability at least 2/3.

A tester is one-sided if the accepting probability above is 1. We are interested in testers
for the following problems: 3-colorability in bounded degree graphs, (3, c)SAT (3CNF sat-
isfiability where each literal occurs in at most c clauses), and E(3, c)LIN-2 (satisfiability of
E3LIN-2 systems where each variable occurs in at most c equations).

We represent n-vertex graphs with degree bound d by an adjacency list fG : [n]× [d] →
[n] ∪ {∅}, where fG[v, i] = w if vertex w the i-th neighbor of vertex v, or ∅ if v has fewer
than i neighbors. A graph G is ε-far from 3-colorable if no graph that is obtained by deleting
εdn/2 edges of G is 3-colorable.

Similarly, we represent (3, c)CNF formulas (resp. E(3, c)LIN-2 systems) ϕ as a member-
ship list Mϕ, which provides for each literal (resp. variable) v and index 0 ≤ i < c the i-th
clause (resp. equation) in which v appears, or ∅ if v appears in fewer than i clauses (resp.
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equations). A formula (resp. system) ϕ is ε-far from satisfiable if no subformula (resp.
subsystem) of ϕ obtained by removing ≤ εcn/3 clauses (resp. equations) is satisfiable.

3 Probabilistic constructions

In this section we provide probabilistic constructions of combinatorial objects (graphs and
3-hypergraphs) that will be used to obtain problem instances for 3-colorability and E3LIN-2
that are difficult to test.

Graphs and Hypergraphs with no Small Dense Subgraph

It will be somewhat more convenient to work with multigraphs instead of graphs. We
consider a distribution G on n-vertex multigraphs G (where n is even) obtained as follows:
Let C1, . . . , Cd be independent random perfect matchings on the vertices of G. The edge set
of G is the multiset union of the Ci, so that the multiplicity of an edge equals the number
of matchings Ci in which it appears. If (u, v) ∈ Ci, we say that v is the i-th neighbor of u
in G.

We denote by G|S the restriction of multigraph G on vertex set S ⊆ V (G). Let XS

be the number of edges in G|S . Then E[XS ] = d
(|S|

2

)

1
n−1 . Fix a partition {S1, S2, S3} of

V (G). We are interested in bounding the probability that this partition is 1/3-close to a
valid coloring of G. Let X = XS1 + XS2 + XS3 .

Lemma 3 For every partition {S1, S2, S3} of V (G) and every constant α > 0,

Pr[X < (1/6 − α)dn] ≤ exp(−(α − o(1))2dn).

Proof Consider the random process I1, . . . , Idn/2 on G, which reveals the edges of G
one by one. For a fixed partition {S1, S2, S3}, the random variable X determines a Doob
martingale with respect to this process. A simple computation shows that for 1 < j ≤ dn/2,

|E[X|I1, . . . , Ij ] − E[X|I1, . . . , Ij−1]| ≤ 1.

By convexity, E[X] ≥ dn
6

n−3
n−1 (this value is attained when |S1| = |S2| = |S3| = n/3).

Azuma’s inequality yields

Pr

[

X <

(

1

6

n − 3

n − 1
− α′

)

dn

]

≤ exp(−α′2dn).

The conclusion follows, with α = α′ + 1
3(n−1) .

Denote by Ḡ the graph obtained by identifying every multiedge of G with an ordinary
edge.

Lemma 4 For any constant α > 0 there exists a constant d such that with probability
1 − o(1) any 3-coloring of the vertices of Ḡ has at least (1/6 − α)dn violating edges.
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Proof First we show that the conclusion holds for G. The number of tri-partitions of
V (G) is 3n. By combining a union bound with the bound from Lemma 3, it follows that
any such partition has (1/6 − α)dn violating edges if d > ln 3/α2.

For any pair of vertices (u, v), let Mu,v indicate the event that (u, v) is an edge of G
with multiplicity two or more. Then Pr[Mu,v = 1] = O(d/n2). By Markov’s inequality,
the probability that there are d log n or more pairs (u, v) with Mu,v = 1 is o(1). Since no
edge of G has multiplicity more than d, it follows that |E(G)| − |E(Ḡ)| ≤ d2 log n = o(n).
Therefore the conclusion of the lemma carries over to Ḡ.

Lemma 5 For every K > 1 there exists a δ > 0 such that with probability 1 − o(1) all
graphs Ḡ|S with |S| ≤ δn have at most K|S| edges.

Proof Suppose some set S of cardinality s contains Ks edges (u1, v1), . . . , (uKs, vKs).
Denote by Xi,k, Yi,k the vertices matched to ui and vi, respectively, in the matching Ck.
Then

Pr[∃k : Xi,k = vi ∧ Yi,k = ui|Xp,q, Yp,q : 1 ≤ p ≤ i − 1, 1 ≤ q ≤ d] ≤ d/(n − 2s),

since for any fixed q, the variables Xp,q and Yp,q determine the neighbors of at most 2s
vertices in matching Ck. It follows that

Pr[∀i, 1 ≤ i ≤ d : ∃k : Xi,k = bi ∧ Yi,k = ai] ≤
(

d

n − 2s

)Ks

<

(

d

(1 − 2δ)n

)Ks

.

For fixed s, the set S can be chosen in
(n

s

)

ways, while the set {(u1, v1), . . . , (uKs, vKs)} can

be chosen in
((s

2)
Ks

)

ways. Therefore for some constant s0,

Pr[∃S, s0 ≤ |S| < δn : |E(G|S)| ≥ K|S|] ≤
δn
∑

s=s0

(

n

s

)(
(s
2

)

Ks

)(

d

(1 − 2δ)n

)Ks

≤
δn
∑

s=s0

(ne

s

)s
(

s2e/2

Ks

)Ks (

d

(1 − 2δ)n

)Ks

=

[

e2d

2

(

ed

2K(1 − 2δ)

)K
( s

n

)K−1
]s

= o(1).

It is easy to see that the contribution of sets S of size less than s0 is also o(1).

We define an analogous distribution H on 3-hypergraphs (hypergraphs with multiple
hyperedges where each hyperedge has cardinality 3) with n vertices, where n is a multiple
of 3. To obtain a graph H ∼ H, we choose d independent uniformly random partitions of
the vertex set V (H) into 3-hyperedges (i.e., 3-element subsets). With probability 1 − o(1),
all hyperedges of H have multiplicity one. An argument similar to the proof of Lemma 5
shows the following property:

Lemma 6 For every K > 1/2 there exists a δ > 0 such that with probability 1 − o(1) all
3-hypergraphs H|S with |S| ≤ δn have at most K|S| edges.
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Hard Instances

We show the existence of graphs that are almost 1/3-far from 3-colorable, yet for some
δ > 0 all their subgraphs of size δn are 3-colorable. Choose a multigraph G according to
the distribution G of section 3, and let Ḡ denote the graph obtained from G by ignoring
multiplicities. We show that the graph Ḡ has the desired property.

Theorem 7 For every α > 0 there exists a δ > 0 such that with probability 1 − o(1), the
graph Ḡ is (1/3−α)-far from 3-colorable, yet all subgraphs G|S with |S| < δn are 3-colorable.

Proof By Lemma 4 (with parameter α/2), every tri-partition of V (Ḡ) has at least (1/3−
α)dn/2 violating edges, so Ḡ is 1/3-far from 3-colorable.

Suppose that there exists a set S of size s < δn such that Ḡ|S is not 3-colorable. We
may assume that S is a minimal set with this property. Suppose that Ḡ|S contains a vertex
v of degree two or less (with respect to Ḡ|S). By the minimality of S, there is a 3-coloring
of the graph Ḡ|S−{v}. However, this coloring extends to a 3-coloring of Ḡ|S , by picking a
color for v that does not match any of its neighbors. It follows that any vertex in Ḡ|S must
have degree at least 3. Therefore, Ḡ|S must contain at least 3s/2 edges. By Lemma 5 with
K = 3/2, this is not possible.

Using the 3-hypergraph construction, we prove the existence of certain matrices that
will be used as the left hand side of E3LIN-2 instances.

Theorem 8 For every c > 0 there exists a δ > 0 such that for every n there exists a matrix
A ∈ {0, 1}n×cn with n columns and cn rows, such that each row has exactly three non-zero
entries, each column has exactly 3c non-zero entries, and every collection of δn rows is
linearly independent.

Proof By Lemma 6, there exists a 3c-regular 3-hypergraph H on n vertices such that any
H|S with |S| ≤ 3δn has strictly fewer than 2|S|/3 edges. Let A be the incidence matrix of
H: The columns of A correspond to vertices of H, the rows of A correspond to hyperedges
of H, and Ave = 1 if and only if v ∈ e. Suppose that there is a set R of δn rows of A (or
hyperedges of H) that are linearly dependent. We may assume that R is a minimal set with
this property. Let S ⊆ V (H) denote the set of vertices incident to hyperedges in R, so that
|S| ≤ 3δn. By minimality of R, every element of S must appear in at least two rows of R.
Therefore, R contains at least 2|S|/3 hyperedges. Contradiction.

4 Reductions

In this section, we define a notion of reducibility between constraint satisfaction problems
which preserves up to modification of constants the property that a family of problems has a
sub-linear testing algorithm, and exhibit such a reduction from (3, k)-SAT to 3-colorability
in bounded degree graphs.

For our purposes, the following notion of reduction will be appropriate:

Definition 9 (Gap-preserving local reduction) Let A, B be decision problems. We
say that a mapping ϕ() is a gap-preserving local reduction from A to B if there exist universal
constants c1, c2 > 0 such that the following properties hold:
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• If x is a YES-instance of A, then ϕ(x) is a YES-instance of B.

• If x is ε-far from being a YES-instance of A then ϕ(x) is ε/c1-far from being a YES-
instance of B.

• The answer to an oracle query to ϕ(x) can be computed by making c2 oracle queries
to x.

Since we will be dealing frequently with partially satisfiable constraint satisfaction prob-
lems, we introduce the following notation:

Definition 10 ((δ, 1 − ε)-satisfiability) A constraint satisfaction problem on m clauses is
(δ, 1− ε)-satisfiable if any subset of at most δm constraints is satisfiable, but no assignment
satisfies more than (1 − ε)m constraints.

We note three easy lemmas, which will allow us to move between various CSP formula-
tions:

Lemma 11 Let H be an arbitrary fixed set of boolean predicates on a finite number of
variables. There exists a gap-preserving local reduction from CSPs defined on H which
carries an instance f with n variables and m clauses into a 3-CNF formula with O(n + m)
variables and O(m) clauses.

Proof It is a basic fact that an arbitrary boolean predicate on a finite number of variables
can be expressed as a 3-CNF formula, possibly with introduction of a constant number of
auxiliary variables. It is easy to check that applying this transformation to each clause of
f gives a reduction which has the claimed properties.

Lemma 12 Gap-preserving local reductions are closed under composition.

Proof Clearly, if ϕ,ϕ′ are gap-preserving local reductions with distortion constants c1, c2

and c′1, c
′
2 respectively, then ϕ ◦ ϕ′ is a gap-preserving local reduction with distortion con-

stants c1c
′
1, c2c

′
2.

Lemma 13 If ϕ : A → B is a gap-preserving local reduction with distortion constants c1, c2

and f is a (δ, 1 − ε)-satisfiable CSP, then ϕ(f) is a ( δ
c2

, 1 − ε
c1

)-satisfiable CSP.

Proof Let fA be a (δ, 1 − ε)-satisfiable instance of A, and fB = ϕ(fA). That the prob-
lem fB is ε

c1
-far from satisfiable is immediate from the definition of a gap-preserving local

reduction. Now, let m be the number of clauses in problem fB and consider any subset
C ′

1, . . . , C
′
k′ of δ

c2
m of these clauses. By the locality property, these clauses are a function of

some set of clauses C1, . . . , Ck of fA with k ≤ c2
δ
c2

m = δm. Since fA is (δ, 1− ε)-satisfiable,
the clauses C1, . . . , Ck are satisfiable, and we can extend these clauses to a new, satisfiable
instance f ′

A of A by setting every clause other than C1, . . . , Ck to a satisfiable clause on
fresh variables. ϕ must send f ′

A into a satisfiable instance, and this instance contains clauses
C ′

1, . . . , C
′
k′ . In particular, the clauses C ′

1, . . . , C
′
k′ must be satisfiable.
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x1 x2

x1 x2 x3

T T T

(a)  x1 = x2 (b)  x1 V x2 V x3

Figure 1: Gadgets for Theorem 14

We now exhibit a gap-preserving local reduction ϕ() from (3, k)-SAT to 3-coloring in
bounded degree graphs. We comment that a reduction with essentially the same properties
was given by Petrank in [?]. However, Petrank’s construction does not yield a bounded
degree graph, which is essential in our context. Also, our construction is somewhat simpler
to describe and analyze.

Construction: Let f be the (3, k)-CNF formula on n variables and m clauses to be mapped.
First, we introduce a large set of nodes which are independent of the clauses of f which we
label Di, Ti, and Fi for i = 1, . . . , 2kn. The nodes Di will all assume the color corresponding
to the “dummy” color (this color is used as in the standard 3-coloring reduction), Ti to the
“true” color, and Fi to the “false” color. To assure that nodes in a given color class are
the same color, we introduce equality gadgets (Figure XYZ.a) between nodes Di and Dj

for all (i, j) ∈ E2kn where G2kn(V2kn, E2kn) is a (2kn, d)-expander as in Lemma 2 (similarly
for the classes T and F ). To assure that nodes in distinct color classes have distinct colors,
for i = 1, . . . , 2kn we introduce triangles {(Di, Ti), (Di, Fi), (Ti, Fi)}.

For each variable xi in f , we introduce 2k literal nodes x1
i , . . . , x

k
i , x

1
i , . . . , x

k
i . Literal

nodes for a particular variable and sign should be colored identically, so we introduce equal-

ity constraints between xj
i and xj′

i for all 1 ≤ i, j ≤ k with i 6= j (similarly for xj
i and xj′

i ).
We fix some one-to-one correspondence between the literal nodes and the color class nodes
for each color class (we can do so since we have 2kn nodes in each color class). Since literal
nodes should be colored only with “true” or “false”, every literal node is connected to its

corresponding node Di. Since only one of xi, xi can be true, we introduce edges (xj
i , x

j
i )

for all i, j. Finally, for each clause in f , we introduce a clause gadget (Figure XYZ.b) on
the literals appearing in the clause. We can do so in such a way that each literal node is
used in at most one clause gadget since we have k literal nodes for each literal, and each
variable appears in at most k clauses. Similarly, we can have each T node used in at most
one clause gadget, since the gadgets consume at most kn < 2kn T nodes. The clause gadget
allows any coloring of the literal nodes with “true” or “false” other than the coloring which
corresponds to an assignment where all literals are false (and the clause goes unsatisfied).

Theorem 14 The mapping ϕ is a gap-preserving local reduction from (3, k)-SAT to 3-
coloring in bounded degree graphs. In particular, if f is a (δ, 1 − ε)-satisfiable (3, k)-CNF
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formula, then the graph ϕ(f) has degree bounded by some universal constant b and the
3-coloring CSP of ϕ(f) is

(

δ
bc , 1 − ε

8

)

-satisfiable.

Proof It is clear by observation that the mapping ϕ always produces graphs bounded by
some constant degree b, and that there exists a constant c such that ϕ converts a (3, k)-
CNF formula on n variables to a graph on at most cn nodes. Furthermore, one can answer
a query for an edge of ϕ(f) making at most one query into f , namely, for the clause in
which the queried edge is a part (if any). Write n′ for the number of nodes in ϕ(f), and
m′ < bn′ ≤ bcn for the number of edges.

Suppose that the original (3, k)-CNF formula is (δ, 1 − ε)-satisfiable. Clearly any sub-
graph of ϕ(f) induced by δn edges is 3-colorable – such a subgraph contains nodes “involved”
with at most δn clause gadgets, where a node is involved with a clause gadget if it is con-
tained in the clause gadget, or is a color class node corresponding to a literal node contained
in the clause gadget. By definition, there exists a boolean assignment satisfying these δn
clauses of f . The coloring which sets all color classes to their intended colors and colors
the literal nodes “true” or “false” as in this assignment satisfies these δn > δ

bcm
′ 3-coloring

constraints.
Note that if we delete γt edges from the expander graph Gt with γ ≤ 1

2 , then there must
remain a connected component of size at least (1 − γ)t, for disconnecting a set S of nodes
with |S| ≤ 1

2 t requires at least |Γ(S)| edge deletions which, by the expansion property,
is at least |S|. Applying this to the equality gadgets between color class nodes, we see
that deletion of γ(2kn) edges leaves each color class with at least (1 − γ)(2kn) color class
nodes in a connected component with equality constraints intact. Therefore, it leaves at
least (1− 3γ)(2kn) triples {Di, Ti, Fi}i∈S such that the Di must be colored the same as Dj

for i, j ∈ S (similarly for Ti and Fi). The disconnected triples S are involved in at most
2 · 3γ(2kn) clause gadgets. Furthermore, deleting γ(2kn) edges modifies constraints about
nodes involved with at most 2 · γ(2kn) clauses of f . Summing up, deletion of γ(2kn) edges
leaves the 3-coloring construction for at least m − (2 · 3γ(2kn) + 2 · γ(2kn)) = m − 16γkn
clauses of f intact. If f is (δ, 1 − ε)-satisfiable, then no coloring of the remaining graph can
be valid if

m − 16γkn > (1 − ε)m

or, equivalently, γ < ε
16k . Changing notation so that

γ′m′ = γ(2kn)

(i.e. we have deleted a fraction γ ′ of the edges of ϕ(f) in the above discussion) and noting
that m′ > n, we get that

ε

16k
> γ =

γ′m′

2kn
>

γ′

2k

or γ′ < ε
8 .

Combining the conclusions of the previous two paragraphs, we see that the graph 3-
coloring problem ϕ(f) is

(

δ
bc , 1 − ε

8

)

-satisfiable.
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5 Explicit Constructions

In this section, we give an explicit construction of an infinite family of (δ, 1 − ε)-satisfiable
CSPs on n variables and m = O(n) clauses over a fixed boolean predicate. By applying the
gap-preserving local reductions presented in Section 4, we achieve an explicit construction
of an infinite family of (3, k)-CNF formulas on n variables and O(n) clauses with analogous
properties, and of bounded degree graphs G on n vertices and m edges such that every
subgraph induced by δm edges is 3-colorable, but any 3-coloring of G has at least εm
monochromatic edges. (In the proof of Theorem 7 we used the probabilistic method to
prove only the existence of such graphs.)

For a fixed d, we will consider 2d-ary constraints of the form

h : {0, 1}d × {0, 1}d → {0, 1}

where h(x1, . . . , xd, y1, . . . , yd) is satisfied exactly when

d
∑

i=1

xi =
d

∑

i=1

yi + 1

where we identify the boolean {0, 1} inputs with the integers 0 and 1 in the obvious way.

Let G(V,E) be an undirected multigraph. We write Γ(v) for the neighbor set of vertex
v ∈ V , Γ(v, i) for the i-th neighbor of v (where we index Γ(v) in an arbitary way), and Γ(S)
for the neighbor set of a vertex-subset S ⊆ V .

Definition 15 ((n, d)-Expander) A multigraph G is an (n, d)-expander if it is d-regular
and if, for every subset S ⊂ V with |S| ≤ 1

2 |V |, |Γ(S)| ≥ |S|.

Explicit constructions of (n, d)-expanders are known [?, ?], and we assume that we are
given an infinite family of (n, d)-expanders for some universal constant d.

Define the constraint satisfaction problem fn on dn variables and n clauses over h
as follows: Let G(V,E) be an (n, d)-expander. Begin by converting G into a directed
multigraph G′(V,E′) by replacing each undirected edge (i, j) ∈ E with two directed edges
(i, j), (j, i) ∈ E ′. Each edge (i, j) ∈ E ′ is identified with a boolean variable xi,j in fn. One
constraint h is introduced for each v ∈ V , with the predicate variables mapped to the edges
incident to v:

fn =
∧

v∈V

h(xv,Γ(v,1), . . . , xv,Γ(v,d), xΓ(v,1),v , . . . , xΓ(v,d),v)

Theorem 16 There exist constants δ, ε > 0 such that the CSP formulas fn are (δ, 1 − ε)-
satisfiable.

Proof We begin by finding ε such that no subset of more than (1 − ε)n constraints can
be satisfied. Suppose there is an assignment satisfying some subset S of constraints with
|S| > (1 − ε)n. Then the following network flow problem is solvable: Contract the vertices
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corresponding to S into a single sink vertex t, create a source vertex s with unit capacity
edges from s to every vertex in S, and interpret the remaining edges of G as unit capacity
edges (see Figure 1.b). The assignment can then be interpreted as an (s, t)-flow of weight
greater than (1− ε)n on this network. However, the cut (t, G\t) has weight at most dεn, so
this is impossible if we choose ε < 1

d+1 .

On the other hand, for δ ≤ 1
2 , any subset S of constraints with |S| = δn can be satisfied.

To see this, we define the following network flow problem: Contract the vertices of G
corresponding to the (1 − δ)n constraints in S to a sink vertex t, create a source vertex s
with unit capacity edges from s to every node in S, and interpret the remaining edges of G as
unit capacity edges (see Figure 1.b). We claim that there is a flow of weight at least δn in this
system. By the max-flow/min-cut theorem, it is enough to show that there is no (s, t)-cut
with weight less than δn (the cut (s,G\s) has weight δn). Let C be an arbitrary (s, t)-cut,
and denote by Cs, Ct the vertices of S in the partitions containing s and t respectively.
Each node in Ct incurs a cut cost of weight one due to the unit constraint edges we added
from s. By the expansion property, |Γ(Cs)| ≥ |Cs|, and each of the edges connecting Cs to
Γ(Cs) also incurs a cut cost of weight one. Summing up, |C| ≥ |Cs| + |Ct| = δn, so there
must exist an flow of weight δn in this system. Furthermore, the integrality property of
flows implies that we can assume the flow solution is (0, 1)-valued. Assigning this flow to
the edge variables gives a satisfying assignment to the constraints in S.

Corollary 17 Let ϕ3−CNF be the gap-preserving local reduction of Lemma 11, and ϕ3−Col

that of Theorem 14. The (explictly constructed) set {ϕ3−Col(ϕ3−CNF (fn))}n is an infinite
family of bounded-degree graphs Gn on mn edges such that, for universal constants δ, ε > 0,
every subgraph induced by δmn edges is 3-colorable, but every 3-coloring of Gn has at least
εmn monochromatic edges.

Proof We need only note that the 3-CNF formulas {ϕ3−CNF (fn)}n are in fact (3, k)-CNF
formulas. This is because the variable xi,j corresponding to edge (i, j) appears only in the
constraints around vertices i and j. In particular, if l is the number of clauses in a 3-CNF
representation of the predicate h, then xi,j can appear in at most 2l clauses. The claim
then follows from Lemmas 12 and 13.

6 Lower Bounds

We now prove Theorems 1 and 2.

Lower Bound for One-Sided Error Algorithms

To prove Theorem 1, we observe that any testing algorithm with one-sided error must
accept whenever the subgraph it has queried is 3-colorable. In particular, when presented
with the graph from Theorem 7, any algorithm with query complexity at most δn will
accept with probability one. However, this graph is (1/3 − α)-far from being 3-colorable,
so the algorithm cannot be a (1/3 − α)-tester for 3-colorability.

12



Lower Bounds for Two-Sided Error Algorithms

Our distinguishing instances for two-sided error algorithm are based on the matrix A from
Theorem 8. We consider the following two distributions on instances of E3LIN-2 with n
variables, cn equations, and each variable appearing in exactly 3c equations:

1. Distribution Dfar consists of instances Ax = b, where b ∈ {0, 1}cn is chosen uniformly
at random.

2. Distribution Dsat consists of instances Ax = Az, where z ∈ {0, 1}n is chosen uniformly
at random.

By construction, every instance in Dsat is satisfiable. On the other hand, instances in Dfar

are far from satisfiable:

Lemma 18 For every α > 0, there is a c such that, with probability 1 − o(1), an instance
sampled from Dfar is (1/2 − α)-far from satisfiable.

Proof For a fixed assignment x, the vector Ax − b is uniformly distributed in {0, 1}cn.
By a Chernoff bound, with probability 1 − exp(−α2cn), Ax − b has Hamming weight at
least (1/2 − α)cn. A union bound over all 2n possible assignments for x yields the desired
result, as long as c > ln 2/α2.

Lemma 19 For every α > 0 there are constants c and δ > 0 such that every algorithm that
distinguishes satisfiable instances of E3LIN-2 with n variables and at most c occurrences
from instances that are (1/2 − α)-far from satisfiable must have query complexity at least
δn.

Proof Consider an instance Ax = b of cn E3LIN-2 equations. Obtain a subinstance
A′x′ = b′ by choosing any subset of δn equations. By Theorem 8, the rows of A′ are linearly
independent. Therefore, for a uniformly random z ′ ∈ {0, 1}n, A′z′ is uniformly distributed
in {0, 1}δn. It follows that the instances A′x′ = b′ and A′x′ = A′z′ are generated with the
same probability, or PrDfar

[A′x′ = b′] = PrDsat [A
′x′ = b′].

Let D be any algorithm of query complexity less than δn. If D can decide whether a
given instance Ax = b is satisfiable with any constant probability, then D has an advantage
at distinguishing instances picked from Dsat (that are always satisfiable) from instances
picked from Dfar (that are (1/2 − α)-far from satisfiable with high probability). However,
the queries of D only reveal a subinstance A′x′ = b′ of at most δn equations, and the two
distributions are statistically indistinguishable on such a subinstance.

The canonical reduction from E3LIN-2 to E3SAT is a gap-preserving local reduction
with c1 = c2 = 4. This observation immediately yields the following lower bound for
E3SAT:

Lemma 20 For every α > 0 there are constants c and δ > 0 such that every algorithm
that distinguishes satisfiable instances of E3SAT with n variables and at most c occurrences
from instances that are (1/8 − α)-far from satisfiable must have query complexity at least
δn.

The proof of Theorem 2 now follows from the hardness result of Lemma 20 and from
the reduction from 3SAT to 3-coloring described in Section 4.
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7 Approximation Algorithms

The following theorem follows directly from Lemmas 19 and 20.

Theorem 21 For every ε > 0, every (1/2 + ε)-approximate algorithm for Max E3LIN-2,
every (7/8+ε)-approximate algorithm for Max E3SAT has query complexity Ω(n+m), where
n is the number of variables and m is the number of equations/clauses. The theorem applies
to the special case where every variable occurs in O(1) equations/clauses and m = O(n).

Indeed, Lemma 19 is the unconditional version for sub-linear time algorithms of the
hardness of approximation proved in [?] for Max E3LIN-2. H̊astad [?] then uses locally
computable reductions to show that the hardness of Max E3LIN-2 implies hardness of
approximation results for other problems. Since the reductions used in [?] preserve the
existence of sub-linear time algorithms (for proper instance representation), we also have
unconditional inapproximability results for other problems, with respect to sublinear time
algorithms.

The standard FGLSS reduction from Max E3LIN-2 to Vertex Cover is such that if every
variable occurs in O(1) equations in the E3LIN-2 instance, then the graph produced by the
reduction has constant degree. Therefore, the following result also follows from Lemma 19
(see [?] for a calculation of the inapproximability factor).

Theorem 22 For every ε > 0, there are constants d, δ such that every (7/6+ε)-approximate
algorithm for Minimum Vertex Cover in graphs of degree ≤ δ has query complexity at least
δn.

Similarly, we have a linear query complexity lower bound for every (21/22+ε)-approximate
algorithm for Max 2SAT, even for the restricted case where every variable occurs in O(1)
clauses.

Regarding Max CUT, the reduction used in [?] does not create a bounded-degree graph,
even if in the original E3LIN-2 instance every variable occurred in a bounded number
of equations. However the randomization reduction in [?] can be used to show that every
(16/17+ε)-approximate algorithm for Max CUT in bounded-degree graphs has linear query
complexity.

8 Conclusions

We proved a linear query complexity lower bound for the problem of testing 3-colorability
in bounded-degree graphs, and also linear lower bounds for other property testing and
approximation problems.

Our results are the first linear lower bounds for property testing in the bounded-degree
model for natural graph properties.

It is still open whether it is possible to distinguish 3-colorable graphs from graphs that
are, say, 1/4-far from being 3-colorable with o(n) queries in the bounded-degree model; we
have shown it is impossible for one-sided error algorithms, but the question is still open for
two-sided error algorithms.
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We observed that several unconditional inapproximability results follow as corollaries
of our main construction. The results for Vertex Cover, Max CUT and Max 2SAT are
not tight, and it would be interesting to strengthen our bounds. We mention that one can
modify the bipartiteness lower bound argument in [?] to prove that distinguishing bipartite
graphs from graph that are (1/2 − α)-far from being bipartite requires Ω(

√
n) queries,

which in turn implies that Max CUT cannot be approximated within (1/2 + ε) with o(
√

n)
queries, and, by reductions, that Max E2SAT (and, for a stronger reason, Max SAT) cannot
be approximated within (3/4+ε) and Vertex Cover cannot be approximated within (3/2−ε)
with o(

√
n) queries. It remains an open question to prove such stronger lower bounds for

algorithms that make o(n) queries.
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