For each of these statements, say if it is true or false. Give a proof or provide a counterexample for your answer.

1. The following language is regular over alphabet $\Sigma = \{0, 1, 2\}$:

 $$L = \{ x : x \text{ contains at least one } 0, \text{ at least one } 1, \text{ and at least one } 2 \} .$$

 True. The following regular expression represents L:

 $$\Sigma^*0\Sigma^*1\Sigma^*2\Sigma^* + \Sigma^*0\Sigma^*2\Sigma^*1\Sigma^* + \Sigma^*1\Sigma^*0\Sigma^*2\Sigma^*$$

 $$+ \Sigma^*1\Sigma^*2\Sigma^*0\Sigma^* + \Sigma^*2\Sigma^*0\Sigma^*1\Sigma^* + \Sigma^*2\Sigma^*1\Sigma^*0\Sigma^* .$$

2. For every regular L, the minimal DFA for L has fewer states than the minimal DFA for L^*.

 False. For example let $\Sigma = \{0, 1\}$ and $L = \{ \varepsilon, 1 \}$. Then $L^* = 1^*$ has a two-state DFA:

 ![Diagram](start \rightarrow q_0 \rightarrow 0 \rightarrow q_1 \rightarrow 1 \rightarrow 0,1)

 However, the following DFA, which is minimal for L, has three states:

 ![Diagram](start \rightarrow q_0 \rightarrow 1 \rightarrow q_1 \rightarrow 0 \rightarrow q_2 \rightarrow 0,1)

 This DFA is minimal because all pairs of states are distinguishable: (q_0, q_2) and (q_1, q_2) by ε, (q_0, q_1) by 1.

3. If L is regular over $\Sigma = \{0, 1\}$, then $L' = \{uxv : x \in L, u, v \in \Sigma^* \}$ is also regular.

 True. If R is a regular expression for L, then $(0 + 1)^*R(0 + 1)^*$ is a regular expression for L'.

4. The CFG $S \rightarrow aSb \mid b$ is LR(0).

 True. The LR(0) DFA for L has no conflicts:

 ![Diagram](start \rightarrow S \rightarrow \bullet aSb \rightarrow a \rightarrow S \rightarrow a \bullet Sb \rightarrow S \rightarrow S \rightarrow aSb \rightarrow b \rightarrow S \rightarrow aSb \bullet \rightarrow b \rightarrow S \rightarrow b \bullet)
5. The CFG \(S \rightarrow 00S1S | 0S1S0 | \varepsilon \) describes a **regular** language.

False. Notice that all strings of the form \(0^{2n}1^n \) are in the CFG, and every string it contains has twice as many 0s as 1s. Suppose that the language of the CFG was regular and let \(n \) be its pumping length. Let \(z = 0^{2n}1^n \), which is in the language. By the pumping lemma, there is a way to write \(z = uvw \) where \(|uv| < n \) and \(v \neq \varepsilon \) such that \(uv^2w \) is in the language. However, the string \(uv^2w \) has more than twice as many 0s as 1s, so it is not in the language. Therefore the language cannot be regular.

6. The language \(L = \{ 0^i1^j1^k : i, j, k \geq 0 \} \) is **context-free**.

True. The following CFG generates \(L \):

\[
S \rightarrow ZA \\
A \rightarrow 1A1 | Z \\
Z \rightarrow 0Z | \varepsilon.
\]

7. The language \(L = \{ \langle M \rangle : \text{TM \(M \) accepts some input of length 1} \} \) is **decidable**.

False. Suppose \(L \) is decidable and let \(D \) be a decider for it. We use \(D \) to decide \(A_{TM} \). To do so, we need to convert a pair \(\langle M, w \rangle \) into a TM \(M' \) such that \(M' \) accepts some input of length 1 if and only if \(M \) accepts \(w \). This can be done by asking \(M' \) to ignore its input and simulate \(M \) on input \(w \). This gives the following TM for \(A_{TM} \):

\[
E : \text{On input } \langle M, w \rangle, \\
\quad \text{Construct the following TM } M' : \\
\quad \quad \text{On any input, simulate } M \text{ on } w \text{ and return its answer.} \\
\quad \text{Run } D \text{ on input } \langle M' \rangle \text{ and return its answer.}
\]

By construction, \(E \) accepts \(\langle M, w \rangle \) if and only if \(D \) accepts \(M' \), that is \(M' \) accepts some input of length 1, which happens if and only if \(M \) accepts \(w \). Therefore \(E \) decides \(A_{TM} \), which is impossible, so \(L \) must be undecidable.

8. The language: \(L = \{ \langle G \rangle : \text{CFG } G \text{ generates all strings except } \varepsilon \} \) is **decidable.** (Assume the alphabet of \(G \) is \(\Sigma = \{0, 1\} \).)

False. Suppose \(L \) is decidable by a TM \(D \). We show how to use \(D \) to decide \(ALL_{CFG} \). To do so, we want to convert a CFG \(G \) into a CFG \(G' \) so that \(G \) accepts all strings if and only if \(G' \) accepts all strings except \(\varepsilon \). To do so, we make the CFG \(G' \) include all rules of \(G \), plus the rules \(S' \rightarrow 0S \) and \(S' \rightarrow 1S \), where \(S \) is the start variable of \(G \), and \(S' \) is a new variable which will be the start variable of \(G' \). If \(G \) generates all strings, then \(G' \) will generate all strings except for \(\varepsilon \). Conversely, if \(G \) fails to generate some string \(w \), then \(G' \) will fail to generate the strings \(0w \) and \(1w \).

More formally, the following TM decides \(ALL_{CFG} \):

\[
E : \text{On input } \langle G \rangle, \\
\quad \text{Construct the CFG } G' \text{ as described above.} \\
\quad \text{Run } D \text{ on input } \langle G' \rangle \text{ and return its answer.}
\]
Then \(E \) accepts \(G \) if and only if \(D \) accepts \(G' \), that is if and only if \(G' \) accepts all strings but \(\varepsilon \), which happens if and only if \(G \) accepts all strings. So \(E \) decides \(\text{ALL}_{CFG} \), which is impossible. It must be that \(L \) is undecidable.

9. The language \(L = \{\langle P \rangle : P \) is in PCP and every tile in \(P \) is a \(\{0, 1\} \) tile.\} is \textbf{decidable}.

A \(\{0, 1\} \) tile is a tile on which only the symbols 0 and 1 are allowed to appear. \textbf{False.} We show that if we can decide \(L \), then we can decide PCP, in which arbitrary symbols are allowed on the tiles. Let \(P \) be an instance of PCP. Represent every symbol that appears on a tile of \(P \) by a string in \(\{0, 1\}^* \) of the same length; for example, if \(\{a, b, c, d, e\} \) are the symbols on the tiles of \(P \), then represent \(a \) by 000, \(b \) by 001, \(c \) by 010, \(d \) by 011, and \(e \) by 100. After this change of representation call the new instance \(P' \). Then \(P' \) has a match if and only if \(P \) has a match.

So suppose \(M \) is a TM that decides \(L \). Then the following TM decides PCP: On input \(P \), construct the instance \(P' \) by replacing every symbol on a tile of \(P \) by a string in \(\{0, 1\}^* \) so that all strings are distinct and of the same length. Run \(M \) on input \(P' \) and output its answer.

10. The following language is \textbf{NP-complete} (i.e., it is in NP and it is NP-hard):

\[
L = \{(G, k) : G \text{ is a graph that has two or more cliques of size } k.\}
\]

\textbf{True.} To show \(L \) is in NP, we describe a solution for \(L \) and a polynomial-time verifier that checks the solution is correct. A solution for \(L \) is a pair of sets of vertices \(S, T \). The verifier checks that \(S \) and \(T \) both have size \(k \), they are not the same, and \(S \) and \(T \) are both cliques (i.e. for every pair of vertices \(u, v \in S \) and \(u, v \in T \), \(\{u, v\} \) is an edge in \(G \). We can do so by iterating over all \(O(k^2) \) pairs of vertices in \(S \) and \(T \), so the verifier certainly runs in polynomial time.

We now give a polynomial-time reduction from \(\text{CLIQUE} \) to \(L \). Given an instance \(\langle G, k \rangle \) of clique, we produce the instance \(\langle G', k \rangle \) of \(L \), where \(G' \) is a graph consisting of two disjoint copies of \(G \). Clearly this reduction can be implemented in polynomial time (as it merely requires making a copy of the input). Moreover, \(G' \) has two or more cliques of size \(k \) if and only if \(G \) has a clique of size \(k \), so \(\langle G, k \rangle \in \text{CLIQUE} \) if and only if \(\langle G', k \rangle \in L \). Since \(\text{CLIQUE} \) is NP-complete, \(L \) must be NP-complete too.