Problem 1

Consider the following dictatorship test:

Given a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$:

- Apply the linearity test to f:
 - Choose random $a, b \sim \{0, 1\}^n$ and reject if $f(a) + f(b) \neq f(a + b)$.
 - Choose random $x, y \sim \{0, 1\}^n$ and a random partition (I, J) of $\{1, \ldots, n\}$.
 - If $f(x_I x_J) \neq f(x_I y_J)$ and $f(x_I x_J) \neq f(y_I x_J)$, reject.
 - Otherwise, accept.

A random partition (I, J) of $\{1, \ldots, n\}$ is chosen by including each element in I independently and uniformly at random and setting J to be the complement of I. The notation $z_I w_J$ is used for a string in $\{0, 1\}^n$ whose ith coordinate is z_i if $i \in I$ and w_i if $i \in J$.

(a) Show that if f is a dictator, i.e. $f(x) = x_i$ for some $i \in \{1, \ldots, n\}$, then the test accepts f.

(b) Show that if f is balanced (i.e. $E_{x \sim \{0, 1\}^n}[f(x)] = 1/2$) and the test accepts f with probability $1 - \delta$, then there exists a dictator x_i such that $Pr_{x \sim \{0, 1\}^n}[f(x) = x_i] = 1 - O(\delta)$.

Problem 2

The double cover of a graph G is the graph G_2 that has two copies v_1, v_2 of every vertex v in G and an edge (v_1, v_2) for every edge (v, w) of G. For example the double cover of the 3-cycle is the 6-cycle. Show that $\lambda_2(G_2) = \max(\lambda_2(G), -\lambda_n(G))$. Here λ_2 and λ_n denote the second smallest and smallest eigenvalues of the corresponding graph.

Problem 3

Let $D \subseteq \{0, 1\}^n$ be an ε-biased distribution and G be a regular graph whose vertices are labeled by samples of D so that the number of vertices labeled x is proportional to the probability of x under D. Let D' be the following distribution: Uniformly choose a random edge (x_1, x_2) of G and output $x_1 + x_2$. Show that D' is $(\varepsilon^2 + \lambda)$-biased, where $\lambda = \max(\lambda_2(G), -\lambda_n(G))$.