Problem 1

In this question you will investigate the hardness of the distributional Diffie-Hellman problem in cyclic groups. Assume p and $(p - 1)/2$ are both prime numbers. Recall that \mathbb{Z}_p^* is the group \{1, \ldots, p - 1\} under multiplication modulo p and $Q_p = \{y^2 : y \in \mathbb{Z}_p^*\}$.

(a) Choose a generator h of \mathbb{Z}_7^*. Calculate the distributions h^{xy} where x, y are chosen uniformly and independently from \{1, \ldots, 6\} and h^z where z is chosen uniformly from \{1, \ldots, 6\}.

(b) Repeat part (a) for Q_7 instead of \mathbb{Z}_7^*.

(c) Let h be a generator of \mathbb{Z}_p^*. Show that there exists a circuit A of size polynomial in the number of bits of p (i.e. $\log p$) such that

\[
\Pr_{x,y \sim \{1, \ldots, p-1\}}[A(h^{xy}) = 1] - \Pr_{z \sim \{1, \ldots, p-1\}}[A(h^z) = 1] \geq \varepsilon
\]

for some constant $\varepsilon > 0$. You may assume that adding, multiplying, and powering numbers modulo p can be done by circuits of size polynomial in the number of bits of p.

(d) Is part (c) true if we replace \mathbb{Z}_p^* by Q_p?

Problem 2

Prove Theorem 4 from Lecture 10. You do not need to match the exact parameters as long as the loss of security is polynomial.