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Abstract— We consider the problem of positioning data
collecting base stations in a sensor network. We show that
in general, the choice of positions has a marked influence
on the data rate, or equivalently, the power efficiency,
of the network. In our model, which is partly motivated
by an experimental environmental monitoring system, the
optimum data rate for a fixed layout of base stations
can be found by a maximum flow algorithm. Finding
the optimum layout of base stations, however, turns out
to be an NP-complete problem, even in the special case
of homogeneous networks. Our analysis of the optimum
layout for the special case of the regular grid shows that
all layouts that meet certain constraints are equally good.
We also consider two classes of random graphs, chosen
to model networks that might be realistically encountered,
and empirically evaluate the performance of several base
station positioning algorithms on instances of these classes.
In comparison to manually choosing positions along the
periphery of the network or randomly choosing them
within the network, the algorithms tested find positions
which significantly improve the data rate and power
efficiency of the network.

Index Terms— Sensor networks, optimization, combina-
torics, graph theory

I. INTRODUCTION

Recent technological advances have allowed the devel-
opment of relatively inexpensive, wireless micro sensors.
Hundreds or thousands of these tiny sensors may be
deployed in a network that monitors the environment
and collects data about it. One of the chief constraints
on the network is power—each sensor is equipped with
only a small battery and must use its power efficiently
to prolong the life of the network. Relative to the
power required for computing, a large amount of power
is required for transmitting messages to other sensors.
Some types of sensor networks also contains a few
base stations with a relatively unlimited power supply.
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The base stations collect data from the sensors and
communicate with a central authority.

Proposed applications for sensor networks cover a
wide range of areas, including environmental observa-
tion, health care, and security. Mainwaring et al. [1] de-
scribe an experimental, real-world application in habitat
monitoring. Their research exposes the requirements and
constraints of certain types of sensor network systems
which partially motivate our work. In habitat or environ-
mental monitoring, it may be important not to disrupt the
habitat during the period of observation, both in order to
minimize environmental damage and to be able to make
accurate observations. Therefore once the network is in
place, it can be assumed to be static. The network should
run for as long as possible on minimal power since the
means to recharge sensor batteries from power sources
in the environment may be limited. Scientists may also
prefer not to do data aggregation in order to be able to
study the logged data at a later point in time.

Our general model of the sensor network is based
on these requirements. The network is assumed to be
static, and each sensor uses power at some rate, which
can depend on the sensor, to transmit messages to other
sensors within some range, which can also depend on the
sensor. All the sensors recharge from a power source in
the environment at the same fixed rate. Sensors produce
and transmit their own messages, and they also forward
other sensors’ messages. The rate at which a sensor
produces messages may be specified relative to other
sensors in the network. Every sensor’s messages must
be routed to some base station, where the data can be
processed.

There are several power metrics that one can consider
optimizing across the network, which may in turn lead
to varying routing strategies. We consider the problem
of maximizing the rate of production of data across the
network while ensuring the survival of the network, that
is, while respecting the power constraints of the sensors.
We assume that the layout of the base stations can be
chosen to optimize this rate by a centralized algorithm



which is given complete information about the locations
of sensors in the network. While this approach may be
impractical for purposes of implementation, we view it
as an analytical tool for understanding how the layout of
the base stations can affect the data production and flow
in the sensor network.

In cases where the data rate is a fixed requirement of
the sensor network, the inherent problem is to minimize
the power required to provide a specific data rate. This
is essentially equivalent to the problem we consider. For
ease of analysis, we simply look at it from the inverse
perspective: given a fixed recharging rate, how can
we maximize the data rate? The experimental instance
described in [1] uses one base station, located at a nearby
ranger station, that collects data from the sensor network
and relays it. If it is possible to provide power to a
couple of more strategically placed base stations, our
work suggests that the network in [1] might be able to
generate a much higher data rate (or equivalently, last
much longer).

Our results show that in general the choice of layout
for base stations in a sensor network has a marked
influence on the data rate, or equivalently the power effi-
ciency, of the network. Given the means to provide power
to base stations at sensor positions, in many networks
one can achieve rates much better than those achieved
by manually choosing positions along the periphery
of the network or randomly choosing them within the
network. Our empirical evidence indicates that choosing
positions with, for example, a local search algorithm, can
significantly improve the data rate and power efficiency
of the network.

For each layout of a fixed number of base stations in
the network, there is a maximum rate of data production
that does not violate the power constraints of the sensors.
That is, for each layout of base stations, there is a
maximum feasible rate. To simplify the analysis of the
problem, we assume that the possible locations of the
base stations are exactly the locations of the sensors.
The objective is to find a layout for the base stations
which maximizes the feasible rate. We call this problem
the base station positioning, or BSP, problem.

In order to compare layouts of base stations, it is nec-
essary to know the maximum feasible rates permitted by
each layout. Therefore we first focus on the problem of
computing the maximum feasible rate for a fixed layout
of base stations. We show that this problem reduces to
a max-flow min-cut problem on a flow network. Our
analysis gives a natural upper bound on the rate and
then shows that this upper bound is actually feasible. In
fact, in our experiments, we use implementations of a
max-flow algorithm to compute it efficiently.

Although this problem turns out to have an efficiently
computable solution, the larger problem of choosing
the optimum layout of base stations turns out to be
NP-complete. In fact, the BSP problem is NP-complete
even when the sensor networks are restricted to be
homogeneous, that is, restricted so that every sensor has
the same range of transmission, power usage, and rate of
message production. We give a reduction from the NP-
complete dominating set problem on unit disk graphs.

Homogeneous sensor networks can be represented by
geometric (or unit disk) graphs. We consider the BSP
problem on several types of geometric graphs. In the
case of the regular grid, we are able to give an analysis
of the optimum layout of base stations. In fact, we show
that all layouts that meets certain conditions are equally
good. The other two types of geometric graphs that we
consider are randomized and designed to approximate
irregular sensor networks that might occur in the real
world.

We turn to several heuristic algorithms for solving the
BSP problem on these types of geometric graphs. None
of the efficient algorithms tested offers a guarantee on its
performance, but in our experiments they perform well.
The exhaustive search algorithm is guaranteed to give
an optimum solution, and therefore is useful for com-
parison, but is impractical on examples with more than
a couple of base stations. The local search hill-climbing
algorithm is more practical and performs very well—it
found optimum solutions for every case on which we
also ran the exhaustive search. The greedy algorithm is
more efficient, but does not generally perform as well.

In Figure 1 we give an example of a solution found
by one of the algorithms tested. The graph is the largest
connected component of a geometric graph on uniformly
distributed vertices. The large white vertices are the
base stations, as positioned by the algorithm. The gray
vertices form a vertex separator for the base stations and
constitute the “bottleneck” for the rate of data production
and flow.

The rest of the paper is organized as follows: In
the next section, we briefly summarize previous related
research and compare it with the work in this paper.
In Section III, we show how to compute the maximum
possible rate for a fixed layout of base stations by
reduction to maximum flow. In that section we also give
the NP-completeness proof for the base station posi-
tioning (BSP) problem. We describe several restricted
classes of sensor networks, which can be represented by
geometric graphs, and justify our interest in these classes
in Section IV. A detailed analysis of the optimum layout
in the special case of the regular grid follows in Section
V. We discuss our selection of heuristic BSP algorithms



Fig. 1. A uniform random sensor network on 300 nodes with four
base stations. The large white vertices are the base stations. The
smaller gray vertices constitute the “bottleneck”.

along with their relative merits and disadvantages in
Section VI. In Section VII, we chart and evaluate the
empirical performance of these algorithms. Finally, our
concluding remarks and possible future directions are
offered in Section VIII.

II. RELATED WORK

One aspect of the base station positioning problem is
computing the maximum rate for a fixed layout of the
base stations. Chang and Tassiulas [2], [3] consider a
more general version of this problem. They formulate
a routing multi-commodity flow problem with node
capacities as a linear program, where the objective is to
maximize the lifetime of the system. In [2], the authors
note that if the transmitted power level and node capacity
at each node are fixed, then the problem is equiva-
lent to a maximum flow problem with arc capacities,
although they do not explicitly give the analysis. We
independently came to the same conclusion and give the
maximum flow formulation in this paper. An advantage
of explicitly analyzing this simpler version of the prob-
lem, which is all that is needed for our model, is the
simple description of the optimum solution afforded by
the max-flow min-cut theorem. Moreover, existing fast
implementations of maximum flow algorithms (e.g., [4])
can be used to implement the base station positioning
algorithms.

Power-efficient distribution and collection of data in
sensor networks has also been studied for other net-

work models and optimization metrics. Florens and
McEliece [5], [6] consider the effect of interference
on inter-sensor communication and show how to obtain
schedules with near-optimum makespan for data collec-
tion with a single base station. Their model, however,
does not explicitly address power consumption. Other
approaches include minimizing packet length through
data compression [7], selectively shutting off sections
of the network while maintaining connectivity [8], ex-
ploiting the clustered structure of networks [9], [10],
and varying the routing strategy with time [11]. Another
variation is online routing, where the rate of transmis-
sion and the message sequence may not be known in
advance [12], [13].

The base station positioning problem has also been
studied in the context of cellular (UMTS) networks. Ga-
lota et al. [14] exhibit a polynomial time approximation
scheme that maximizes the overall utility of base station
positioning for a fairly comprehensive model, which
includes parameters such as construction costs, operat-
ing costs, customer satisfaction and noise interference.
The proposed algorithm is significant from a theoretical
standpoint, but would be difficult to implement. We
also note that cellular network models are generally
different from our network sensor model, since in such
networks, nodes are not capable of forwarding other
nodes’ messages.

Another type of network closely related to our model
is the packet radio network. In these networks, the power
used by a vertex to transmit a message at distance d is
typically modeled as cd−α, where c and α are parameters
of the model. One problem is to assign transmission
ranges to nodes so as to minimize total power, under
the constraint that the network is strongly connected.
Kirousis et al. [15] show algorithms and lower bounds
for this problem when the nodes lie either on a line or in
three-dimensional space. Clementi et al. [16] derive an
approximation algorithm for the planar version, though
it is apparently not known if an efficiently computable
exact solution is possible for this case. We are not aware,
however, of any work that considers the effect of base
stations on power consumption in these networks.

III. COMPUTING THE RATE OF TRANSMISSION

In our model, each sensor has the following charac-
teristics:

1) Position (xv , yv) in the unit square [0, 1] × [0, 1].
2) Reachability radius rv ≥ 0: Sensor v can send

messages to sensor w if the Euclidean distance
between (xv, yv) and (xw, yw) is at most rv.



3) Relative importance iv > 0: The rate at which
sensor v produces messages should be proportional
to iv .

4) Capacity cv > 0: This is the number of messages
that the sensor can send in unit time without
violating its power constraints.

The connectivity graph G of the sensor network is the
digraph on vertex set V = {1, . . . , n}, where (v, w) is
an edge if w is within the reachability radius of v.

For a fixed collection of base stations B ⊆ V , a flow
fv from vertex v is an assignment of nonnegative weights
wp to all directed paths p that start at v and end at some
base station b ∈ B. Given a collection of flows F and
an vertex v of G, we use f(v) to denote the combined
weight of the flows passing through v, i.e.,

f(v) =
∑

f∈F

∑

p∈f :v∈p

wp.

Similarly, for an edge e, let f(e) denote the combined
weight of the flows going through e, in the direction of
e.

A routing strategy of rate ρ is a collection of flows
f1, . . . , fn that satisfy the following constraints:

1) Importance constraint: For each vertex v 6∈ B,∑
p∈fv

wp = ρiv .
2) Capacity constraint: For each vertex v 6∈ B, the

total flow into v does not exceed the capacity of
v, i.e., f(v) ≤ cv .

We are interested in the maximum rate ρ∗ for which
there exist flows satisfying these constraints. To obtain
a handle on this value, it is useful to introduce another
notion. A separator is an arbitrary subset of V −B; we
say a vertex v is separated by S if every path from v
to B intersects S. Let L(S) denote the set of vertices
separated by S. In particular, S ⊆ L(S).

For any separator S, we observe that the flow origi-
nating from L(S) cannot exceed the total capacity of S,
from where we obtain the following upper bound on any
achievable rate:

ρ ≤
∑

v∈S cv∑
v∈L(S) iv

.

We show that this upper bound is achievable:

Theorem 1: There exists a separator S such that the
maximum rate ρ∗ equals

∑
v∈S

cv∑
v∈L(S) iv

.

Proof: We will derive this statement by reduction
from the max-flow min-cut theorem for directed flow
networks with arc capacities. We construct an instance
G′(ρ) = (V ′, E′) of a digraph with arc capacities as
follows:

1) The vertex set V ′ consists of: a source node s;
a sink node t; for each vertex (sensor) v ∈ V , a
“receiver node” sv and a “sender node” tv.

2) (Type 1 arcs) For each vertex v ∈ V , G′ contains
an arc s → sv of capacity ρiv .

3) (Type 2 arcs) For each base station b, G′ contains
an arc sb → tb of infinite capacity.

4) (Type 3 arcs) For each vertex v ∈ V , G′ contains
an arc sv → tv of capacity cv .

5) (Type 4 arcs) For each edge v → w of G, G′

contains an arc tv → sw of infinite capacity.
We note that all finite (s, t) cuts in G′ have a special

form: Any such cut is completely determined by a
separator S, and consists of two types of arcs: (1) Type
1 arcs from s to vertices in V − L(S) and (2) Type 3
arcs determined by vertices in S.

We now consider what happens to the minimum (s, t)
cut in G′(ρ) as we vary ρ continuously. When ρ = 0,
the cut (s, V ′ − s) is a minimum (s, t) cut of G′ with
value 0. By continuity, there must exist a largest value
ρ∗ ∈ [0,∞) for which (s, V ′ − s) is a minimum (s, t)
cut. It follows that, at ρ = ρ∗, a new minimum (s, t)
cut (S′, V ′ − S′) appears in the network. Let S be the
separator in G′ that determines this cut.

At ρ = ρ∗, the value of the cut (s, V ′ − s) is∑
v∈V ρ∗iv . On the other hand, the value of the cut

(S′, V ′ − S′) is
∑

v 6∈L(S) ρ∗iv +
∑

v∈S cv . Since both
of these cuts are minimum, they must be equal, from
where:

ρ∗ =

∑
v∈S cv∑

v∈L(S) iv
.

It remains to show that ρ∗ can be interpreted as the rate
of some routing strategy in G. Let fst denote a maximum
(s, t) flow in G′(ρ∗). Since (s, V ′ − s) is a minimum
(s, t) cut in G′(ρ∗), fst must saturate all of the arcs of
type 1. For each v ∈ V , we now define f ′

v as the portion
of the flow fst that uses edge (s, sv) ∈ E′. We obtain
the flow fv in G by contracting type 3 arcs and ignoring
type 1 and type 2 edges in f ′

v. It is not difficult to check
that the flows {fv} determine a routing strategy of rate
ρ∗ for G.

The proof of Theorem 1 suggests a natural algorithm
for finding the flows (message paths) that achieve opti-
mal rate for a fixed B: Reduce the instance to a network
flow problem, as in the proof, and apply a maximum flow
finding algorithm to the reduced instance. The maximum
flow problem has been studied extensively, and admits
a host of algorithms that do not only guarantee good
worst-case behavior but also perform well in practice.
For our empirical evaluation we used an implementation
of the Goldberg-Tarjan algorithm [17] by Cherkassky
and Goldberg [4].



In what follows, we will assume that cv = 1, iv = 1,
and rv = r for all v. In the sensor network world, this
essentially means that all sensors are alike. The condition
cv = 1 means that all sensors renew their power at the
same rate; iv = 1 means that they all have the same
importance; rv = r means that their transmission radius
(which is some function of their transmission power) is
the same. In particular, in this case the connectivity graph
becomes undirected.

As we vary the positions of the base stations, the
problem of finding a base station layout that achieves the
best possible flow becomes hard, even in the restricted
case cv = iv = 1, rv = r. More formally, we consider
the following decision problem, which we call BSP (for
base station positioning):

INPUT: A collection of vertex position pairs
(x1, y1), . . . , (xn, yn) ∈ [0, 1] × [0, 1], a number of
base stations 0 ≤ b ≤ n, a rate ρ ∈ [0, 1]
PROBLEM: Decide whether there exists a layout of b
base stations on top of the vertices that admits a routing
strategy of rate at least ρ

Claim 1: The BSP problem is NP-complete.

Proof: BSP is easily seen to be in NP, as the
optimum base station positioning can be certified to
achieve rate ≥ ρ by performing a maximum flow compu-
tation, using the reduction from the proof of Theorem 1.
To show NP-hardness, we exhibit a reduction from
dominating set on unit disk graphs. The NP-hardness
of this problem is shown in [18].

We observe that a fixed layout of base stations B
admits a routing strategy of rate 1 if and only if it is
a dominating set for the connectivity graph: If B is a
dominating set, then each vertex can send a flow of value
1 directly to an arbitrary neighbor in B. Conversely,
suppose that B admits a flow of rate 1. Now consider
the separator S consisting of all neighbors of B (except
for the vertices in B itself). By our upper bound on the
rate, we must have 1 ≤ |S|/|L(S)|, from where

|V − B| = |L(S)| ≤ |S| = |neighbors of B|.

Therefore, every vertex in V −B is a neighbor of B, so
B is a dominating set. It follows that BSP with ρ = 1
is equivalent to dominating set on unit disk graphs.

IV. CLASSES OF SENSOR NETWORKS

Given the apparent difficulty of solving the BSP prob-
lem exactly on general sensor networks, we restrict our
attention to several classes of homogeneous networks. A
homogeneous network is one in which all sensors are
essentially the same, that is, cv = iv = 1 and rv = r

for all sensors v. Such networks can be represented by
geometric graphs.

A graph G = (V,E) is called geometric with con-
nectivity r if there is an edge e = (u, v) ∈ E if and
only if dist(u, v) ≤ r. That is, there is an edge between
two vertices if and only if the corresponding sensors
are within each other’s transmission radius. We consider
three classes of geometric graphs: the regular grid, the
uniform random graph, and the preferential attachment
graph. All graphs are contained in the [0, 1]×[0, 1] square
of the Euclidean plane, which we call the unit square.

In the regular grid, the vertices are spaced evenly at
regular intervals in the unit square. The interval distances
in the x and y directions are equal and depend only
on the number of vertices. The grid models a type
of sensor network that measures some characteristic of
the environment at regular intervals of distance. Such a
network might be used, for example, in agriculture.

The uniform random graph is constructed by dropping
points uniformly at random in the unit square. This graph
is designed to imitate the types of networks that might
be formed by a plane dropping sensors at random over a
small area. These types of sensor networks may be con-
structed in environments which are not easily accessible
or in which so many sensors are being deployed that it
is not feasible to position them individually.

The last class of geometric graphs we consider is the
preferential attachment graph. The construction of the
preferential attachment graph depends on a parameter
p, where 0 ≤ p ≤ 1. The vertices are positioned
sequentially as follows: with probability p, a vertex v
is dropped uniformly at random in the unit square; with
probability 1 − p, v is positioned uniformly at random
in the disc of radius r about a vertex w, which is
chosen uniformly at random from those vertices already
positioned. (Note that if the disc of radius r about w
is not contained within the unit square, v is positioned
uniformly at random in the intersection of this disc with
the unit square.) This class of graphs tends to have higher
clustering than the uniform random graph, depending on
the value of p, and models types of interaction that occur
in more complex networks. It is inspired by proportional
attachment models of the World Wide Web [19], [20],
[21].

In the case of the regular grid, we are able to give
a theoretical analysis of the optimum layout of base
stations, which is confirmed by the results of the exper-
iments. Instances of the other two classes of graphs are
used to further test and evaluate the base station position-
ing algorithms. The algorithms we use are designed to
work on connected graphs. Therefore, we filter instances
of uniform random graphs and preferential attachment



graphs so that only the largest connected component
remains.

V. ANALYSIS FOR THE GRID

For the grid, it is convenient to rescale the bounding
box by

√
n − 1 so that the geometric distance between

consecutive points becomes 1.
We call a set W ⊆ V l-centered if the distance

between any v ∈ W and the border of the grid is at
least l. We call W l-dispersed if the distance between
any pair of distinct v, w ∈ W is at least l.

Theorem 2: Assume b = |B| = o(
√

n/r). Let d =
r(
√

b + k), where k is a constant that does not depend
on n, r, or b. All r-centered, d-dispersed base station
layouts achieve the maximum rate. Moreover, the value
of this rate is (πr2 − O(r))b/(n − b).

For the analysis, it will be natural to approximate
separators by continuous two-dimensional subsets of the
plane, which we will call “planar separators”, as follows:
We imagine replacing each vertex v in the separator by
a unit square centered at (xv, yv) with edges parallel
to the coordinate axes. The number of vertices in the
graph-theoretic separator then equals the area of its
corresponding planar separator.

More generally, a planar separator can be an arbitrary
(measurable) set of points in the

√
n×√

n grid. We say
that planar separator S separates points p and q in the
plane if every path from p to q contains a section of
length at least r within S. Intuitively, this means that a
“useful” planar separator must have “thickness” at least
r. For a single vertex v ∈ V , we say that planar separator
S separates v if S separates v from all the base stations.

In general, the surface area of a planar separator may
be smaller than the number of vertices in it. However, in
what follows, the difference between the surface area and
the number of vertices in a planar separator will be small
enough to have a negligible effect on our computations,
and ultimately no effect on the analysis.

Given a convex polygon P in the plane, the l-envelope
of P (Figure 2(a)), which we denote by envl(P ). is the
curve obtained by applying the following transformation
to P :

1) Translate every line segment e of P by a vector of
length l perpendicular to e, pointing outward from
P ;

2) Connect the translated segments by circular arcs
of radius l centered at the vertices of P .

This definition can be extended, by continuity, to
arbitrary closed convex curves C in the plane since any
such curve C can be approximated arbitrarily closely

P

envl(P )

beltl(P ) ext(S)

int(S)

∂int(S)

S
∂ext(S)

Fig. 2. (a) The envelope and belt of a polygon; (b) The interior,
exterior, and boundary of a separator.

by a polygon. We define the l-belt of C as the sec-
tion of the plane between C and the l-envelope of C:
beltl(C) = ∪l′∈[0,l]envl′(C). It is not difficult to see that
length(envl(C)) = length(C)+2πl and area(beltl(C)) =
l · length(C) + πl2.

Let S be a separator that is contractible to a simple
closed curve. By the Jordan curve theorem [22], S
partitions the plane into three regions (Figure 2(b)): A
bounded interior int(S), an unbounded exterior ext(S),
and S itself. We write ∂int(S) for the boundary between
S and int(S), and ∂ext(S) for the boundary between S
and ext(S). Note that the r-belt of any closed convex
curve separates int(S) from ext(S).

Lemma 1: Among all separators in S of area at most
A that contract to a simple closed curve and separate
int(S) from ext(S), the r-belt of the circle of radius
A

2πr
− r

2 maximizes the area of int(S).

Proof: Let S0 denote the separator that maximizes
area(int(S)). It is not difficult to see that S0 must be
the r-belt of some closed convex curve: Convexifying
S0 may only increase area(int(S)), and among all con-
vex curves S with fixed ∂int(S), the r-belt minimizes
area(S).

Let P = length(∂int(S0)). Then area(S0) = rP +πr2,
so the problem of maximizing area(int(S)) for fixed
area(S) is equivalent to the problem of maximizing
area(int(S)) given P = length(∂int(S)). The celebrated
isoperimetric theorem says that the optimum choice for
S is the circle of radius P/2π.

Proof of Theorem 2: Let S(v) denote the ball of
radius r centered at v ∈ V , excluding v itself, and S0 =
∪v∈BS(v). We will show that if B is r-centered and d-
dispersed, then the ratio |S|/|L(S)| is minimized when
S = S0. By Theorem 1, it follows that the maximum
achievable rate is

ρ∗ =
|S0|

|L(S0)|
=

b|S(b0)|
n − b

=
b(area(S(b0)) − O(r))

n − b
=

b(πr2 − O(r))

n − b
,

where b0 is an arbitrary base station.



We now relax our definition of “separator” to allow
for arbitrary planar separator, and show that the planar
version of S0 minimizes the ratio area(S)/area(L(S)).

To reach a contradiction, suppose there exists a
planar separator S such that area(S)/area(L(S)) <
area(S0)/area(L(S0)). Without loss of generality, we
may assume that each connected component of S sepa-
rates two regions of the plane and contracts to either (1)
a simple closed curve or (2) a simple open curve whose
endpoints lie on the boundary of the grid. Moreover, the
interiors of the type (1) curves are pairwise disjoint. This
can be seen by case analysis over the possibilities for the
topology of S, using the dispersion property of B.

Now consider an arbitrary component S ′ of S of type
(1). The argument for type (2) components is similar.
Let B′ = B ∩ int(S ′), and b′ = |B′|. We will show that
the optimality of S implies b′ = 1, so that S ′ = S(b0),
where b0 is the unique element of B ′.

First, suppose that b′ = 0, so that int(S ′) contains
no base stations. We show that getting rid of this part
of the separator only improves, i.e. decreases, the ratio
area(S)/area(L(S)). In this case int(S ′) ∪ S′ ⊆ L(S).
Since S is optimal,

area(S)

area(L(S))
≤ area(S − S′)

area(L(S) − (int(S ′) ∪ S′))

=
area(S) − area(S ′)

area(L(S)) − area(int(S ′) ∪ S′)
.

This condition holds if and only if
area(S)/area(L(S)) ≥ area(S ′)/area(int(S ′) ∪ S′),
so that

πr2b

n − b
=

area(S0)

area(L(S0))

≥ area(S)

area(L(S))
≥ area(S′)

area(int(S ′) ∪ S′)
.

By Lemma 1, for fixed area(S ′), the right-hand side is
minimized when S ′ is the r-belt of a circle. Let R denote
the radius of this circle, so that R + r ≤ √

n/2. Then

πr2b

n − b
≥ 2πRr + πr2

π(R + r)2
≥ r

R + r
≥ r√

n/2
,

from where b ≥ n/(1 + πr
√

n/2), contradicting the
assumption b = o(

√
n/r).

Now suppose that b′ ≥ 2. In this case, int(S ′) ∩
L(S) = ∅. We will show that area(S ′) > πr2b′ =
area(∪v∈B′S(v)), contradicting the optimality of S.

Let C denote the convex hull of B ′, and S′′ be the
r-belt of C (Figure 3(a)). The set S ′′ is the minimum
area separator such that B ′ ⊆ int(S′′), and in particular

S
′′

S
′

C
′

S
′′

Fig. 3. The sets C′, S′ and S′′. The black dots indicate the
base stations within int(S′), and the shaded areas around them are
neighborhoods of radius l/2.

area(S′′) ≤ area(S′). Finally, let C ′ denote the d/2-
envelope of C , so that

length(C ′) = length(C) + πd

= area(S′′)/r + π(d − r)

≤ area(S′)/r + π(d − r).

By the isoperimetric theorem, area(int(C ′)) ≤
length(C ′)2/4π, so that

4πarea(int(C ′)) ≤ (area(S ′)/r + π(d − r))2.

Now consider the collection of disks centered at the
points of B′ of radius d/2 each (Figure 3(b)). Since B is
d-dispersed, these disks are pairwise disjoint. Moreover,
their union is completely covered by int(C ′), so that
area(int(C ′)) ≥ π(d/2)2b′, and

πd
√

b′ ≤ area(S′)/r + π(d − r).

By the optimality of S ′, area(S′) ≤ πr2b′, so that

πd
√

b′ ≤ πrb′ + π(d − r)

from where d ≤ r(
√

b′ + 1) ≤ r(
√

b + 1), which
contradicts the assumption d = r(

√
b + k).

An interesting case not covered by the analysis occurs
when b = Ω(

√
n/r). One suspects that, even past the

point b =
√

n/r, a flow of (πr2−O(r))b/(n−b) remains
feasible, but is not necessarily achieved by an arbitrary
d-dispersed base station layout.

VI. POSITIONING THE BASE STATIONS

Our analysis provides a way to evaluate different
strategies for laying out base stations on an arbitrary
network. In many current applications the positions of
the base stations are usually limited by the positions of
power sources. Often these sources are on the periphery
of the network. However, in some situations it may be
worth adding a power source at a different location to
improve the power requirements at the sensors.

Ideally, one would like to know what is the best
layout of b base stations in the network. This is the
BSP problem, defined in Section III, where we show



that for a variable number of base stations, it is NP-
hard. The existence of a polynomial time approximation
scheme for this problem is still an open question. To the
best of our knowledge, it has not been studied before,
and approximation algorithms with any guarantee on the
approximation factor are not known.

We designed and tested several heuristic algorithms
for finding good layouts for the base stations. All of
these algorithms use as a black box the procedure for
computing the rate achieved by a particular configura-
tion of base stations. We compare their performance to
choosing the positions at random, as well as to a manual
choice of base station positions on the periphery.

A. Greedy Algorithm

The greedy algorithm picks the position of base
stations one-by-one in a greedy manner. That is, it
consecutively chooses the position of each base station
to improve the rate as much as possible, while keeping
the previous base stations fixed. The greedy algorithm is
deterministic and runs the black box procedure O(bn)
times. When there is no choice of position for the
next base station that improves the rate, we restrict the
algorithm to choosing a position in L(S), the set of
sensors on the side of the vertex separator opposite
the base stations already positioned. This restriction
becomes important in situations where L(S) has two
or more disconnected components, since without it, the
greedy algorithm might keep placing base stations on
one side of the vertex separator, missing any future
chance to improve the rate. Even with the restriction,
this situation is a weak point of the greedy algorithm.
A better algorithm needs the freedom to change the
previously chosen positions of the base stations.

B. Local Search Algorithm

The local search algorithm starts with a random con-
figuration of the base stations. Then it checks if the rate
can be improved by moving any of the base stations
to a neighboring node. If possible, it makes such a
move and repeats. When no improvement is possible, the
algorithm has reached a local maximum, at which point
it records the current rate. The algorithm restarts from
a different random configuration a linear (in the number
of nodes) number of times, and it outputs the highest
local maximum it encounters. The number of steps that
the local search can take is bounded by the number of
different discrete values for the rate that we allow, which
is typically not very large (for example it’s 1000 when
we consider the rate up to 3 significant digits).

It is conceivable that one may be able to improve the
local search algorithm by allowing it to make moves
that decrease the rate. This is commonly known as a
Metropolis algorithm. The difficulty in implementing
this algorithm is choosing good transition probabilities.
The transition probabilities should simultaneously give
enough weight to high-rate layouts and guarantee fast
mixing time for the random walk performed by the
algorithm in the space of possible layouts.

VII. EMPIRICAL RESULTS AND OBSERVATIONS

We tested our algorithms on the three models of
graphs described in Section IV: The regular grid, a
uniform random graph, and a random graph with pref-
erential attachment. We set iv = 1, for all v, so that all
sensors need to generate data at the same rate: once per
time step. We compare the amount of power that sensors
require per time step for the best layouts of base stations
found by each algorithm. Minimizing the power usage
for a fixed data rate is the same as maximizing the data
rate for fixed power, so we could equivalently compare
the maximum data rates achieved for different layouts.

We ran each algorithm on a 10 × 10 grid with radius
2.2, a uniform random graph with 300 vertices and radius
0.1, and on a preferential attachment graph with 300
vertices, radius 0.1, and p = 0.4.

The best lower bound that we have on the optimum
power usage is 1, since every sensor has to send out at
least its own messages. One can find the optimum layout
in time O(nb) by exhaustive search, which is feasible for
small values of b. In our examples on 300 nodes we used
exhaustive search for up to three base stations.

For comparison, we took 100 random samples of
layouts and computed their power usage. It is no surprise
that the choice of layout turns out to influence the power
requirements very significantly. One possible strategy
for positioning base stations is to choose the best out
of a linear number of random samples. However, our
simulation shows that in many cases employing the local
search algorithm may result in a layout that has about
half the power usage.

We also experimented with choosing layouts of base
stations on the periphery of the graphs, in an effort
to mimic current practice. Our data seems to suggest
that for a uniform random graph, this method generally
does not lead to a good layout and performs worse
than an average random layout and much worse than
layouts found by our algorithms. Interestingly, for the
preferential attachment model, peripheral layouts appear
to perform almost as well a random layout, and we
attribute that to the fact that human intuition works well
on the preferential attachment graphs, because there are



Fig. 4. Peripheral layout with five base stations on a preferential
attachment graph.

generally very clearly expressed clusters, many of which
are close to the periphery. Figure 4 shows the peripheral
layout with five base stations in the preferential attach-
ment model.

Our local search algorithm appears to find solutions
that are close to the optimum. We are able to check this
empirically for up to three base stations. In these cases
local search found the optimum. We did not observe
any significant improvement in the rate output by our
implementation of the Metropolis algorithm as compared
to the local search algorithm.

The greedy algorithm also achieved lower power re-
quirements than the random samples in general, but still
did not do as well as the local search algorithm. On the
other hand, it still has the advantage over the local search
that it is deterministic and of small complexity.

The results on a regular grid, shown on Figure 6, ver-
ified our analysis from Section V. Initially the optimum
power usage is inversely proportional to the number of
base stations. When the network becomes saturated with
base stations, the added base stations yield smaller power
savings.

In our 10× 10 example, there exists a solution with 8
base stations in which all sensors neighbor a base station.
The solutions found by local search for the cases of one
to four base stations are provably optimal. For example
Figure 5 shows a way to pack 4 base stations in the
square, which is an optimum solution found by local
search. The greedy algorithm does not perform as well
on the grid, because it does not manage to efficiently

Fig. 5. The optimum solution with 4 bases stations on 10×10 grid.
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Fig. 6. Power usage for the grid.

pack the disks of base stations’ neighbors into the square.
The measurements for the uniform random graph and

the preferential attachment graph are shown in Figure 7
and Figure 8, respectively.

VIII. CONCLUSION

We consider the problem of optimizing the positions
of base stations in a data collecting sensor network
to minimize the power consumed by the sensors. We
show by simulation that significant improvements can
be achieved by employing an algorithm such as local
search to find a layout for the base stations.

An interesting extension of our work would be the de-
sign of a routing protocol that uses the flow assignments
found by our maximum flow procedure. One of the issues
that such a protocol might need to address is the effect
of interference between message transmissions.
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Fig. 7. Power usage for the uniform random graph with (a) 1-5 base
stations (b) 6-20 base stations.

Another future direction we are considering is the
design of a polynomial time approximation algorithm
with a guarantee on the quality of the solutions it finds.
Such an algorithm might not be practical to implement
but would be interesting theoretically and potentially
useful experimentally for evaluating other algorithms.

A somewhat unnatural restriction of our model is the
requirement that base stations be positioned at sensor
locations. This restriction is useful because it ensures that
the network connectivity is independent of the positions
of the base stations. It would be interesting to study
how relaxing this restriction affects the value of the
flow. One possible approach might be to consider a
discretized version of the problem, as one expects that
small changes in the base station positions should not
change the network connectivity. It is not clear, however,
how to ensure that such an approach is computationally
feasible.

More generally, it would be interesting to consider a
variant of our model in which a fraction of sensors are
allowed to run out of power, as long as the network
remains connected. We note that our analysis does not
immediately extend to this version of the problem.
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Fig. 8. Power usage for the preferential attachment graph with (a)
1-5 base stations (b) 6-20 base stations.
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