Problem 1

(a) Since $L_R \in P$, there is a polynomial-time algorithm A which on input $(M, x, z, 1^t)$ decides if there is a y (with z a prefix of y and $|y| \leq t$) such that M accepts (x, y) in at most t steps. We are going to construct a polynomial-time search algorithm S for L_R, using A as a subroutine.

Our algorithm S will start with z and by asking A the proper questions will extend it bit by bit to an answer y (if one exists).

S$(M, x, z, 1^t)$
1 $p \leftarrow z$
2 if $A(M, x, p, 1^t)$ rejects
3 then return No
4 while TRUE
5 do if $A(M, x, p0, 1^t)$
6 then $p \leftarrow z0$
7 elseif $A(M, x, p1, 1^t)$
8 then $p \leftarrow p1$
9 else return p

It is easy to see that before each while loop (and if an answer y exists), it holds that z is an extendable prefix of some y. The algorithm will terminate after at most t iterations.

(b) Let R' be any NP-search problem described by verifier M, input x, polynomial bound $p(\cdot)$. Then the search problem R (defined as in part (a)) is an NP-search problem, and by our assumption that $P = NP$ there must be a polynomial time algorithm for L_R. Hence, we can run the search algorithm S for R on input $(M, x, \varepsilon, 1^{p(|x|)})$ (where ε is the empty string).

Problem 2

First note that there is a polynomial-time turing machine V, which on input (x, y) verifies whether y is a valid answer for x or if it is not. Now let M_1, M_2, \ldots, be an enumeration of turing machines. Our algorithm A on input x will simulate machines M_1, M_2, \ldots, M_n (where $n = |x|$) on x. Since A doesn't know if those machines ever stop, it cannot simulate them sequentially. A will simulate one step of M_1, then one of M_2, and so on; until it reaches M_n, at which point it starts all over again.

In the process of this simulation, when a machine M_i halts and outputs a y, our algorithm runs V to see whether $(x, y) \in R$; if the answer is positive it halts and returns y, otherwise it continues with the simulation.
To take care of the case when there is no \(y \) such that \((x, y) \in R\), \(A \) runs in parallel an exponential search algorithm \(S \) for \(R \). Let the running time of \(S \) to be at most \(2^n c \), for a constant \(c \).

Suppose now, that a search algorithm \(M \) for \(R \) exists among the machines \(M_1, M_2, \ldots, M_n \). In this case, if \(t \) is the running time of \(M \), \(A \) will simulate at most \(t \) steps of machines \(M_1, M_2, \ldots, M_n \) until the answer is found. This can be done in \(O(nt^2) \) time for the \(n \) simulations (the square on \(t \) accounts for the simulation overhead) plus an additional \(n c \) for the verification.

If \(M \) is not among \(M_1, M_2, \ldots, M_n \), then the answer will be given (if not from one of these machines) from the exponential search algorithm for \(R \) that is run in parallel.

All in all, if \(M \) is the \(k \)-th machine in the enumeration, we have the following running times. If \(x \in L \) then the running time is \(O(nt^2 + n^c) \). (When \(n < k \) the running time is \(O(2^k c) \), but this is just a constant consumed by the \(O \)-notation.) If \(x \notin L \) then the running time is \(O(2^n c) \), as required.

Problem 3

(a) As it was shown in class, there exist functions \(f : \{0, 1\}^n \to \{0, 1\} \) that cannot be computed by any circuit of size \(s(n) \). For each such function \(f \), let \(L'_f = \{ x \in \{0, 1\}^n \mid f(x) = 1 \} \). Now order the set of these languages by inclusion, and pick a minimal language \(L' \). There has to be at least one element \(x_0 \) in \(L' \) (otherwise \(f \) would be an easy function). Observe that by the minimality of \(L' \) we know that \(L = L' - \{x_0\} \) has to be in \(\text{SIZE}(s(n)) \).

(b) In view of part (a) it is enough to argue that \(L \cup \{x_0\} \) is in \(\text{SIZE}(s(n) + O(n)) \). This is true because we can augment the circuit for \(L \) with a small circuit that checks whether \(x = x_0 \).

(c) The same argument for Turing Machines would have to consider functions that take as input a string of any length. This has the effect that there might be no minimal element in the corresponding ordering of the functions.

Problem 4

(a) From problem 3 we know that there are languages in \(\text{SIZE}(n^{11}) \) that are not in \(\text{SIZE}(n^{10}) \). It suffices to show that such a language is in \(\Sigma_4 \). Now fix an input length \(n \) and consider the smallest circuit \(C_n \) that computes a function on \(n \) bits not computable by any circuit of size \(n^{10} \). We know \(C_n \) will have size at most \(n^{11} \). Define \(L \) on inputs of length \(n \) as the set of all \(x \) accepted by \(C_n \).

Recall that circuits of size \(s \) can be described by strings of \(O(s \log s) \) bits, and when we say one circuit is smaller than another we mean that it is described by a lexicographically smaller string.

We show that \(L \) is in \(\Sigma_4 \). For this, observe that \(C = C_n \) can be uniquely described as the circuit with the following two properties:

- If \(D \) is a circuit of size \(n^{10} \), then \(C \) and \(D \) do not compute the same function.
• If E is a smaller circuit than C, then E computes some function in $\text{SIZE}(n^{10})$. Namely, there is a circuit F of size n^{10} such that E and F compute the same function.

Formally, we have that

$$x \in L \iff \exists C \text{ of size at most } |x|^{11} \text{ such that}$$

$$\forall D \text{ of size } |x|^{10}, \exists y \text{ such that } C(y) \neq D(y) \text{ and}$$

$$\forall E \text{ smaller than } C$$

$$\exists F \text{ of size } |x|^{10} \text{ such that } \forall z, E(z) = F(z) \text{ and}$$

$$C(x) = 1.$$

By construction, for sufficiently large input lengths n, L is not computable by any circuit of size n^{10}.

(b) Consider the relation of NP and $\text{SIZE}(n^{10})$. If $\text{NP} \not\subseteq \text{SIZE}(n^{10})$, then clearly $\Sigma_2 \not\subseteq \text{SIZE}(n^{10})$. On the other hand, if $\text{NP} \subseteq \text{SIZE}(n^{10})$, then $\Sigma_2 = \Sigma_4$ by the Karp-Lipton theorem. It follows from part (a), that $\Sigma_2 \not\subseteq \text{SIZE}(n^{10})$.