Problem 1

(a) Let M_1, M_2, \ldots be an enumeration of polynomial-time Turing Machines. Since $L \notin \text{P}$, for each machine M_i there exist infinitely many x such that M_i fails to solve x correctly for L. The distribution $\mu_{L,n}$ will be designed in a way so that it gives substantial probability to such x. Then if we think of M_i as a heuristic, it will fail with non-negligible probability.

Let’s look at a particular instance length n and the first n machines M_1, \ldots, M_n. If the machine M_i fails to solve some x of length n correctly, $\mu_{L,n}$ will assign probability about $1/n$ to this x. This will ensure that for every machine M_i, a lot of probability will fall on instances that M_i does not solve correctly.

More formally, we have

$$\mu_{L,n}(x) = \begin{cases} p_n, & \text{if } x \text{ is the first string of length } n \text{ such that } M_i(x; 1/n^2) \neq L(x) \text{ for some } i \leq n; \\ 0, & \text{otherwise.} \end{cases}$$

The number p_n is chosen so that $\mu_{L,n}$ is a probability distribution, namely the probabilities are distributed evenly among all the instances of the first type. Note that $p_n \geq 1/n$ since at most n strings are ”covered” by nonzero probability in the above definition.

Now, for every potential heuristic algorithm M_i for L, let x^* be the first x of length $n \geq i$ such that $M_i(x^*; 1/n^2) \neq L(x^*)$. But $\mu_{L,n}(x^*) = p_n \geq 1/n$, therefore

$$\Pr_{x \sim \mu_{L,n}}[M_i(x; 1/n^2) \neq L(x)] \geq 1/n^2$$

so M_i cannot be a heuristic algorithm for L.

(b) The “if” direction is true for every ensemble μ. For the “only if” part we need to come up with a μ such that if $L \in \text{NP} - \text{P}$ then (L, μ) doesn’t have a polynomial-time heuristic. Let N_1, N_2, \ldots be an enumeration of nondeterministic polynomial-time turing machines. Define μ as follows.

$$\mu_n(x) = \frac{\mu_{L(N_1),n}(x) + \cdots + \mu_{L(N_n),n}(x)}{n},$$

where $L(N_i)$ is the language defined by machine N_i and $\mu_{L(N_i),n}$ is defined as in part (a).

Now suppose M_i is a potential heuristic algorithm for L. Let x^* be the first string of length $n \geq i$ such that $M_i(x^*; 1/n^2) \neq L(x^*)$. Then $\mu_{L,n}(x^*) \geq 1/n$ and therefore $\mu_n(x^*) \geq 1/n^2$. However,

$$\Pr_{x \sim \mu_n}[M_i(x; 1/n^2) \neq L(x)] \geq 1/n^2$$

so M_i is not a heuristic algorithm for L.

1
Problem 2

(a) Suppose, by way of contradiction, that \(\mu \) is polynomial time computable. Therefore, there is an efficient procedure that on input \(x \) computes \(\mu_n(x) \). Let \(\nu \) be the uniform distribution. To distinguish \(\mu \) from \(\nu \), consider the following test \(T(\cdot) \). On input \(x \), if \(\mu_n(x) > 0 \) then output 1, otherwise output 0. Since for at least half the strings we have \(\mu_n(x) = 0 \), it follows that \(\Pr_{X \sim \{0,1\}^n}[T(G_n(X)) = 1] - \Pr_{Y \sim \{0,1\}^m}[T(Y) = 1] \geq 1/2 \). This contradicts the assumption that \(G_n \) is a pseudorandom generator.

(b) To prove that \(\text{PComp} = \text{PSamp} \) implies \(\text{P} = \text{P}^{\#P} \), recall that there is a randomized algorithm \(R \) which given a DNF formula uniformly samples a satisfying assignment in expected polynomial time. Consider now an algorithm that first picks a random formula \(\varphi \) of length \(n \), and then runs \(R \) to produce \((\varphi, R(\varphi) \)) . This algorithm can be viewed as a polynomial-time sampler for pairs \((\varphi, a)\) (for simplicity assume \(|\varphi| = |a| = n \)) from the distribution

\[
\mu_{2n}(\varphi, a) = \begin{cases}
1/(2^n \cdot \#\text{SAT}(\varphi)), & \text{if } a \text{ is a satisfying assignment for } \varphi; \\
0, & \text{otherwise};
\end{cases}
\]

Under the assumption \(\text{PComp} = \text{PSamp} \), there is a polynomial-time algorithm that on input \((\varphi, a)\) computes the value \(\mu_{2n}(\varphi, a) \). We can use this algorithm to solve \(\#\text{DNF} \) exactly as follows: On input \(\varphi \), first find an arbitrary satisfying assignment \(a \) for \(\varphi \) (this can be done in linear time), then output the value \(1/(2^n \cdot \mu_{2n}(\varphi, a)) = \#\text{SAT}(\varphi) \). Since \(\#\text{DNF} \) is \(\text{P} \)-complete it follows that \(\text{P} = \text{P}^{\#P} \).

One can prove a statement in the opposite direction if the sampling algorithm \(S \) always runs in polynomial time. Then there is a polynomial-time verifier \(A \) that takes input \(x \) of length \(n \) and potential witness \(r \) and accepts when \(S(1^n, r) \leq x \) (meaning that when the sampling algorithm uses \(r \) as its randomness, it outputs a string that is lexicographically at most \(r \)). Then

\[
\overline{\mu}_n(x) = |\{ r, |r| = p(n) : M(x, r) \text{ accepts} \}|/2^{p(n)}.
\]

where \(S(1^n) \) uses \(p(n) \) bits of randomness. If \(\text{P} = \text{P}^{\#P} \) this quantity is clearly computable in polynomial time.

Problem 3

Let \(A' \) be an average polynomial-time algorithm with running time \(t_{A'}(x) \) on input \(x \), which for some constant \(c \) satisfies \(E_{x \sim \mu_n}[t_{A'}(x)^{1/c}] = O(n) \). By Markov’s inequality for every \(\varepsilon > 0 \) we have

\[
\Pr[t_{A'}(x)^{1/c} > O(n/\varepsilon)] < \varepsilon.
\]

To construct an algorithm \(A \) with the desired properties, we run \(A' \) for \(O((n/\varepsilon)^c) \) steps, and if it halts we output the answer, otherwise we output “fail”. We have

\[
\Pr[A(x, \varepsilon) = \text{“fail”}] = \Pr[t_{A'}(x) > O((n/\varepsilon)^c)] = \Pr[t_{A'}(x)^{1/c} > O(n/\varepsilon)] < \varepsilon
\]

as desired.
For the converse, suppose that
\[\Pr_{x \sim \mu_n} [A(x; \varepsilon) = \text{“fail”}] < (n/\varepsilon)^c \]
for every \(\varepsilon > 0 \). We use \(A \) to construct an average polynomial-time algorithm \(A' \) as follows: On input \(x \), first try running \(A(x; 1/2) \). This should take care of half the inputs. If \(A \) fails, try running \(A(x; 1/4) \). This should take care of half the remaining inputs, and so on. More formally,

\[
A'(x)
\]
1 \(k \leftarrow 0 \)
2 \(\textbf{repeat} \ k \leftarrow k + 1 \)
3 \hspace{1em} \text{answer} \leftarrow A(x, 2^{-k}) \)
4 \hspace{1em} \textbf{until} \ \text{answer} \neq \text{“fail”} \)
5 \(\textbf{return} \ \text{answer} \)

Let \(S_k \) be the set of all inputs of length \(n \) that are solved in the \(k \)th iteration of this algorithm. Then \(\Pr_{x \sim \mu_n}[x \in S_k] \leq 2^{-k+1} \), because iteration \(k - 1 \) has solved all but a \(2^{-(k+1)} \) fraction of inputs. Also, if \(x \in S_k \) then the running time \(t_{A'}(x) \) is at most \(\sum_{i=1}^{k} ((n \cdot 2^i)^c + O(1)) = O((n \cdot 2^k)^c) \).

\(A' \) is an average polynomial-time algorithm since

\[
\mathbb{E}_{x \sim \mu_n}[t_{A'}(x)^{1/2}] = \sum_{k=1}^{\infty} \mathbb{E}_{x \sim \mu_n}[t_{A'}(x)^{1/2} | x \in S_k] \cdot \Pr[x \in S_k]
\leq \sum_{k=1}^{\infty} O((n \cdot 2^k)^{c/2}) \cdot 2^{-k+1}
= \sum_{k=1}^{\infty} O(n^{1/2} \cdot 2^{-k/2}) = O(n^{1/2}).
\]

Now let \(R \) be a reduction from \((L, \mu)\) to \((L', \mu')\), and let \(p(n) \) be the polynomial associated with \(R \). If \(A' \) is an algorithm for \((L', \mu')\), define the algorithm \(A \) for \((L, \mu)\) as \(A(x; \varepsilon) = A'(R(x); \varepsilon/p(n)) \). It can be shown (see the proof of theorem 7 in the notes) that \(\Pr[A(x; \varepsilon) = \text{“fail”}] \leq \varepsilon \).

Problem 4

Observe that a graph \(G \) has a cycle of odd length if and only if there is an edge \((u, v)\) for which there is also a path of even length between \(u \) and \(v \). Furthermore, there is a path of even length between two nodes \(u, v \in V(G) \) if and only if \((G^2, u, v) \in USTCON \). Consider now the following algorithm.

\[
S(G)
\]
1 \(\textbf{for} \ \text{each edge} \ (u, v) \ \text{in} \ G \)
2 \hspace{1em} \textbf{do if} \ \((G^2, u, v) \in USTCON \)
3 \hspace{2em} \textbf{then} \ \textbf{reject} \)
4 \(\textbf{accept} \)
By the above discussion, this algorithm accepts if and only if G is bipartite. The algorithm can also be made to use logarithmic space. The only problem is that we cannot afford to construct G^2 and feed its description to our subroutine for $USTCON$. However, we can decide if there is a path of length two between two nodes $u, v \in G(V)$, i.e. if (u, v) is an edge in G^2, just by using the description of G and logarithmic space (check if there is a w such that (u, w) and (w, v) are both edges of G). Hence, every time the subroutine $USTCON$ needs to know if (u, v) is an edge of G^2, we can answer in logarithmic space.