Practice questions

1. A point is chosen uniformly at random inside a triangle with base 1 and height 1. Let \(X \) be the distance from the point to the base of the triangle. Find the CDF and the PDF of \(X \). *(Textbook problem 3.2.5)*

Solution: The PDF of the point is uniform over the triangle which has area \(\frac{1}{2} \), so it has value 2 inside the triangle and zero outside. The event \(X > x \) consists of all the points in the triangle that are at distance more than \(x \) from the base, which is itself a triangle of base and height \(1 - x \). Therefore \(P(X > x) = 2(1 - x)^2/2 = (1 - x)^2 \). The CDF is \(P(X \leq x) = 2x - x^2 \) and the PDF is \(f_X(x) = \frac{d}{dx} P(X \leq x) = 2(1 - x) \).

2. There are 100 students in class. The arrival times of students (in minutes) are exponential random variables with rate \(\lambda = 0.2 \), starting from 09:20.

 (a) What is the expected number of students that have arrived by 09:30?

 (b) Assuming students’ arrivals are independent, what is the probability that everyone has made it by 09:45?

Solution: Let \(T_i \) be the arrival time of student \(i \). The CDF of \(T_i \) is \(F_{T_i}(t) = 1 - e^{-\lambda t} \).

 (a) The probability that a given student has arrived by 09:30 is \(P(T_i \leq 10) \approx 0.865 \). The number of students that have arrived by 09:30 is \(X_1 + \cdots + X_{100} \) where \(X_i \) is an indicator random variable for the event \(T_i \leq 10 \). By linearity of expectation the expected number of such students is the sum of \(P(T_i \leq 10) \) as \(i \) ranges over the 100 students, which is about 86.5.

 (b) The probability that any given student has arrived by 09:45 is \(p = P(T_i \leq 25) \approx 0.993 \). The number of students arriving before 09:45 is a Binomial(100, \(p \)) random variables, so the probability they all arrived by this time is \((1 - p)^{100} \approx 0.509 \).

3. Three points are dropped at random on the perimeter of a circle with 1 unit circumference.

 (a) What is the probability that they all fall within 1/4 of a unit of one another?

 (b) What is the probability that every pair of them is at least 1/4 of a unit apart?

 (Hint: Fix one of the three points.)

Solution: Let’s call the three points \(a \), \(b \), and \(c \). By symmetry, we can position \(a \) on the circle in an arbitrary way. Let \(X \) and \(Y \) be the positions of \(b \) and \(c \) relative to \(a \) clockwise along the circle. We model \(X \) and \(Y \) as independent Uniform(0, 1) random variables.

 (a) The event \(E \) is the intersection of events \(A \), \(B \), \(C \) described by the predicates: (1) \(x \in [0, 1/4] \cup [3/4, 1] \) (\(b \) is close to \(a \)); (2) \(y \in [0, 1/4] \cup [3/4, 1] \) (\(c \) is close to \(a \)); and (3) \(|x - y| \in [0, 1/4] \cup [3/4, 1] \) (\(b \) is close to \(c \), clockwise or counterclockwise). \(A \cap B \cap C \) is the shaded set in the following diagram and has probability 3/16.
(b) The event E' of interest is now $A' \cap B' \cap C'$, where A', B', C' are the sets (1) $x \in [1/4, 3/4]$ (b is far from a); (2) $y \in [1/4, 3/4]$ (c is far from a); and (3) $|x - y| \in [1/4, 3/4]$ (b is far from c). This is represented by the shaded region below and has area $1/16$.

Another way to solve part (b) (or to check your answer) is via the axioms of probability. The complement of E' equals $A \cup B \cup C$ (some pair of points is close), so by inclusion-exclusion:

$$P(E'^c) = P(A \cup B \cup C)$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C).$$

Here, A is the event that points a and b are less than $1/4$ of an inch apart, so $P(A) = 1/2$. For the same reason $P(B) = P(C) = 1/2$. The events A, B are independent so $P(A \cap B) = P(A)P(B) = 1/4$. For the same reason $P(B \cap C) = P(C \cap A) = 1/4$. In part (a) we calculated that $P(A \cap B \cap C) = 3/16$, so

$$P(E'^c) = 3 \times \frac{1}{2} - 3 \times \frac{1}{4} + \frac{3}{16} = \frac{15}{16},$$

and $P(E') = 1/16$.

4. A coin has probability P of being heads, where P itself is a Uniform$(0, 1)$ random variable. Find the PMF of the number of heads after performing two independent coin flips.

Solution: Let N be the number of heads in two coin flips. The conditional PMF of X given P is $f_{X|P}(x|p) = \binom{2}{x}p^x(1-p)^{2-x}$. As P is a Uniform$(0, 1)$ random variable, its PDF is $f_P(p) = 1$ when $0 \leq p \leq 1$ and 0 otherwise. By the total probability theorem, the (unconditional) PMF of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|P}(x|p)f_P(p)dp = \int_0^1 \binom{2}{x}p^x(1-p)^{2-x} dp.$$
It remains to calculate this integral for $x = 0, 1, 2$:

\[
\begin{align*}
 f_X(0) &= \int_{0}^{1} (1 - p)^2 dp = \frac{1}{3} \\
 f_X(1) &= \int_{0}^{1} 2p(1 - p) dp = \frac{1}{3} \\
 f_X(2) &= \int_{0}^{1} p^2 dp = \frac{1}{3}.
\end{align*}
\]

5. Here is a way to solve Buffon’s needle problem without calculus. Recall that an ℓ inch needle is dropped at random onto a lined sheet, where the lines are one inch apart.

(a) Let A be the number of lines that the needle hits. Let B be the number of times that a polygon of perimeter ℓ hits a line. Show that $E[A] = E[B]$. (Hint: Use linearity of expectation.)

(b) Assume that $\ell < \pi$. Calculate the expected number of times that a circle of perimeter ℓ hits a line.

(c) Assume that $\ell < 1$. Use part (a) and (b) to derive a formula for the probability that the needle hits a line. (Hint: The number of hits is a Bernoulli random variable.)

Solution:

(a) Suppose the polygon has n edges of length a_1, a_2, \ldots, a_n. Break up the needle into segments of lengths a_1, a_2, \ldots, a_n. Let A_i and B_i be the number of lines hit by the i-th segment of the needle and the i-th edge of the polygon, respectively. Then

\[
 A = A_1 + \cdots + A_n \quad \text{and} \quad B = B_1 + \cdots + B_n.
\]

By linearity of expectation

\[
 E[A] = E[A_1] + \cdots + E[A_n] \quad \text{and} \quad E[B] = E[B_1] + \cdots + E[B_n].
\]

Since the i-th edge of the polygon and the i-th segment of the needle are identical, $E[A_i] = E[B_i]$. It follows that $E[A] = E[B]$.

(b) Let C be the number of times a circle intersects a line. We calculate the p.m.f. of C. Let d be the line segment representing the diameter of the circle that is perpendicular to the lines on the sheet. Since $\ell < \pi$, the length of d is less than 1. The circle hits a line twice if d crosses a line, once if d touches one of the lines, and zero times if d does not intersect any of the lines. The probability that d crosses a line is exactly the length of d, namely ℓ/π, and the probability that d touches a line is zero. Summarizing, the p.m.f. of C is

\[
 \begin{array}{c|c|c|c}
 c & 0 & 1 & 2 \\
 \hline
 P(C = c) & 1 - \ell/\pi & 0 & \ell/\pi
 \end{array}
\]

Therefore $E[C] = 2\ell/\pi$.

(c) If we view the circle as a polygon with infinitely many sides, putting together part (a) and (b) we get that $E[A] = E[C] = 2\ell/\pi$. Since $\ell < 1$, the number of times the needle intersects a line is a 0/1 valued random variable, so $E[A] = P(A = 1) = P($the needle hits a line$)$. Therefore the probability the needle hits a line is exactly $2\ell/\pi$.