CERTIFYING COMPUTATION

PROOF THAT ANSWER IS CORRECT

COUNTING GRAPH COLORINGS

3-COLORING = \{R, G, B\}^3
VALID IF ALL EDGE ENDPOINTS HAVE DISTINCT COLORS

Alice \[\rightarrow \] 3"HOW MANY 3-COLORINGS?" \[\rightarrow \] Bob

n VERTEX GRAPH, 3-COLORINGS CAN BE COUNTED IN TIME \(3^n\)

EX. \(n \approx 30\) OR 40 FEASIBLE FOR Bob
 BUT NOT FOR Alice
LFKN PROTOCOL

Prover has complexity exponential in n
Verifier has complexity poly(n)

IDEA: REPRESENT THE NUMBER OF COLORINGS AS A POLYNOMIAL

\[P(x_1, \ldots, x_n) = \begin{cases} \text{1} & \text{if coloring is valid} \\ \text{0} & \text{if not} \end{cases} \]

\[P(r, g, b) = 1 \quad P(2, b, r) = 0 \]

AGREE TO REPRESENT \(R \mapsto 1 \), \(B \mapsto 0 \), \(G \mapsto -1 \)

\[P(x_1, \ldots, x_n) = \prod_{(u, v) \text{ edges}} P_{uv}(x_u, x_v) \]

WHERE

\[P_{uv}(x_u, x_v) = \begin{cases} \text{1} & \text{if } x_u \neq x_v \\ \text{0} & \text{if NOT} \end{cases} = \begin{cases} \text{1} & \text{if } x_u - x_v \in \{1, 3\} \\ \text{0} & \text{if NOT} \end{cases} \]

\[= 1 - \frac{(x_u - x_v)^2 - 1}{(x_u - x_v)^2 - 4} \]

KEY: \(\deg P = 4m \) which is low
V WANT TO KNOW \[S = \sum_{x_1, \ldots, x_6 \in \{-1,1\}} P(x_1, \ldots, x_6) \]
\[(\text{NUMBER OF 3 COLORINGS OF 6})\]
\[S = 3751019125 \]

SUM-CHECK PROTOCOL: GIVEN P s.t. P, V CAN EVALUATE P (degP = d), PROVE \[\sum_{x_1, \ldots, x_6 \in \{-1,1\}} P(x_1, \ldots, x_6) = S. \]

\[P(1,0,-1) = 0 \text{ or } 1 \]
\[P(3,7,11) = 751 \]

ABILITY TO COMPUTE ON INPUTS THAT DO NOT REPRESENT COLORS IS IMPORTANT
DESCRIPTION OF r BY ITS DH COEFFICIENTS

PROVE THAT

$$r(a_i) = \sum_{x_1, \ldots, x_l \in \{-1, 0, 1\}} P(a_i, x_2, \ldots, x_n)$$

FOR A RANDOM a_i MODULO q.

BASE CLAIM $v = P(a_1, \ldots, a_n)$

NUMBERS MODULO q.

V CAN CHECK ON HIS OWN.
Soundness Claim. If \(S \neq \sum p(x_i) \) then

VERIFIER REJECT with high probability.

\[
p(x_i) = \sum_{x_2, \ldots, x_n} p(x_1, \ldots, x_n)
\]

Assumption

\[
p(-1) + p(0) + p(1) \neq S
\]

\[
r(-1) + r(0) + r(1) = S
\]

\[
r \text{ and } p \text{ are not the same polynomial but both have degree } \leq d
\]

\[
l \left(x_i \right) = p(x_i) \text{ for at most } d \text{ values of } x_i,
\]

\[
P[r(a_i) \neq p(a_i)] \geq 1 - \frac{d}{q} \geq 1 - \frac{d}{3^n}.
\]

Union Bound

Wrong except with prob \(\frac{dn}{q} \)
Ex. (2 colors) P \[
P(0,0) + P(0,1) + P(1,0) + P(1,1) = 3
\]
\[
P(7,0) + P(7,1) = 11
\]
\[
P(7,9) = 3
\]

EFFICIENCY:
- **VERIFIER** $O(d \cdot n) = O(m \cdot n)$
- **PROVER** $O(3^n)$ - comparable to work it takes just to compute answer.

SHAMIR’S PROTOCOL:
- Can certify any computation that uses m bits of memory & runs in time T
 - **VERIFIER** complexity = $O(m \cdot \log T)$
 - **PROVER** complexity could be $2^O(m)$

DRAWBACK 1: Inefficient Prover

DRAWBACK 2: m itself could be very large.
PROTOCOL FOR GENERAL COMPUTATION (LARGE TIME, LARGE MEMORY)

IDEA: USE SUMCHECK-LIKE PROTOCOL, NOT CLEAR HOW TO REPRESENT AS A POLYNOMIAL.

MODELING GENERAL COMPUTATION

AS A COLORING PROBLEM
VERTICES = GATES
EDGES = WIRES
COLORS : INPUTS ∈ \{0,1\}
INTERNAL GATE COLORS REPRESENT ASSIGNMENTS TO INPUT AND OUTPUT WIRES

COLORS FOR INTERNAL GATES

(0, 101) NOT VALID
"CIRCUITS ACCEPTS INPUT"

"THERE EXIST A COLORING WHICH SATISFIES ALL THE CONSTRAINTS".

P "THERE EXISTS V A COLORING THAT IS CONSISTENT ACROSS ALL EDGES."

G ITSELF HAS 2^" VERTICES.

V HOLDS AN IMPLICIT REPRESENTATION

"IS THERE AN EDGE BETWEEN U AND V"?

GRAPH SIZE = 2^" BUT REPRESENTED BY A CIRCUIT A(u,v) OF SIZE O(1)

"G REPRESENTED BY A HAS A VALID 3-COLORING"

"COMPLETE" A COMPUTATION THAT TAKES TIME & MEMORY 2^{0(1)}.
Both coloring \(C \) and graph \(G \) are exponentially large.

\[
\sum_{u,v \in f(q)} ((C(u) - C(v))^2 - 1)((C(u) - C(v))^2 - 4)^2 \cdot A(u,v) = 0 \quad (\star)
\]

\(C \) is a valid 3-coloring \((C(u) \notin \{-1,0,1\}) \) iff \((*) \) holds, \(A(u,v) = 1 \Rightarrow C(v) = C(u) \).

- \(C \) is a "table" of 2\(^q \) values that verified has no capacity to store.
- If we want to use sumcheck it better be that

\[
((C(u) - C(v))^2 - 1)((C(u) - C(v))^2 - 4) \cdot A(u,v)
\]

is a low-degree polynomial in \(u,v \).

Enough that \(A,C \) have low degree turns out \(A \) has small size \(O(u) \) but also low depth \(\rightarrow \) as an arithmetic circuit \(A \) has degree \(O(u) \).

In contrast \(C : \{0,1\}^q \rightarrow \{-1,0,1\} \) can be an arbitrary function.
P can represent C as a **multilinear polynomial** (every var has deg ≤ 1)

$\rightarrow \deg C \leq n.$

Ex. \hspace{1cm} $n = 2$ \hspace{1cm} $V = \{0, 1\}^2 \hspace{1cm} 0 \hspace{1cm} 0 \hspace{1cm} 1 \hspace{1cm} 0 \hspace{1cm} 0$

Come up with

$C(x, y) = a + bx + cy + dx^y$

S.t. \hspace{1cm} $C(0, 0) = 0$ \hspace{1cm} $C(0, 1) = 1$ \hspace{1cm} $C(1, 0) = -1$ \hspace{1cm} $C(1, 1) = 1$

\[\begin{align*}
q &= 0 \\
a + c &= 1 \\
b &= -1
\end{align*}\]

Solve for d

In general can solve for 2^n coefficients in time $O(n \cdot 2^n)$

Expected behavior of honest prover

- Create C of total degree $\leq n$ that represents a valid 3-coloring of G.

\[
\frac{1}{2} \sum_{u_i = 0} \left(\sum_{u_i \neq u_j} (C(u) - C(v))^2 - 1 \right)^2 \cdot A(u, v) = 0
\]

Sum check

$C(11, 5, 7) = ?$ \hspace{1cm} $C(3, 0, 21) = ?$

\[\begin{align*}
75 &\hspace{1cm} 33
\end{align*}\]
For soundness need two extra checks

- C is a 3-coloring when restricted to \(\{0,1,3\}^n \): \(\forall x \in \{0,1,3\}^n : C(x) \in \{-1,0,1\} \)
 \[(A) \]

- C is some low-degree polynomial.
 \[\rightarrow \text{low-degree test} \]

\[
\sum_{x \in \{0,1,3\}^n} r^x C(x)(C(x)^2-1) = 0 \quad (B)
\]

\(r \) random in \(\mathbb{F}_q \), \(r^x = r^{x_1 + 2x_2 + \ldots + 2^{n-1}x_n} \)

Claim: \((A) \longrightarrow (B) \)
\((A) \) fails \(\rightarrow (B) \) fails with probability \(\leq 1 - \frac{2^n}{q} \)

To apply sumcheck we can write \((B) \) as a \(\deg n \) polynomial in \(x \):

\[
r^x = r^{x_1 + 2x_2 + \ldots + 2^{n-1}x_n} = r^{x_1}(r^2)^{x_2} \ldots (r^{2^{n-1}})^{x_n} = (1-x_1+x_1r) \ldots (1-x_n+x_n r^{2^{n-1}}).
\]
PROOF THAT C "IS CLOSE TO" HAS DEGREE $\leq n$.

IDEA. $C(x_1, \ldots, x_n)$ HAS DEGREE n

$C(p(t))$ HAS DEGREE n FOR EVERY LINE

$e(t) = (x_1, \ldots, x_n) + t(y_1, \ldots, y_n)$

V PICK RANDOM P AND CHECK THAT $C(l(0)), \ldots, C(l(n+1))$ ARE CONSISTENT WITH VALUES OF SOME DEGREE-n POLYNOMIAL IN t (LAGRANGE INTERPOLATION).
Kilian's IMPLEMENTATION of BFL Protocol

\[P \xrightarrow{\text{SUCCINCT COMMITMENT OF } C} V \]

(If \(V \) wants to know \(CC(x) \), ask \(P \) for value + CERTIFICATE)

\[\text{CONSISTENCY} \]

\[\text{ACTUAL COLORS ARE USED} \]

\[C \text{ IS A LOW-DEG POLY} \]

\[\text{C IS A VALID 3COL OF 6.} \]