Question 1

Consider the following candidate secret sharing algorithms for a 1-bit secret (0 or 1) and \(n = 9 \) parties. Does it yield a (perfectly) secure \(t \)-threshold secret sharing scheme for a suitable value of \(t \)? If yes, say which \(t \), describe the reconstruction algorithm, and give a proof of security. If no, prove that security or reconstruction fails for all \(t \).

(a) To share a 0 send a distinct random number between 1 and 9 to each party. To share a 1 send the same random number between 1 and 9 to each party.

(b) To share a 0 send 5 zeros and 4 ones in a random order. To share a 1 do the opposite.

(c) To share \(b \in \{0, 1\} \) send the number \(bi + r \mod 10 \) to party \(i \in \{1, \ldots, 9\} \), where \(r \) is a random number between 0 and 9.

Question 2

Let \((\text{Enc}, \text{Dec})\) be a (deterministic) encryption scheme with key length \(k \) and message length \(m \). Suppose that \(\text{Enc}(K, M) \) and \(\text{Enc}(K, M') \) are strictly less than \(1/2 \)-statistically close for every two messages \(M, M' \).

(a) Show that \(\text{Enc}(K, M') \) is a possible encryption of \(M \) with probability more than \(1/2 \).

(b) Fix a message \(M \). Show that there exists a key \(K \) for which \(\text{Enc}(K, M') \) is a possible encryption of \(M \) for more than half the messages \(M' \).

(c) Show that if \(m > k \) then \((\text{Enc}, \text{Dec})\) is not an encryption scheme.

Question 3

Let \(F_K \) be a pseudorandom function. Are these functions also pseudorandom? Assume the key length, input length, and output length are all equal to the security parameter \(k \).

(a) The function \(F'_K(x) = F_K(x) + F_K(\ell(x)) \), where \(\ell(x) \) is the lexicographic successor of \(x \) if \(x \neq 1^n \) and \(0^n \) if \(x = 1^n \) (e.g., \(\ell(010) = 011, \ell(011) = 100, \ell(111) = 000 \)).

(b) The function \(F'_{K,K'}(x, y) = F_K(x) + F_{K'}(y) \), where \(K \) and \(K' \) are independent.

(c) (Optional) The function \(F'_K(x) = F_K(x + K) \).

If you answer yes, you need to give a proof that \(F' \) is pseudorandom if \(F \) is, namely prove that if \(F' \) has an efficient distinguisher so does \(F \). Try to work out the best parameters you can.

If you answer no, you need to give a pair of functions \(F, F' \) such that \(F \) is pseudorandom but \(F' \) is not (assuming pseudorandom functions exist).
Question 4

In our setup of private-key encryption we assumed that Alice and Bob share identical copies of the random key. Now suppose that Alice’s and Bob’s copies of the key are noisy. Specifically, the keys K_A, K_B are elements of the group \mathbb{Z}_{2^k} (i.e., integers modulo 2^k) that are individually uniformly distributed such that the difference $K_A - K_B$ is in the range from $-2^b + 1$ to 2^b modulo 2^k (where $b < k$).

(a) Give a definition of a noisy key encryption scheme.

(b) Show that if the message length is less than $k - b$ then there exists a perfectly secure noisy key encryption scheme.

(c) Show that if the message length is $k - b$ or more then perfect security is no longer possible. Show how to construct a message-simulatable (computationally secure) scheme assuming the existence of a pseudorandom generator. Provide a proof of security.