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Abstract. Given a social network, we are interested to determine k

seeds that maximize the dissemination of information. Based on the prin-
ciple of homophily, communities play an important role since information
can be disseminated to communities via the seeds. We introduce a new
mechanism for detecting communities satisfying the pertinent criteria for
communities and information dissemination. We demonstrate the effec-
tiveness of our approach by an application of the results for influence
maximization.
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1 Introduction

With the growth in social networks and other massive networks, network analysis
has emerged as an important research topic. The detection of communities or the
listing of cohesive subgraphs for a given graph has been of great interest. From
studies in sociology, communities are a powerful channel for the dissemination of
information [14, 16]. Our problem can be described as follows. In a social network,
each vertex corresponds to an individual. We are given a limited amount of
resources to inform a seed set of vertices (individuals) of size k and the problem
is how to choose the seed set to maximize the spread from this seed set to other
individuals in the network. We call this the IDM problem problem (IDM stands
for Information Dissemination Maximization).

Inspired by the study in sociology about the role of homophily in information
dispersal, we propose a model on the IDM problem based on communities. As
in previous works on community discovery or cohesive subgraphs, we assume
that we are given a simple undirected unweighted graph [9]. Our community
definition is related to two basic criteria for cohesive subgraphs, namely, the
concept of a clique (i.e. a set of vertices that induces a complete subgraph), and
the density of the subgraph. In addition, we consider the distances of vertices
from the seed. A key idea in the community search is that we look for the seeds
in the process. Each community search begins with a potential seed vertex.

We show that the related optimization problems are NP-hard. We propose
efficient algorithms for finding good core-based communities. We then apply the



solution to the problem of influence maximization [11], which has important
applications in viral marketing, and the results on a real dataset show that our
solution outperforms other state-of-the-art methods.

2 Problem Definition

We study the problem of information dissemination maximization (IDM) in an
undirected simple graph, G = (V,E), where V is the set of vertices and E is the
set of edges of G. An edge in E between vertices u, v in V is denoted by (u, v)
or (v, u), u is a neighbor of v, and vice versa. adj(u) is the set of neighbors of
u. Degree d(u) = |adj(u)|. A subgraph of G induced by vertex set V ′ is denoted
by G(V ′). We state the general problem definition as follows.

Problem Definition (IDM): Given a graph G = (V,E), and a positive
integer k, information dissemination maximization (IDM) aims to find a set S of
k seeds, where S ⊆ V , that maximizes the number of vertices that are informed
by the seed vertices according to some information dissemination model.

A complete undirected simple graph G = (V,E) is a graph such that every
pair of vertices u, v in V is linked by an edge (u, v) in E. A subset of vertices,
C ∈ V , is called a clique if the subgraph of G induced by C is a complete
subgraph. The size of C is given by the number of vertices in C. The edges
(v0, v1), (v1, v2)...(vℓ−1, vℓ) in G forms a path. The length of the path v0, v1, ..., vℓ
is given by ℓ.

Definition 1. Density: Given a set of vertices S ⊆ V and the induced subgraph

GS = (VS , ES), the density of S is denoted as den(S) and den(S) = 2|ES|
|VS|∗(|VS |−1) .

Definition 2. Radius: Given a core set C and a set S, where C ⊆ S ⊆ V , the
radius of S regarding C is defined as the maximum shortest path from u ∈ S
to core C, denoted as RC(S) and RC(S) = maxu∈S{minv∈C |SP (u, v)|}, where
|SP (u, v)| is the length of a shortest path from u to v in G(S).

We say that S ⊆ V satisfies a density constraint of γ if den(S) ≥ γ. Let
C ⊆ S ⊆ V , we say that S and C satisfy a radius constraint of r if RC(S) ≤ r.
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Fig. 1. Two Example Graphs



Definition 3. Core-based Local Community: Given a graph G = (V,E).
Given a clique size threshold of K, a density constraint γ, and a radius constraint
r, a candidate core-based local community of a vertex u ∈ V is a vertex set V ′,
where V ′ ⊆ V , such that (1) there exists a clique (core) c(u) of size at least K,
where u ∈ c(u) ⊆ V ′, (2) Rc(u)(V

′) ≤ r and (3) den(V ′) ≥ γ. There can be more
than one candidate core-based local community for a vertex u, one of them is
assigned to u and we refer to it as the core-based local community of u, denoted
by LC(u).

For simplicity we may refer to a core-based local community as local com-
munity or simply LC. The computation of a core-based local community for a
vertex u can be broken down into 2 steps, the core c(u) is first located, followed
by an extension to a neighborhood of c(u) within the radius constraint and the
density constraint.

LC based Information Dissemination Model: Given a seed set S where
each vertex w in S is assigned a local community LCw under the constraints of
K, γ, and r, LCw forms a base for information dissemination by w. The spread
base by seed set S is denoted as IS =

⋃
w∈S LCw. The size of the spread base is

given by g(S) = |IS |.
Example 1. Figure 1 (a) shows a graph with 9 vertices. Let K = 3, the density
constraint, γ, be 1, and the radius constraint, r, be 1. Suppose the seed set
S = {g,m} and LCg = LC(g) = {a, b, d, g}, LCm = LC(m) = {a,m, n},
then the spread base size is g(S) = |{a, b, d, g,m, n}| = 6. Note that there are
other possible candidates for LC(g), such as {a, b, g, c} and {a, d, f, g}. One such
candidate is set as LC(g).

Example 2. Consider the graph in Figure 1 (a) again, let K = 3, and the radius
constraint, r, be 1. If the density constraint γ = 0.6, then we may set LC(g) =
{g, a, b, d, f, c, e} since there are 15 edges in the induced graph. If γ = 0.8, then
we may set LC(g) = {g, a, b, d, f, c}, since there are 12 edges in the induced
subgraph.

IDM-LC Maximization Problem: The IDM problem under the LC based
information dissemination model is to select k local communities so as to give
the maximum value of g(S), where S is the set of k seeds to which the k local
communities are assigned.

It is easy to show that this problem is NP-hard since the classical maximum
clique problem can be reduced to this problem by setting k = 1, γ = 1. In the
next sections we shall examine the sub-problems involved.

3 Core-based Local Community

From previous discussions, computing a core-based local community for u con-
sists of two steps: finding the core and extending the core. In the following, we
show that these sub-problems are hard, we propose greedy algorithms for getting
feasible solutions and analyze the corresponding complexity for each of the two
sub-problems.



3.1 Finding the Cores

We are given a threshold of the core size K, a radius constraint r, and a density
constraint of γ. First we consider the problem of finding the core for vertex u
with a size of K or above. We show that this is NP-hard by showing that the
decision problem of whether there exists a clique of size K is NP-hard. The proof
is by a reduction from the classical maximum clique problem. A clique of size
k exists in a graph G if and only if there exists in G a vertex v such that the
maximum clique containing v has size k.

The maximum clique containing a vertex v is desirable for the core of v
because a clique is the most densely connected subgraph with the smallest di-
ameter. This is related to the NP-hard problem of computing the maximum
clique of a graph. However, known algorithms for maximum clique cannot be
adopted for two reasons. Firstly, existing heuristic algorithms are not scalable
to very large graphs [3, 18]. Typically they deal with denser graphs, and their
targeted graphs are small, e.g. |V | ≤ 1000, whereas social networks have very
low average degrees but |V | is very large. Secondly, our problem is to find the
maximum clique containing a vertex for each vertex in the graph, which is dif-
ferent from finding a single maximum clique for the entire graph. Here, we deal
with this problem with an efficient greedy algorithm as shown in Algorithm 1.

In Algorithm 1, we maintain a clique c(u) which contains u for each vertex
u. Initially c(u) contains only u, and more vertices are added to c(u) iteratively.
A vertex v is a candidate to be added to c(u) if and only if v is a neighbor to
every vertex in the current c(u). Thus, for each vertex u, initially c(u) = {u}
and the initial candidate set cand consists of the neighbors of u (line 4 ). After
the initialization, we iteratively select the vertex u′ such that the candidate
set in the next iteration is maximized (line 6 ) and update the candidate set
by intersecting with the neighbors of u′(line 7 ). This maintains the invariant
that each candidate is a neighbor to every vertex in c(u). We repeat until no
more candidate remains. Algorithm 1 selects a clique in a way to maximize the
potential clique size at each vertex selection in line 7. Though there can be more
than one eligible LC for a vertex, only one of them will be selected. In Figure
2 (a), {a, b, c, d} will be returned as the core c(a). We show that this algorithm
has a scalable time complexity.

Lemma 1. Given G = (V,E), the time complexity of Algorithm 1 is given by
O(|cmax||V |d2max), where |cmax| is the maximum core size, and dmax is the max-
imum degree of a vertex.

Proof. In each while loop, line 6 is the most costly operation compared to lines
7,8. Hence we calculate the complexity of line 6, which involves the intersection
of two sorted sets, for each while loop of ∀u ∈ V . Note that d(u) = |adj(u)|.

Σv∈cand(d(u) + d(v)) < Σv∈adj(u)(d(u) + d(v)) = d2(u) +Σv∈adj(u)d(v)

The time complexity is analyzed as follows:Σu∈V |cmax|∗(d2(u)+Σv∈adj(u)d(v)) =
|cmax|(Σu∈V d

2(u) + Σu∈V Σv∈adj(u)d(v) = |cmax|(Σu∈V d
2(u) + Σu∈V d

2(u)) =
2|cmax|(Σu∈V d

2(u)). Thus, the complexity is O(|cmax||V |d2max).



Algorithm 1: SelectMC(G,K)

Input : A graph G = (V,E), parameter K
Output: C = {c(u): c(u) is an approximate maximum clique containing u ∈ V }
begin1

C ← ∅;2

foreach vertex u ∈ V do3

cand← adj(u); c(u)← {u};4

while cand 6= ∅ do5

u′ ← argmaxv∈cand{|cand ∩ adj (v)|};6

cand ← cand ∩ adj (u ′);7

c(u)← c(u) ∪ {u′};8

if |c(u)| < K then9

c(u)← ∅;10

C ← C ∪ {c(u)};11

return C;12

end13

Most existing social networks have been found to be scale-free [1, 8] and they
have a highly scalable time complexity as shown below.

Lemma 2. For a scale free network G with a parameter of γ, 2 < γ < 3, the
time complexity of Algorithm 1 is O(|cmax||V |dmax).

Proof. From the proof of Theorem 1, the time complexity of SelectMC(G,K) is
O(2|cmax|(Σu∈V d

2(u)). For a scale-free network, the degree distribution follows
a power law. The fraction p(k) of vertices in the network having degree k is given
by p(k) ≈ k−γ , where typically 2 < γ < 3.

Σu∈V d
2(u) ≈ ∑dmax

k=1 p(k)|V |k2 ≈ |V |∑dmax

k=1 k2−γ = |V |∑dmax

k=1 k−α, where
α = γ−2 and 0 < α < 1. Since the summation in the above expression is a mono-

tonically increasing function of k, we can bound it by
∫ dmax

k=0 k−α ≤ ∑dmax

k=1 k−α ≤
∫ dmax+1

k=1
k−α ≤ 1

1−α
(dmax + 1)1−α = O(dmax). Thus, Σu∈V d

2(u)=O(|V |dmax),
and the complexity of O(|cmax||V |dmax) follows.

Many social networks have a dmax much smaller than |V |, typically less than√
V . The core size cmax is also very small. As reported in [19], the maximum

clique sizes in their experiments are below 100. The core sizes in our experiments
with real datasets are similarly small.

3.2 Extending the Cores

After getting the core for each vertex u, we next extend the core to get a core-
based local community that is within the density and radius constraints. Since
the goal is to maximize the spread, in this step we consider to maximize the size of
the local communities. However, we show that the maximum local community



Algorithm 2: SelectLC(G, c(), γ, r)

Input : A graph G = (V,E), c(u) for ∀u ∈ V ,γ and r

Output: Set LC of core-base local communities LC(u) ∀u ∈ V

begin1

LC ← ∅;2

foreach vertex u ∈ V do3

cand← {v|Rc(u)({v}) ≤ r,∀v ∈ V − c(u)}; LC(u)← c(u);4

while cand 6= ∅ do5

u′ ← argmaxv∈cand{|LC (u) ∩ adj (v)|};6

if den(LC(u) ∪ u′) < γ then7

break;8

cand ← cand − u′; LC(u)← LC(u) ∪ u′;9

LC ← LC ∪ {LC(u)};10

return LC;11

end12

problem is NP-hard by a reduction from the maximum quasi-clique problem
which is NP-complete [17]. Given a simple undirected graph G = (V,E) and
a constant γ′ = (0, 1), a subset of V is called a γ′-quasi-clique if it induces a
subgraph with a density of at least γ′. We skip the proof for interest of space,
the proof can be found in [23].

Theorem 1. Given a graph G = (V,E), computing the maximum local commu-
nity LC(u) for a vertex u ∈ V , given a core of C and a density constraint of γ,
a radius constraint of r, with the clique threshold K = 1, is NP-hard.

The above shows that the problem of maximizing the local community under
the special condition of K = 1 is NP-hard, hence, the general problem where
K ≥ 1 is also NP-hard. We propose a heuristic algorithm (Algorithm 2) to
extend the core for each vertex. First, find the candidate set from the radius
constraint (line 3 ). Next, iteratively select the vertex u′ such that u′ has the
largest neighborhood size with respect to the current LC(u) (line 6 ). If the
density is still above the threshold after adding u′ (line 7 ), we include u′ into
the local community of u LC(u), and update the candidate set (lines 9, 10 ). Note
that if two vertices have the same core, we will not do the extension redundantly.

Example 3. Consider Figure 1 (b). We extend the core of c(a) = {a, b, c, d} to get
LC(a). Let γ = 0.7 and r = 1. Initially LC(a) = c(a) and cand = {e, f, g}. Pick
vertex e to extend the core, since |LC(a)∩adj(e)| = 2 and den({a, b, c, d}+{e}) =
2 ∗ (6+ 2)/(5 ∗ 4) = 0.8 > γ. Then, cand = {f, g}. Next, pick vertex f to extend
the core since |LC(a) ∩ adj(f)| = 3 and den({a, b, c, d, e} + {f}) ≈ 0.73 > γ.
cand is now {g}. Finally, den({a, b, c, d, e, f}+ {g}) =< 0.7 if g is added. Hence,
LC(a) = {a, b, c, d, e, f}. Similarly, we can get LC(g) = {f, g, h, i, j}. Note that
b, c, d have the same LCs as a, and h, i, j have the same LCs as g.



Algorithm 3: SelectSeedSet(LC(u))

Input : LC(u) = (VLC(u), ELC(u)) ∀u ∈ V and k

Output: Top-k seed set S
begin1

cand = V , S = ∅, IS = ∅, g(S) = |IS |, i = 0;2

while i < k do3

u← argmaxv∈cand{|VLC(v) ∪ IS | − g(S)}; cand = cand− u;4

w ← highest degree vertex in LC(u);5

if w 6∈ S then6

S = S ∪ w; IS = VLC(u) ∪ IS; g(S) = |IS|; i++;7

return S;8

end9

Lemma 3. The time complexity of Algorithm 2 is given by O(|V ||candmax|(|cmax|+

dmax)), where |candmax| is the maximum candidate set size, cmax is the maxi-
mum core size, and dmax is the maximum degree of a vertex, lcmax is the maxi-
mum size of a LC.

PROOF: Let cand(u) be the initial cand set. For each vertex u, the initial-
ization at line 4 costs O(

∑
v∈cand(u)(|c(u)| + d(v))) time. The set cand can be

computed by a breadth first search from u. After the initialization, The inter-
section size at line 6 is computed by adding u′ (in O(1) time) to the intersecting
set LC(u) ∩ adj(v) of the neighbors v of the selected u′ in the previous itera-
tion. The maximum size is obtained by a scan of the candidate set. Let M =
min(|LC(u)|, |cand(u)|), processing u takes O(

∑
v∈cand(u) d(v)+

∑M

j=1(|cand(u)|−

j + 1)) time. Note that M ≤ lcmax and cmax ≤ lcmax. Hence, summing up the
above processing time for all u ∈ V gives O(

∑
u∈V

∑
v∈cand(u)(|c(u)| + d(v)))

= O(
∑

u∈V |c(u)||cand(u)|+
∑

u∈V

∑
v∈cand(u) d(v)) = O(|V ||candmax|(lcmax+

dmax)). The time complexity is O(|V ||candmax|(lcmax + dmax)).

4 Seed Selection

After calculating LC(u) for each vertex u, we aim to select a seed set S to
maximize the information spread base, i.e., g(S) = |IS | =

⋃
u∈S LC(u). This

problem can be shown to be NP-hard by a transformation from the Maximum
coverage problem. Here we use a greedy algorithm to select the top k seeds. At
each iteration, we choose a vertex u where LC(u) contains the largest number
of uncovered vertices. We examine LC(u) and choose the highest degree vertex,
w, as the next seed, provided that w has not been chosen before. The corre-
sponding pseudocode is shown in Algorithm 3. Algorithm 3, adding vertex u
to S that maximize g(S + u) − g(S) in each iteration, can be shown to attain
(1 − 1/e) approximation.This is because g is monotone (g(S + v) ≥ g(S)) and
submodular(diminishing return: g(S + v)− g(S) ≥ g(T + v)g(T ), ∀S ⊆ T ) [15].



Finally, we show that our seed selection algorithm is also efficient and can
be scalable to large graphs.

Lemma 4. Assume a new seed is picked in each while iteration, the time com-
plexity of Algorithm 3 is given by O(k|V |(|LC(avg)|+ |IS |)), where |LC(avg)| is
the average LC size for the seeds in S.

PROOF: Each seed is selected by scanning the candidate set of LC’s and the cur-
rent spread base. IS(i) and cand(i) below refer to the spread base and candidate
set before the i-th iteration, respectively. Since

Σi=k
i=1Σv∈cand(i)(|LC(v)| + |IS(i)|) < k|V |(|LC(avg)|+ |IS |)

thus, the time complexity is O(k|V |(|LC(avg)|+ |IS |)).

5 Application in Influence Maximization

We consider the application of information dissemination for the problem of
influence maximization. One important use of influence maximization is viral
marketing [7, 21]. The problem of influence maximization (IM) can be defined as
follows: Given a graph G = (V,E), with vertex set V and edge set E. Given a
model for quantifying the influence of a vertex set. The problem is to choose a set
S ⊆ V of k′ vertices, or seeds, to target so that the influence of S is maximized.

In Section 7, we describe the issues found with the prevalent models based on
probabilistic propagations. We propose to model influence from the perspective
of communities instead. Our assumption is that influence is related to informa-
tion dissemination. We apply the seed set solution of the IDM problem to the
IM problem. The rationale is that influence increases with information spread.
Unlike previous models, we do not predict the influence since it is application
dependent, e.g. the kind of products, or how contagious a disease is, etc. Instead,
we aim to maximize the base for the influence.

6 Experimental Results

Our experiments are conducted on a computer with an Intel i7 CPU, 16GB RAM
with Ubuntu 12.04 and implemented in C++. For the algorithms that involve
randomization we repeat each experiment 1000 times and report the average
result. For the Corebased method, the minimum core size K is set to 4, and the
radius r is set to the default value of 1. The value of r can be set to 1 because
setting r to 2 or more has little effect on the results. This is because the diameter
of the LC becomes at most 5 for r = 2, and the diameter of a social network is
typically small. Hence, when r = 2, the reaches become too far and the sparsity
of the graph will lead to violation of the density constraint. K can be set to 4
without affecting the results. This is because 2-cliques and 3-cliques (triangles)
are numerous in our datasets but for size 4 or above the clique number decreases
and these cliques become significant as cohesive components.



6.1 Results on Running Time

In our first set of experiments, we verify the efficiency of our method as predicted
by the runtime complexity analysis. We have tested on real graphs from Koblenz
Large Network Collection (KONECT), Stanford Large Network Dataset Collec-
tion (SNAP), and Max Planck Institute collection. For our method, we convert
directed graphs into undirected graphs by making each edge undirected.

Amazon DBLP Epinions Facebook Arxiv

|V | 403394 317080 75879 63731 34546
|E| 3387388 1049866 405740 1545686 421578

|dmax| 2752 343 3044 1098 864

The runtime results are shown in Figure 2. The time to compute cores and
extend cores are dominating. With higher degree vertices in Epinion, more ver-
tices in the candidate set of the core can be used to extend the core, hence, more
set intersection operations in Algorithm 2, and bigger LC sizes. For seed selec-
tion, we scan the communities to determine the next seed, the time complexity
grows linearly with the total community size. Overall, the results show that our
algorithm can efficiently handle large graphs.
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Fig. 2. Runtime of CoreBased for 5 datasets with γ = 0.4 and 50 seeds

6.2 Results on application: Influence Maximization

For the experiment on influence maximization, we follow the methodology in
[10]. It is a known issue in the study of IM that it is difficult to obtain ground
truth. To the best of our knowledge, [10] provides the only method for this
issue. It takes a dataset with a social graph recording the friendship among a
set of users and also an action log, which consists of triples (u, a, t) recording an
action a by user u at time t. The action log concerning an action a is called the



0 10 20 30 40 50
0

200

400

600

800

1000

Number of Seeds

In
flu

en
ce

(n
um

be
r 

of
 v

er
tic

es
)

 

 

CoreBased
DegreeDiscountIC
LabelPropagation
High Degree
PageRank
wc−pmia
un−pmia

Fig. 3. Comparison of influence for different algorithms

propagation trace associated with a. E.g., an action is the rating of a movie. If
user v rates a movie, and at a later time a friend u of v also rates the movie,
there is a propagation from v to u. Hence, we would find (v, a, t) and (u, a, t′) in
the action log, where t′ > t. In [10], such propagation from a user to the friends
of the user is considered the ground truth.

For the Facebook dataset of New Orleans from socialnetworks.mpi-sws.org,
there are two components, one contains a list of user-to-user links and the second
is from a list of wall postings, both lists contain a UNIX timestamp for each link.
The second component is thus the action log. We consider each wall posting an
action. The friendships among users are obtained from the user-to-user links.
Suppose u is in the seed set, then on the wall of u, we take the posting by u to
be the initiating action. The influence of u is the number of friends of u that
have posted on u’s wall after u’s own posting.

Since our solution is related to community search, we compare with existing
community search methods. We consider the highest degree vertex as a potential
seed in each computed community. In the recent survey in [6], 40 community
discovery methods are listed, however, very few of these methods have scalable
complexity. We have selected the only two scalable algorithms reported to handle
large graphs under the category of “Diffusion”, which is related to information
dissemination. The two methods are Label Propagation [20] and DegreeDiscoun-
tIC [5]. Our method is tailored for maximizing the spread base, it is not fair to
compare the spread base. Instead, we compare by the measure of influence.

We also compare with the following methods: High Degree, PageRank, un-
pmia [4], and wc-pmia [4]. High Degree is a baseline approach by select k vertices
with the highest degrees as the seeds. pmia is a scalable algorithm that is shown
to be effective for the IC model for the IM problem [4], wc-pmia adopts the WC
model while un-pmia is pmia with uniform probability of 0.01 at each edge. We
adopt the settings for PageRank and DegreeDiscountIC from [4].



The results are shown in Figure 3. Our method consistently produces the
highest influence among all the other methods in the experiment. Although
it is difficult to locate more datasets for similar comparison, the results here
provide evidence that our approach based on the principles of homophily has
great potential to outperform the existing models and methods.

7 Related Work

For LCs, we compute a clique for each vertex, this is related to the maximum
clique problem, since the maximum clique must be the maximum clique for one
of the vertices. The maximum density-based quasi clique problem is proved to
be NP-complete by reducing from the classical clique problem in [17]. [2] utilizes
a existing framework known as a Greedy Randomized Adaptive Search Proce-
dure (GRASP), which consists of initial construction and local optimization in
each iteration. However, these algorithm only return one quasi-clique, while our
problem requires one clique for each vertex. Another related work [22] is to find
a subgraph of G that contains a given set of query nodes and which is densely
connected. Unlike conventional approaches, [22] seeks the dense subgraph con-
taining the query nodes. The problem is to maximize the minimum degree with
size restriction. The authors propose a greedy algorithm to solve their problem
in O(|V |+ |E|) time.

IM has been studied under the IC and LT models [11]. [4] proposes a scal-
able algorithm for the IC model with a parameter on the influence probability
for early stopping. Graph sparsification is introduced in [13] with edge pruning
during influence propagation. While the two models are widely adopted and ini-
tiated a lot of interesting works, they are not validated with ground truth. Some
recent studies have found some critical issues with these models. In the viral
marketing study in [12], it is shown that the real world does not match these
models. An underlying assumption of the models is that no distance, time, or
capacity limit is attached to the influence. However, in the viral marketing study
in [12], it is found that a high-degree vertex has a limit in its influence. They
conclude that individuals tend to “have influence over a few of their friends, but
not everybody they know”. Consider a star graph with a center vertex v0 being
linked to n other vertices by edges (v0 → vi), 1 ≤ i ≤ n. If v0 is chosen as a seed,
then all n vertices are influenced with probability 1. If n is large, such influence
would not be possible according to the results in [12].

Another issue shown in the study in [12] is a general tendency of influence
to terminate after just a short number of steps. Consider a line graph, where
a vertex v0 is linked to n other vertices v1, ..., vn via edges (vi → vi+1). With
the WC model all the vertices will be influenced by v0 with a probability of
1, which is also not realistic if n is large. The detailed study in [12] also finds
that the probability of infection decreases with repeated interactions, which in
this model corresponds to time. Also it is found that the probability of being
influence will increase with the number of active neighbors initially but will
saturate after a certain point and more active neighbors will not have any further



effect. These contradict the assumption in the LT model that each vertex has the
same threshold, hence, the probability of being infected remains an invariant.

Similar findings are reported in [10], a scatter plot between influence pre-
dicted by the models and the actual influence on a real dataset shows a big
discrepancy where the predicted influence is many times higher than the actual
value.

8 Conclusion

For future work, we may consider the issue of overlapping communities. The
LC model can be extended to include multiple communities for each seed. An-
other extension is to consider directed graphs in community search, which is an
interesting problem in general. To our knowledge the IDM problem is a new
problem and has important applications in IM. Most existing IM studies rely
on propagation models shown in some recent works such as [12, 10] to be prob-
lematic. Most works assumed that such a model is the ground truth and results
were compared only based on measurements defined by such models. Our study
deviates from this trend and shows that the homophily based IDM model for
IM can produce better results in a case study. More study will be needed for
this approach, but the methodology is sound and we believe that this can be a
promising new approach.
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9 Appendix

The following lemma is used in the proof of Theorem 1.

Lemma 5. Given integers n ≥ 2, K ≤ n and x ≥ K ′, then

2(2n2 + n2)

(2n2 + n− 1)(2n2 + n− 2)
≤ 2(n2 + x)

(n2 +K ′)(n2 +K ′ − 1)

Proof. We need only show that
(n2 + x)(2n2 + n− 1)(2n2 + n− 2) ≥ (3n2)(n2 +K ′)(n2 +K ′ − 1)

Since x ≥ K, the above inequality holds if for b ≥ 0,
(n2 +K ′ + b)(4n4 +4n3 − 5n2 − 3n+2) ≥ (n2 +K ′)(3n2)(n2 +K ′ − 1)

Since K ′ ≤ n, the above inequality holds for b ≥ 0 if
(n2 +K ′ + b)(4n4 + 4n3 − 5n2 − 3n+ 2) ≥

(n2 +K ′)(3n2)(n2 + n− 1) = (n2 +K ′)(3n4 + 3n3 − 3n2)
It remains to show that

α = (4n4 + 4n3 − 5n2 − 3n+ 2)− (3n4 + 3n3 − 3n2) ≥ 0
α = n4 + n3 − 2n2 − 3n+ 2 = n2(n2 − 2) + n(n2 − 3) + 2

Since n ≥ 2, α ≥ 0, which completes the proof.



Theorem 1: Given a graph G = (V,E), computing the maximum local commu-
nity LC(u) for a vertex u ∈ V , given a core of C and a density constraint of γ,
a radius constraint of r, with the clique threshold K = 1, is NP-hard.

Proof. Since K = 1, the core C must contain a single vertex u. The proof is
by reduction from the maximum quasi-clique decision problem to the decision
problem for the maximum local community. The maximum quasi-clique decision
problem is: Given a simple undirected graph G = (V,E), a positive real number
γ′ satisfying 0 < γ′ < 1, and an integer K ′, does there exist a γ′-quasi-clique of
size at least K ′ in G ?

Given an instance of the maximum quasi-clique decision problem with pa-
rameters γ′ andK ′. Let x be the smallest integer satisfying 2x/(K ′(K ′−1)) ≥ γ′.
If x < K ′, the quasi-clique is a tree and it is trivial. Hence, in the following, we
only consider instances where x ≥ K ′.

We transform the given instance into a LC instance as follows: Let n =
|V |. Create a vertex a, and for each vertex vi ∈ V , create n2 − 1 vertices
bi1, bi2, ..., bi(n2−1), two edges (a, bi1) and (bi(n2−1), vi) and also n2 − 2 edges
of the form (bij , bi(j+1)), 1 ≤ j ≤ n2 − 2. A new graph G′ = (V ′, E′) is thus
created containing vertices in V and all the above new vertices, and edges in E
and all new edges created. Hence a is linked to each vertex v in V via a path
with n2 edges. Let us call this path the a-path for v.

The problem is to find LC(a), with a density threshold of

γ =
2(n2 + x)

(n2 +K ′)(n2 +K ′ − 1)

Also, r = n, and the size threshold is K ′′ = (n2 +K ′).
Suppose there exists a γ′-quasi-clique C in G of size at least K ′ and density

at least γ′. It is easy to see that we can select any vertex v in C, and C together
with the a-path will be a LC(a) in G′ satisfying all the threshold requirements.

Conversely, given a solution S to the LC(a) problem. Firstly, S must contain
at least one a-path because of the size threshold K ′′ and the graph construct.
We show that S contains at most one a-path for some vertex v. If S contains 2
or more a-paths then the density DS of S is given by

DS ≤ 2(2n2 + n2)

(2n2 + n− 1)(2n2 + n− 2)

From Lemma 5, DS is smaller than the threshold γ when n ≥ 2. This contradicts
the fact that S is a solution for LC(a). If S contains at most one a-path then
we can form a solution C for the γ′-quasi-clique problem by computing S ∩ V .


