For each of these statements, say if it is true or false. Give a proof or provide a counterexample for your answer.

1. The following language is regular over alphabet $\Sigma = \{0, 1, 2\}$:

 \[L = \{x: x \text{ contains at least one 0, at least one 1, and at least one 2}\}. \]

 True. The following regular expression represents L:

 \[
 \Sigma^*0\Sigma^*1\Sigma^*2\Sigma^* + \Sigma^*0\Sigma^*2\Sigma^*1\Sigma^* + \Sigma^*1\Sigma^*0\Sigma^*2\Sigma^* \\
 + \Sigma^*1\Sigma^*2\Sigma^*0\Sigma^* + \Sigma^*2\Sigma^*0\Sigma^*1\Sigma^* + \Sigma^*2\Sigma^*1\Sigma^*0\Sigma^*.
 \]

2. For every regular L, the minimal DFA for L^* has fewer states than the minimal DFA for L^*.

 False. For example let $\Sigma = \{0, 1\}$ and $L = \{\varepsilon, 1\}$. Then $L^* = 1^*$ has a two-state DFA:

 However, the following DFA, which is minimal for L, has three states:

 This DFA is minimal because all pairs of states are distinguishable: (q_0, q_2) and (q_1, q_2) by ε, (q_0, q_1) by 1.

3. If L is regular over $\Sigma = \{0, 1\}$, then $L' = \{uxv: x \in L, u, v \in \Sigma^*\}$ is also regular.

 True. If R is a regular expression for L, then $(0 + 1)^*R(0 + 1)^*$ is a regular expression for L'.

4. The CFG $S \rightarrow aSb | b$ is $LR(0)$.

 True. The LR(0) DFA for L has no conflicts:
5. The CFG $S \to 00S1S \mid 0S1S0 \mid \varepsilon$ describes a **regular** language.

False. Notice that all strings of the form $0^{2n}1^n$ are in the CFG, and every string it contains has twice as many 0s as 1s. Suppose that the language of the CFG was regular and let n be its pumping length. Let $z = 0^{2n}1^n$, which is in the language. By the pumping lemma, there is a way to write $z = uvw$ where $|uv| < n$ and $v \neq \varepsilon$ such that uv^2w is in the language. However, the string uv^2w has more than twice as many 0s as 1s, so it is not in the language. Therefore the language cannot be regular.

6. The language $L = \{0^i1^j0^k1^l : i, j, k \geq 0\}$ is **context-free**.

True. The following CFG generates L:

$$
S \rightarrow ZA \\
A \rightarrow 1A1 \mid Z \\
Z \rightarrow 0Z \mid \varepsilon.
$$

7. The language $L = \{\langle M \rangle : TM M$ accepts some input of length 1 $\}$ is **decidable**.

False. Suppose L is decidable and let D be a decider for it. We use D to decide A_{TM}. To do so, we need to convert a pair $\langle M, w \rangle$ into a TM M' such that M' accepts some input of length 1 if and only if M accepts w. This can be done by asking M' to ignore its input and simulate M on input w. This gives the following TM for A_{TM}:

$E :=$

On input $\langle M, w \rangle$,

Construct the following TM M':

- **On any input**, simulate M on w and return its answer.
- **Run** D on input $\langle M' \rangle$ and return its answer.

By construction, E accepts $\langle M, w \rangle$ if and only if D accepts M', that is M' accepts some input of length 1, which happens if and only if M accepts w. Therefore E decides A_{TM}, which is impossible, so L must be undecidable.

8. The language: $L = \{\langle G \rangle : CFG G$ generates all strings except $\varepsilon\}$ is **decidable**.

(Assume the alphabet of G is $\Sigma = \{0, 1\}$.)

False. Suppose L is decidable by a TM D. We show how to use D to decide ALL_{CFG}. To do so, we want to convert a CFG G into a CFG G' so that G accepts all strings if and only if G' accepts all strings except ε. To do so, we make the CFG G' include all rules of G, plus the rules $S' \rightarrow 0S$ and $S' \rightarrow 1S$, where S is the start variable of G, and S' is a new variable which will be the start variable of G'. If G generates all strings, then G' will generate all strings except for ε. Conversely, if G fails to generate some string w, then G' will fail to generate the strings $0w$ and $1w$.

More formally, the following TM decides ALL_{CFG}:

$E :=$

On input $\langle G \rangle$,

- **Construct the CFG** G' as described above.
- **Run** D on input $\langle G' \rangle$ and return its answer.
Then E accepts G if and only if D accepts G', that is if and only if G' accepts all strings but ε, which happens if and only if G accepts all strings. So E decides ALL_{CFG}, which is impossible. It must be that L is undecidable.

9. The language $L = \{ \langle M \rangle : \text{TM } M \text{ accepts some input of the form } xx^R \}$ is **recognizable**.

True. To recognize L, we want to simulate M on all inputs of the form xx^R and see if it ever accepts. The trouble is that there are infinitely many some inputs, and even when $x = \varepsilon$, M might go on forever. So we do a “fair simulation” in the sense that for k ranging from 0 to infinity, we simulate M on all inputs of the form xx^R of length at most $2k$ for at most k steps. This way we can make sure that even if M loops on some inputs, as long as it accepts xx^R, we will be eventually given enough time to simulate M on this input until it accepts.

Formalizing this discussion, the following TM recognizes L:

$E :=$

On input $\langle M \rangle$,

For $k := 1$ to infinity:

For every string x of length at most k:

Simulate M on input xx^R for at most k steps.

If it accepts, accept.

If M accepts some input xx^R of length $2t$ in at most s steps, then by the time $k = \max\{t, m\}$, E will have accepted M. If M does not accept any such input, E will loop forever on input M. So E recognizes L.

10. The following language is NP-**complete** (i.e., it is in NP and it is NP-hard):

$L = \{ \langle G, k \rangle : G \text{ is a graph that has two or more cliques of size } k \}$

True. To show L is in NP, we describe a solution for L and a polynomial-time verifier that checks the solution is correct. A solution for L is a pair of sets of vertices S, T. The verifier checks that S and T both have size k, they are not the same, and S and T are both cliques (i.e. for every pair of vertices $u, v \in S$ and $u, v \in T$, $\{u, v\}$ is an edge in G). We can do so by iterating over all $O(k^2)$ pairs of vertices in S and T, so the verifier certainly runs in polynomial time.

We now give a polynomial-time reduction from $CLIQUE$ to L. Given an instance $\langle G, k \rangle$ of clique, we produce the instance $\langle G', k \rangle$ of L, where G' is a graph consisting of two disjoint copies of G. Clearly this reduction can be implemented in polynomial time (as it merely requires making a copy of the input). Moreover, G' has two or more cliques of size k if and only if G has a clique of size k, so $\langle G, k \rangle \in CLIQUE$ if and only if $\langle G', k \rangle \in L$. Since $CLIQUE$ is NP-complete, L must be NP-complete too.