Problem 1

This problem concerns the Goldreich-Goldwasser-Micali construction of pseudorandom functions $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$:

$$GGM(x,y) = G_{x_n}(G_{x_{n-1}}(\cdots G_{x_1}(y)\cdots))$$

In class we showed that if G_0 and G_1 are the left n bits and the right n bits of a pseudorandom generators $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$, then the $F_K(x) = GGM(x,K)$ is a pseudorandom function family. Show that, in general, $H_K(y) = GGM(K,y)$ is not a pseudorandom function family: There exists a pseudorandom generator G for which $\{H_K\}$ is not a pseudorandom function family.

Problem 2

Let (Tag, Ver) be a deterministic MAC that is secure against chosen message attack for messages of length m, key length k, and tag length t. Consider the following MAC (Tag', Ver') for messages of length $2m$ with key length $2k$:

$$Tag'((K_1, K_2), (M_1, M_2)) = Tag(K_1, M_1) + Tag(K_2, M_2)$$

$$Ver'((K_1, K_2), (M_1, M_2), T) = \begin{cases} 1, & \text{if } T = Tag'((K_1, K_2), (M_1, M_2)) \\ 0, & \text{otherwise.} \end{cases}$$

Is (Tag', Ver') secure against chosen message attack?
Problem 3

Let \((Enc, Dec)\) be an encryption scheme with key length \(k\) for message length \(m\). Consider the following encryption scheme \((Enc', Dec')\) with key length \(k\) for message length \(2m\):

\[
Enc'(K, (M_1, M_2)) = (Enc(K, M_1), Enc(K, M_2))
\]

\[
Dec'(K, (C_1, C_2)) = \begin{cases}
(Dec(K, C_1), Dec(K, C_2)), & \text{if } Dec(K, C_1), Dec(K, C_2) \neq \text{error} \\
\text{error}, & \text{otherwise.}
\end{cases}
\]

In case \(Enc\) is randomized, assume that the two calls to \(Enc\) are applied with independent randomness.

(a) Show that if \((Enc, Dec)\) is CPA-secure, then \((Enc', Dec')\) is CPA-secure.

(b) Show that \((Enc', Dec')\) is not CCA-secure.

Problem 4

Alice and Bob are using an encryption scheme \((Enc, Dec)\) with key length \(k\) for messages of length \(m\). Suppose Eve has compromised the security of \((Enc, Dec)\) as follows: Eve has found some small subset of messages \(B \subseteq \{0, 1\}^m\) so that Eve can now decrypt any ciphertext of the form \(Enc(K, M)\) when \(M \in B\) (but finds no information about \(M\) from \(Enc(K, M)\) if \(M\) is not in \(B\)).

To thwart this attack, Alice and Bob replace (patch) their encryption scheme \((Enc, Dec)\) with a new scheme \((Enc', Dec')\). Say that \((Enc', Dec')\) is a secure patch of \((Enc, Dec)\) when the following is true: Even if Eve has the ability to obtain decryptions of ciphertexts \(Enc(K, M)\) when \(M \in B\) for some subset \(B\) of size \(\varepsilon \cdot 2^m\), \((Enc', Dec')\) is still secure.

(a) Give a formal definition of \((s, \varepsilon)\) message indistinguishability for a secure patch under a chosen plaintext attack. The parameter \(\varepsilon\) plays two roles here: It bounds both the size of \(B\) and the success probability of the distinguisher.

Your definition should start like this: “Encryption scheme \((Enc', Dec')\) is a CPA-secure patch of encryption scheme \((Enc, Dec)\) if ...”

(b) Consider the following patch of encryption scheme \((Enc, Dec)\):

\[
Enc'(K, M) = (Enc(K, R), Enc(K, M + R)), \text{ where } R \sim \{0, 1\}^m \text{ is random}
\]

\[
Dec'(K, (C, C')) = Dec(K, C) + Dec(K, C').
\]

Show that if \((Enc, Dec)\) is \((s, \varepsilon)\) CPA-secure, then \((Enc', Dec')\) is an \((\Omega(s), O(\varepsilon))\) CPA-secure patch of \((Enc, Dec)\).

(c) (Optional) If \((Enc, Dec)\) is CCA-secure, is \((Enc', Dec')\) a CCA-secure patch of \((Enc, Dec)\)?