1 Paths and cycles

A path in a graph is a sequence of distinct vertices \(v_0, \ldots, v_\ell\) such that \(\{v_i, v_{i+1}\}\) is an edge in the graph for all \(0 \leq i < \ell\). We can also describe a path as a sequence of the \(k - 1\) edges \(\{v_0, v_1\}, \ldots, \{v_{\ell-1}, v_\ell\}\). The vertices \(v_0\) and \(v_\ell\) are the endpoints of the path. The number \(\ell\) is the length of the path. (The definition allows for paths of length zero.) If there exists a path with endpoints \(v\) and \(w\) we say that \(v\) is connected to \(w\).

For example, in the graph given by the following diagram, \(a, c, d\) is a path of length 2 and \(a, b, c, d\) is a path of length 3. The sequence \(a, b, e\) is not a path because \(\{b, e\}\) is not an edge, and \(a, b, c, a\) is not a path because vertex \(a\) occurs more than once.

A cycle in a graph is a cyclic sequence\(^1\) of distinct vertices \(v_1, \ldots, v_\ell\) such that \(\{v_1, v_2\}, \ldots, \{v_{\ell-1}, v_\ell\}, \{v_\ell, v_1\}\) are edges and they are all distinct. The number \(\ell\) is called the length of the cycle. For example, the above graph has only one cycle — the cycle \(a, b, c\) — and this cycle has length 3. (The definition does not allow cycles of length zero.)

If we do not impose the requirement that \(v_1, \ldots, v_\ell\) are all distinct, then we call \(v_1, \ldots, v_\ell\) a closed walk. Any graph with at least one edge has an infinite number of closed walks: If \(\{u, v\}\) is an edge, then \(u, v; u, v, u, v; u, v, u, v, u, v, u, v, \) and so on are all closed walks.

2 Connectivity, trees, and forests

A graph is connected if for every pair of vertices \(u, v\), \(u\) is connected to \(v\). The above graph is not connected because there exists no path from \(a\) to \(e\).

A connected component of a graph \(G\) is a subgraph of \(G\) consisting of all vertices that are connected to a given vertex and all edges incident to them. This graph has the following two connected components:

\[
\begin{align*}
(V_1, E_1), & \quad \text{where } V_1 = \{a, b, c, d\} \text{ and } E_1 = \{\{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\} \\
(V_2, E_2), & \quad \text{where } V_2 = \{e\} \text{ and } E_2 = \emptyset.
\end{align*}
\]

It should be clear that there can be no edges between vertices that belong to different connected components of the same graph.

\(^1\)By “cyclic”, we mean that the sequences (1) \(v_1, v_2, \ldots, v_\ell\); (2) \(v_2, \ldots, v_\ell, v_1\); and (3) \(v_\ell, v_{\ell-1}, \ldots, v_1\) all represent the same cycle.
A *forest* is a graph that has no cycles. A *tree* is a connected forest. A *leaf* in a forest is a node of degree 1. Here is a diagram of a tree with four leaves:

![Tree with four leaves](image)

Theorem 1. Every forest with \(n\) vertices and \(m\) edges has \(n - m\) connected components.

Proof. We prove the theorem by induction on \(m\).

Base case \(m = 0\): If a forest has no edges, every vertex is its own connected component, so there are exactly \(n\) of them.

Inductive step: Assume that every forest with \(m\) edges has \(n - m\) connected components, where \(n\) is the number of vertices. Let \(G\) be a forest with \(n\) vertices and \(m + 1\) edges. Remove an arbitrary edge \(e\) from \(G\) (but do not modify its vertices). The resulting graph, call it \(G'\), is a forest with \(n\) vertices and \(m\) edges, so by our inductive assumption it has \(n - m\) connected components.

Both vertices of \(e\) cannot belong to the same connected component of \(G'\), for then the path between the endpoints of \(e\) together with \(e\) would form a cycle in \(G\).

Therefore the vertices of \(e\) are in two different connected components of \(G'\). All other connected components of \(G'\) except for these two stay the same in \(G\), so \(G\) has one fewer connected component than \(G'\). Therefore \(G\) has exactly \((n - m) - 1 = n - (m + 1)\) connected components.

Corollary 2. In a tree, the number of vertices equals the number of edges plus one.

A *spanning tree* of a connected graph \(G\) is a subgraph of \(G\) that is a tree. Here is a diagram of a graph and one of its spanning trees. The edges of the spanning tree are marked by thick lines:

![Graph and spanning tree](image)

Theorem 3. Every connected graph has a spanning tree.

Proof. The proof is by induction on the number of edges. If the graph has no edges, then for it to be connected it must consist of a single vertex. This vertex is then a spanning tree.

Now assume that every connected graph with \(m\) edges has a spanning tree. Let \(G\) be a graph with \(m + 1\) edges. We consider two cases. If \(G\) is a tree, then \(G\) is its own spanning tree. Otherwise, \(G\) has a cycle. Take any edge \(e\) on this cycle and remove it. The remaining graph \(G'\) is connected: If any path between two vertices of \(G\) uses the edge \(e\), it can be rerouted along the other edges of the cycle. Since \(G'\) has \(m\) edges, by the inductive hypothesis it has a spanning tree. Therefore \(G\) also has a spanning tree.
The proof of this theorem tells us how to find a spanning tree in a connected graph: If the graph is a tree already, we are done. Otherwise, it must contain a cycle. Remove one of the edges in this cycle and recursively find a spanning tree in this subgraph. There are better algorithms for finding spanning trees that you will learn about in CSCI 3160.

Here is a corollary of Theorem 3 and Theorem 1:

Corollary 4. Every graph with \(n \) vertices and \(m \) edges has at least \(n - m \) connected components.

Proof. Let \(G \) be a graph with \(n \) vertices and \(m \) edges. By Theorem 3, every connected component of \(G \) has a spanning tree. Let \(F \) be the union of all these spanning trees. Then \(F \) is a forest with \(n \) vertices, \(m' \leq m \) edges, and the same number of connected components as \(G \). By Theorem 1, \(F \) has \(n - m' \) connected components, so \(G \) also has \(n - m' \) connected components. Since \(m' \leq m \), the number of connected components of \(G \) is at least as large as \(n - m \).

\[\square \]

3 Bipartite graphs revisited

Recall that a graph is bipartite if its vertices can be partitioned into two sets \(L, R \) so that all edges have one vertex in \(L \) and one vertex in \(R \).

Theorem 5. A graph is bipartite if and only if it has no cycle of odd length.

Before we prove this theorem, let us look at two familiar examples.

![Graph](image)

The first graph is not bipartite and the cycle \(a, b, c \) has odd length. The “reason” this graph is not bipartite is precisely the existence of this cycle: If we put vertex \(a \) on one side of the partition, \(b \) goes on the other side and \(c \) is on the same side, so the edge \(\{a, c\} \) is inconsistent with the partition. We will generalize this argument to rule out the possibility that a graph with a cycle of odd length can be bipartite.

In contrast, the second graph has no cycles of odd length and it is bipartite. One way to find the partition \(L, R \) is to start at an arbitrary vertex — say \(a \) — and put it in one set of the partition — say \(L \). Then its neighbours \(b \) and \(d \) must be in \(R \), their neighbours \(c \) and \(e \) must be in \(L \), and their neighbour \(f \) must be in \(R \) again. We obtain the partition \(L = \{a, c, e\}, R = \{b, d, f\} \). In the proof, we will argue that as long as there are no odd length cycles, it is always possible to obtain a valid partition in a similar manner.

The following simple lemma will be useful to have:

Lemma 6. If a graph has a closed walk of odd length, then it has a cycle of odd length.

Proof. We prove the lemma by strong induction of then length \(\ell \) of the closed walk.

Base case \(\ell = 1 \): There are no closed walks of length one, so the base case holds trivially.
Inductive step: Assume that if a graph has a closed walk of odd length up to ℓ, then it has an odd length cycle. Let $v_1, \ldots, v_{\ell+1}$ be a closed walk of length $\ell + 1$ and assume $\ell + 1$ is odd. If all the vertices in the closed walk are distinct, then $v_1, \ldots, v_{\ell+1}$ is a cycle of odd length. Otherwise, two of them must be the same, say v_i and v_j where $1 \leq i < j \leq \ell + 1$. Consider the closed walks:

\[v_i, v_{i+1}, \ldots, v_{j-1} \quad \text{and} \quad v_j, v_{j+1}, v_1, \ldots, v_{i-1} \]

The sum of the lengths of these two closed walks is $\ell + 1$, so each one has length strictly less than $\ell + 1$. Moreover, $\ell + 1$ is an odd number, so one of them must have odd length. By the inductive assumption, the existence of this walk implies the existence of an odd cycle. \(\square \)

Proof of Theorem 5. Assume the graph is bipartite with its vertices partitioned into L and R. Suppose v_1, \ldots, v_ℓ is a cycle for some $\ell \geq 2$. We will show that ℓ is even. Without loss of generality, we may assume v_1 is in L; if not, we look at the sequence v_2, \ldots, v_ℓ, v_1, which describes the same cycle. Since v_1 is in L, v_2 must be in R, v_3 must be in L, and so on; so v_ℓ is in L if ℓ is odd and in R if ℓ is even. Since $\{v_\ell, v_1\}$ is an edge, v_ℓ must be in R, so ℓ is even.

Now assume the graph, which we call G, has no cycles of odd length. We will prove that it is bipartite.

Suppose that we can show every connected graph that has no cycles of odd length is bipartite. Now take an arbitrary, not necessarily connected, graph G with no cycles of odd length. Then each connected component C of G has no cycles of odd length, so its vertices can be partitioned into two sets L_C and R_C so that there are no edges of C within either of L_C and R_C. Let L be the union of all such L_C and R be the union of all such R_C. Then L, R is a partition of the vertices of G. There are no edges within L and no edges within R, so G is bipartite.

Therefore, we can now assume without loss of generality that the graph G is connected in addition to having no cycles of odd length. We will show that G is bipartite. Let v_0 be an arbitrary vertex and L and R be the following sets:

\[L = \{ w : \text{there exists a path of even length with endpoints } v_0, w \} \]
\[R = \{ w : \text{there exists a path of odd length with endpoints } v_0, w \} \]

Since G is connected, every vertex must be connected to v_0, so it belongs to one of L or R. We will now show that $L \cap R = \emptyset$. The proof is by contradiction. Suppose there was a vertex $u \in L \cap R$. Since u is in L, there is an even length path from v_0 to u:

\[v_0, v_1, \ldots, v_s = u, \quad s \text{ is even} \]

Since u is in R, there is an odd length path from v to v_0. The reverse path is an odd length path from u to v:

\[u = v_s, v_{s+1}, \ldots, v_{s+t} = v_0, \quad t \text{ is odd} \]

Let us look at the sequence $v_0, v_1, \ldots, v_{s+t-1}$. This is a closed walk of length $s + t$, which is an odd number. By Lemma 6, G has a cycle of odd length, which is a contradiction.

Therefore L, R is a partition of the vertices of G. It remains to show that there can be no edges within L and no edges within R. We first show there are no edges within L. For contradiction, suppose that there was an edge $\{u, w\}$ such that $u \in L$ and $w \in L$. By the definition of L, there must exist even length paths from w to v_0 and from u to v_0. If we take the first path, then the second path in reverse, and finally follow the edge u, w, we obtain a closed walk of even + even + 1 = odd length. By Lemma 6, this contradicts our assumption. We now show there are no edges within R. The proof is analogous; the only difference is that the two paths now have odd length. The length of the resulting closed walk is now odd + odd + 1, which is still an odd number. \(\square \)
We state a corollary of this theorem that will be useful for us shortly.

Corollary 7. Let \(G \) be a graph whose edges are the union of two matchings. Then \(G \) is bipartite.

Proof. We show that \(G \) has no cycles of odd length. By Theorem 5, \(G \) must be bipartite.

For contradiction, assume that there exists an odd length cycle \(v_1, v_2, \ldots, v_\ell \) in \(G \). Then the edge \(\{v_1, v_2\} \) must belong to at least one of the two matchings whose union forms the edges of \(G \). Call this matching \(\Xi_1 \). The edge \(\{v_2, v_3\} \) cannot belong to \(\Xi_1 \) for otherwise \(\Xi_1 \) would not be a matching, so it must belong to \(\Xi_2 \). Continuing the reasoning in this way, we conclude that for every \(1 \leq i < \ell \), \(\{v_i, v_{i+1}\} \) must be in \(\Xi_1 \) if \(i \) is odd and in \(\Xi_2 \) if \(i \) is even, so the edge \(\{v_{\ell-1}, v_\ell\} \) must be in \(\Xi_2 \). But then the edge \(\{v_\ell, v_1\} \) is in \(\Xi_1 \), and so \(v_1 \) has two neighbours in \(\Xi_1 \) (\(v_2 \) and \(v_\ell \)). This contradicts our assumption that \(\Xi_1 \) is a matching. \(\square \)

4 Directed graphs

A **simple directed graph** (or **digraph**) \(G \) consists of a nonempty set of vertices \(V \) and a set of directed edges \(E \), each of which is an ordered pair of vertices \((u, v)\) with \(u \neq v \).

In a digraph, \((u, v)\) and \((v, u)\) represent different edges. One of them could be present in the graph, or both, or neither. In a diagram, we represent them as arrows from \(u \) to \(v \) and from \(v \) to \(u \), respectively.

Here is a diagram of the digraph \((V, E)\) where

\[
V = \{a, b, c, d\} \quad \text{and} \quad E = \{(a, b), (a, d), (b, c), (b, d), (c, b), (d, c)\}:
\]

\[\begin{array}{c}
\text{a} \\
\downarrow \\
\text{b} \\
\downarrow \\
\text{c} \\
\downarrow \\
\text{d}
\end{array}\]

The definitions of “path”, “closed walk”, and “cycle” in a digraph are identical to those for graphs. For example, \(a, b, d, c \) is a path of length 3 in \(G \) and \(b, d, c \) is a cycle of length 3. \(G \) has also a cycle of length 2, namely \(b, c \). In contrast, a graph cannot have a cycle of length 2.

A **topological sort** of a digraph \(G \) is an ordering of all its vertices in a sequence so that for every edge \((u, v)\), vertex \(u \) comes before vertex \(v \) in the sequence. If the vertices represent tasks and edge \((u, v)\) means that task \(u \) must be completed before task \(v \) then a topological sort represents a possible schedule in which the tasks can be completed one at a time.

The above digraph does not have a topological sort. The vertices \(b \) and \(c \) cannot be ordered because both \(b \) must come before \(c \) and \(c \) must come before \(b \) in the sequence. This is impossible. In contrast, one topological sort of the digraph in the following diagram is the sequence \(a, b, d, e, c \):
The sequence e, a, b, d, c is another topological sort of the same digraph, so topological sorts may not be unique.

Theorem 8. A digraph has a topological sort if and only if has no cycles.

We will need the following lemma. A sink is a vertex with no outgoing edge. Similarly, a source is a vertex with no incoming edge, and a vertex is internal if it is neither a source nor a sink.

Lemma 9. A digraph with no cycles has a sink.

Proof. We prove the contrapositive: A digraph with no sink has a cycle. Assume that G has no sink. Then every vertex in G has at least one outgoing edge. Visit vertices according to the following procedure, starting from an arbitrary vertex v_0: Keep moving to an adjacent vertex via an outgoing edge. When you reach the first previously visited vertex, stop. Then the sequence of visited vertices will have the following form:

$$v_0, v_1, \ldots, v_k$$

where v_0, \ldots, v_{k-1} are all distinct and $v_k = v_i$ for some i between 0 and $k - 1$. Then v_1, \ldots, v_{k-1} is a cycle in G, so G has a cycle.

Proof of Theorem 8. First we show that if a digraph has a topological sort, it cannot have a cycle. For contradiction, suppose v_1, \ldots, v_ℓ is a cycle. Then v_2 must come after v_1 in the sequence, v_3 must come after v_2, and so on until v_ℓ. So v_ℓ must come after v_1. Since (v_ℓ, v_1) is an edge, v_1 must come after v_ℓ. Contradiction.

Now we show that if a digraph G has no cycles, then it must have a topological sort. We prove this by induction on the number of vertices n.

Base case $n = 1$: If G has one vertex v, then the sequence v is a topological sort of G.

Inductive step: Assume every digraph with no cycles on n vertices has a topological sort. Let G be a digraph with no cycles on $n + 1$ vertices. By Lemma 9, G has a sink t. Remove t and all incoming edges from G. By the inductive assumption, the remaining graph has a topological sort sequence v_1, \ldots, v_n. Then v_1, \ldots, v_n, s is a topological sort of G. A digraph with no cycles is called an acyclic digraph or a DAG (directed acyclic graph).

Parallel scheduling

The proof of Theorem 8 gives a method for topologically sorting the vertices of a DAG: Find a sink, put it at the end of the sequence, remove it from the graph, then recursively sort the rest.
In the above example, \(c \) is the only sink so it must go at the end of the list. After removing it and its incident edges we are left with the following digraph to sort.

There are now two sinks \(d \) and \(e \). If these represent tasks to be scheduled, they can be completed in arbitrary order, even at the same time. If we perform \(d \) and \(e \) at the same time and continue recursively, we obtain the following parallel schedule of the five tasks:

\[
\text{time: } 0 \quad 1 \quad 2 \quad 3
\]

In general, a parallel schedule of a DAG \(G \) is a partition of the vertices of \(G \) into sets \(V_0, V_1, \ldots, V_\ell \) such for every edge \((u, v)\), if \(u \) is in \(V_i \) and \(v \) is in \(V_j \) then \(i < j \). The number \(\ell \) is the duration of the schedule.

In this example, \(V_0 = \{a\}, V_1 = \{b\}, V_2 = \{d, e\}, V_3 = \{c\} \) is a parallel schedule of duration 3. Can the duration be reduced to 2? Clearly not because the vertices \(a, b, d, c \) form a path, so those tasks will take duration 3 to complete no matter how the other ones are scheduled.

Theorem 10. For every \(\ell \), if every path in a DAG \(G \) has length at most \(\ell \) then \(G \) has a parallel schedule of duration at most \(\ell \).

Proof. The proof is by induction on the length \(\ell \) of the longest path in \(G \).

Base case \(\ell = 0 \): \(G \) consists of isolated vertices and they can all be scheduled at the same time, giving a parallel schedule of duration zero.

Inductive step: Assume the proposition is true for \(\ell \) and let \(G \) be a DAG whose longest path has length \(\ell + 1 \). Assign all sinks of \(G \) to set \(V_{\ell+1} \) in the partition. Every longest path in \(G \) must contain a sink; if it didn’t it could have been extended by taking an extra edge out of its last vertex. Therefore all paths in the graph \(G' \) obtained by removing the vertices \(V_\ell \) and their incident edges from \(G \) have length at most \(\ell \). By inductive hypothesis, \(G' \) has a parallel schedule \(V_0, \ldots, V_\ell \). Then \(V_0, \ldots, V_{\ell+1} \) is a parallel schedule for \(G \).

An antichain in a DAG is a set of vertices no two of which form an edge.

Corollary 11. For every \(k \), a DAG on \(n \) vertices has a path of length at least \(k \) or an antichain of size at least \(n/k \).
Proof. Suppose for contradiction that every path has length less than \(k \) and every antichain has size less than \(n/k \). By Theorem 10 the graph has a parallel schedule \(V_0, V_1, \ldots, V_\ell \) of duration \(\ell < k \). The sets \(V_i \) are all antichains so they all have size less than \(n/k \). Since they partition the vertices, it follows that the graph has less than \(k \cdot n/k = n \) vertices, a contradiction. \(\square \)

5 Switching networks

A collection of paths is vertex disjoint if all vertices in all paths in the collection are distinct. A switching network for \(N \) packets is a DAG with \(N \) sources and \(N \) sinks (and possibly some internal vertices) so that for every possible pairing of sources and sinks there exists a vertex-disjoint collection of paths from each source to the corresponding sink.

Here is a diagram of a switching network, which we’ll call \(B_2 \), for 4 packets:

\[
\begin{array}{cccc}
 s_{00} & s_{01} & s_{10} & s_{11} \\
 t_{00} & t_{01} & t_{10} & t_{11}
\end{array}
\]

For example, suppose we pair up the sources and sinks like this:

\[\{s_{00}, t_{10}\}, \{s_{01}, t_{00}\}, \{s_{10}, t_{01}\}, \{s_{11}, t_{11}\}\]

The following diagram shows the existence of vertex-disjoint paths from every source to the corresponding sink:

\[
\begin{array}{cccc}
 s_{00} & s_{01} & s_{10} & s_{11} \\
 t_{00} & t_{01} & t_{10} & t_{11}
\end{array}
\]

Here is how I found these paths. The subgraph connecting the middle nodes splits into a “top component” and a “bottom component”. Among the packets 00 and 10, one must travel through the top component and the other one through the bottom component, for otherwise they would clash at the first intermediate vertex. The same conclusion holds for the packets 01 and 11. The two packets that are supposed to arrive at \(t_{00} \) and \(t_{10} \) — these are the packets 01 and 00 — must also travel through different middle components. Similarly, the packets 10 and 11, which are supposed to reach \(t_{01} \) and \(t_{11} \), should be routed through different middle components.

We can represent this information in a constraint graph whose vertices are packets and whose edges connect pairs that cannot be routed through the same middle component:

\[
\begin{array}{cccc}
 s_{00} & s_{01} & s_{10} & s_{11} \\
 t_{00} & t_{01} & t_{10} & t_{11}
\end{array}
\]
The constraint graph is bipartite: The vertices can be partitioned into the sets $T = \{00, 11\}$ and $B = \{10, 01\}$. We route the packets in T through the top component and the packets in B through the bottom component. This uniquely specifies the first and last edge in each path (as in the above example). The middle edges are then easy to figure out.

How can we know for sure that B_2 is a switching network? We need to verify that all possible source-sink pairings admit edge-disjoint paths. It turns out that B_2 has a special, recursive structure that guarantees this feature. To make this structure more apparent, we will show how to construct, for every $n \geq 1$, a switching network B_n with 2^n sources and 2^n sinks, provided we have already constructed B_{n-1}. The digraph B_n is called the Beneš network (pronounced Benesh) after its inventor.

The “base” digraph B_1 looks like this:

```
       s0     t0
       /\     /
     s1   t1
```

Now we show how to construct the digraph B_{n+1}, assuming we have already constructed B_n. Recall that B_n has 2^n sources and 2^n sinks:

1. Take two disjoint (no shared vertices or edges) copies of B_n, which we will call the top copy and the bottom copy.

2. Label the sources of the top copy of B_n by the symbols u_{0x}, where x ranges over all $\{0, 1\}$ strings of length n. Label the sources of the bottom copy of B_n by the symbols u_{1x}, where x ranges over all $\{0, 1\}$ strings of length n. Label the sinks of the top and bottom copies of B_n by the symbols v_{0x} and v_{1x}, respectively, where x ranges over all $\{0, 1\}$ strings of length n.

3. Create 2^{n+1} sources s_y and 2^{n+1} sinks t_y for B_{n+1}, where y ranges over all $\{0, 1\}$ strings of length $n + 1$.

4. Add the edges (s_{ax}, u_{bx}) and (v_{bx}, t_{ax}) for every bit $a \in \{0, 1\}$, every bit $b \in \{0, 1\}$, and every $\{0, 1\}$ string x of length n.

You can check that our digraph B_2 was indeed constructed from B_1 according to this specification.

Theorem 12. For every $n \geq 1$, the digraph B_n is a switching network.

Proof. We prove the theorem by induction on n. In the base case $n = 1$, there are two possibilities: The source-sink matching is either $\{s_0, t_0\}, \{s_1, t_1\}$ or $\{s_0, t_1\}, \{s_1, t_0\}$. In either case, there are vertex disjoint paths from each source to the corresponding sink.

For the inductive step, we assume that B_n is a switching network. We will show that B_{n+1} is also a switching network. Let Π be a pairing of the 2^{n+1} sources s_y and the 2^{n+1} sinks t_y in B_{n+1}. We need to show that all pairs in Π can be connected by edge-disjoint paths.
We define an undirected “constraint” graph G as follows. The vertices of G are all the $2^{n+1} \{0, 1\}$ strings of length $n+1$. The edges of G are the union of two perfect matchings. The first matching consists of all the edges $\{0x, 1x\}$, where x ranges over all $\{0, 1\}$ strings of length n. The second matching consists of all the edges $\{y, y'\}$ such that s_y’s and $s_{y'}$’s partners in Π differ only in their first coordinate (that is, they are t_{0x} and t_{1x} for some x). You can easily verify that this is a matching.

By Corollary 7, the graph G is bipartite. Let T, B be a partition of its vertices so there are no edges within T or within B. We now describe the edge-disjoint paths from sources to sinks of Π. We will specify each path by describing its first edge, its last edge, and its middle edges. We will do the middle edges later:

1. **First edge:** For every vertex s_{bx} (where b is a bit and x is a string of length n), take the edge from s_{bx} to u_{0x} if $bx \in T$; take the edge from s_{bx} to u_{1x} if $bx \in B$.

2. **Last edge:** For every vertex t_{bx}, let s_y be t_{bx}’s partner vertex in Π. Take the edge from v_{0x} to t_{bx} if $y \in T$; take the edge from v_{1x} to t_{bx} if $y \in B$.

We will now show three properties: (1) the set of first edges Φ_1 is a matching; (2) the set of last edges Φ_2 is a matching; and (3) For every pair $\{s_y, t_{y'}\}$ in Π, s_y’s match in Φ_1 and $t_{y'}$’s match in Φ_2 both belong to the same copy of B_n.

Once we have these properties, our inductive assumption about B_n guarantees the existence of edge-disjoint paths from s_y’s match in Φ_1 to $t_{y'}$’s match in Φ_2 for every pair $\{s_y, t_{y'}\}$ in Π. These paths form the middle edges from the sources to the sinks of Π. Together with the first and last edges, they describe a collection of edge-disjoint paths between all source-sink pairs of Π, the existence of which is what we wanted to prove.

So it remains to show properties (1), (2), and (3). We show (1) first. For contradiction, assume Φ_1 is not a matching. Then two of the first edges share the same vertex u_{bx}. The only two edges that share this vertex are (s_{0x}, u_{bx}) and (s_{1x}, u_{bx}). This is not possible because $\{0x, 1x\}$ is an edge in (the first matching of) G, and so one of the two must be in T and the other one in B. So one of the edges must point to u_{0x} and the other one must point to u_{1x}, a contradiction.

The proof of (2) is similar: If Φ_2 is not a matching, two of the last edges must share the same vertex v_{bx}. These are the edges (v_{bx}, t_{0x}) and (v_{bx}, t_{1x}). So the partners of t_{0x} and t_{1x} in Π, which form an edge in (the second matching of) G, must both be in the same set of the partition T, B, a contradiction.

Property (3) is immediate: If s_y is paired to $t_{y'}$ in Π, then both s_y’s match in Φ_1 and $t_{y'}$’s match in Φ_2 are in the top copy of B_n if y is in T and the bottom one if y is in B. In either case, they are in the same copy of B_n.

The vertex-disjoint paths in our example were obtained by following the procedure described in the proof. To check your understanding, it is a good idea to walk through the steps of the proof keeping this example in mind.

References

This lecture is based on Chapters 10 and 11 of the text *Mathematics for Computer Science* by E. Lehman, T. Leighton, and A. Meyer.