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Abstract Bichromatic reverse nearest neighbor (BRNN)
has been extensively studied in spatial database literature.
In this paper, we study a related problem called MaxBRNN:
find an optimal region that maximizes the size of BRNNs for
L p-norm in two- and three- dimensional spaces. Such a prob-
lem has many real-life applications, including the problem
of finding a new server point that attracts as many custom-
ers as possible by proximity. A straightforward approach is
to determine the BRNNs for all possible points that are not
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feasible since there are a large (or infinite) number of possi-
ble points. To the best of our knowledge, there are no existing
algorithms which solve MaxBRNN for any L p-norm space
of two- and three-dimensionality. Based on some interesting
properties of the problem, we come up with an efficient algo-
rithm called MaxOverlap for to solve this problem. Exten-
sive experiments are conducted to show that our algorithm is
efficient.

Keywords Spatial databases · Indexing · Reverse nearest
neighbor

1 Introduction

Bichromatic reverse nearest neighbor (BRNN) search has
been extensively studied as an important operator in spatial
databases [11,12,22]. Let P and O be two sets of points in the
same data space. Given a point p ∈ P , a BRNN query finds
all the points o ∈ O whose nearest neighbors (NN) in P are
p, namely, there does not exist any other point p′ ∈ P such
that |o, p′| < |o, p|. A set of points o constitute the BRNN
set (or simply BRNN) of p, denoted by BRNN(p,P).

One of the typical applications of BRNN search is “selec-
tion of the best service”. For example, we may want to find
customers who would be more interested in visiting a conve-
nience store based on their distances. Figure 1a shows the spa-
tial layout of two convenience stores P , namely p1 and p2,
and five customers O, namely o1, o2, o3, o4, and o5. Suppose
we want to know which customers are interested in a con-
venience store pi . We obtain BRNN(p1,P) = {o1, o2} and
BRNN(p2,P) = {o3, o4, o5}.

Next, consider that a new convenience store p3 is to be
set up and the company tries to find a location to maximize
the number of customers who will go there. Suppose p3 is
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(a) (b) (c) (d)

Fig. 1 An example

set at a location as shown in Fig. 1b. Then, p3 can attract
two customers, namely o1 and o2, which form the BRNN of
p3. But, suppose p3 is set up as shown in Fig. 1c. Five cus-
tomers, namely o1, o2, o3, o4 and o5, are in the BRNN of p3.
In other words, different placements of p3 give different num-
bers of customers who are interested in p3. In this case, the
placement of p3 in Fig. 1c is better than that of Fig. 1b. The
company should better set up convenience store p3 as shown
in Fig. 1c rather than the location in Fig. 1b. The problem
is how to find an optimal location to attract the maximum
number of customers.

The above problem can be formulated as follows: We dis-
tinguish two sets of points O and P , where O is the set of
client points and P is the set of server points. All points have
a specific location in a Euclidean space. If a new point p is
added to P , we want to find a region R (or area) that max-
imizes the size of p′s BRNN. We call this problem Max-
BRNN. MaxBRNN can be regarded as an optimal region
search problem. In the convenience store example, P corre-
sponds to the set of convenience stores and O corresponds
to the customer set. MaxBRNN finds the region R (or area)
such that, if a new convenience store p is set up in R, the size
of p′s BRNN is maximized. Note that different placements
of p in region R have the same BRNN. For example, suppose
R is the optimal region. If the placements of p3 as shown in
Fig. 1c, d are in R, they have the same BRNN.

MaxBRNN can also be applied to traditional BRNN appli-
cations [12]. Service location planning problem and profile-
based marketing are two examples. Our motivating example
is a service location planning problem where a convenience
store is regarded as a service and the objective is to find a
location to open a new convenience store that can attract as
many customers as possible. Other service location planning
applications might be setting up coffee shops, fastfood res-
taurants, bank ATMs, gas stations, and wireless routers.

Most existing works on BRNN focus on finding the BRNN
of a given point p. A naive adaptation of these techniques
to MaxBRNN can be to find the BRNN of all possible
placements. However, this adaptation is infeasible, because
there are a large (or infinite) number of placements in the
data space. Furthermore, it cannot summarize the region
that the customers are interested in. MaxBRNN returns a
single region in which every point has the same BRNN
set. However, the naive adaptation returns a lot of points

(in the corresponding region) that have the same BRNN set.
Due to the same output (i.e., BRNN set) for different points,
the computation in this adaptation involves a lot of redundant
operations.

There is no efficient algorithm for MaxBRNN for L2-norm
for two-dimensional Euclidean space. There is only one work
[4] that is closely related to ours that solves MaxBRNN in
the L2-norm for two-dimensional space and gives an algo-
rithm whose running time is O(|O| log |P|+ |O|2+2γ (|O|))
where γ (|O|) is a function on |O| and is �(|O|). Since the
running time is exponential in terms of |O|, this algorithm is
not scalable with respect to dataset size.

In addition to everyday applications, MaxBRNN also
applies in some emergency schedules (e.g., natural disaster,
sudden big event, and military application). In a large scale
natural disaster such as the earthquake in China, placing sup-
ply/service centers for rescue or relief jobs are important. In
a big event like the US presidential campaign, placing police
forces for security is also important. In a military applica-
tion, it is essential to set up some temporary depots for gas-
oline and food. These applications involve road networks or
physical transportation distance and therefore depending on
the situation, the space could be two-dimensional or three-
dimensional, and one can choose among L1-norm, L2-norm,
or other metric space.

Different metrics are used in the spatial database litera-
ture. A popular one is the L2-norm, which we have used to
illustrated our problem. However, there can be applications
where other metric spaces are found useful. In particular,
Minkowski or L p-norm metrics of different orders have been
used. Among these, L1 and L2 norms are probably the most
important metrics in spatial databases [17]. To the best of our
knowledge, no algorithms exist that solve MaxBRNN with
other Mindowski metrics.

In profile-based marketing [12], a company wants to set
up a new service such as a car selling or stock selling service,
and similarly, it wants to maximize the number of customers
who are interested in this service. Here, each client point is
considered as a client preference, while each server point is
considered as a service. In the car application, there are some
dimensions like (1) the number of passenger seats in a car,
(2) the engine capacity of a car, and (3) the cargo volume. In
the stock application, the dimensions can be different proper-
ties of stocks, such as return, volatility, and daily turn-over.
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Since there would typically be multiple dimensions for a
car, this problem will involve an n-dimensional metric space.
There are other applications in an n-dimensional space where
n ≥ 1. Another such application is document repositories,
where each client point is a document written by a given
author while each server point is a document written by
some other author. In this application, some authors would
like to write a document that can attract the attention from
other authors (due to similar topic interests). In the field of
information retrieval (IR), a document is often treated as
a high-dimensional vector containing a number of feature
attributes. Some feature attributes can be different levels of
the relevance of topics, such as “Spatial Databases”, “Graph
Queries”, and “Privacy”. The similarity measure studied in
IR is also based on a distance function. Hence, we note that
there are important applications which can benefit from Max-
BRNN in different metric spaces and for n-dimensions where
n ≥ 1. To the best of our knowledge, there have been no
works that study MaxBRNN in the three-dimensional space.

In this paper, we address these three issues. We propose
an alternative algorithm called MaxOverlap that solves Max-
BRNN in any Minkowski metric of order 1 or above and
solves MaxBRNN much more efficiently in the
L2-norm space than the best-known algorithm. MaxOver-
lap finds the region that gives the maximum size of BRNN
in O(|O| log |P|+k2|O|+k|O| log |O|) time in the L2-norm
space where k can be regarded as an integer much smaller
than |O|. Compared with the algorithm mentioned above [4],
our algorithm is much more efficient.

Intuitively, MaxOverlap is more efficient because it uti-
lizes the principle of region-to-point transformation. It trans-
forms the optimal region search problem to an optimal point
search problem. In the point search problem, instead of
searching all possible points in the space, MaxOverlap can
search a limited number of points and find the optimal point
efficiently. Finally, it can map the optimal point that it finds
to the optimal region in the original problem. Since the total
number of points considered in the point search problem is
limited (more specifically, at most 2k|O|) while the total
number of regions in the region search problem is expo-
nential in terms of |O|, MaxOverlap is more efficient than
the existing algorithm [4] (which relies heavily on regions).
Our experimental results show that MaxOverlap performs
1,000,000 times faster than the exponential-time algorithm

in a dataset with 250 tuples. Our algorithm runs within 0.1 s
but the exponential-time algorithm runs for more than 1 day
over this dataset.

We also extend MaxOverlap to handle three-dimensional
spaces and demonstrate that it can handle them as well as the
two-dimensional spaces. This is the first attempt to tackle the
more general problem of n-dimensional spaces for n > 2.
However, how to address the problem for n > 3 is left for
future work.

The rest of the paper is organized as follows. Section 2
formulates MaxBRNN problem in L2-norm for two-
dimensional spaces. Section 3 describes algorithm
MaxOverlap for this problem and analyzes its performance.
Sections 4 and 5 describe how MaxOverlap can be extended
to any Minkowski metric of order one or above and also
for the three-dimensional space. Section 6 evaluates the pro-
posed techniques through extensive experiments with real
data. Section 7 reviews the previous work and provides com-
parisons with our proposals. Section 8 concludes the paper
with directions for future work.

2 Problem definition

Suppose we have a set P of server points in a space D (e.g.,
convenience stores in Fig. 1a). We also have another set O of
client points in the same space. We denote a distance func-
tion between p ∈ P and o ∈ O in D by |p, o|. In this
paper, the distance function we are studying is a metric (i.e.,
it satisfies the triangle inequality). In the following, for the
sake of illustration, we first assume that the metric is the
L2-norm metric and the dimensionality to be considered is
2. In Sects. 4 and 5, we discuss extensions to any metric space
and three-dimensional spaces, respectively.

Each client point o is a distinct location that is associated
with a weight, w(o), which corresponds to the number of
clients at location o. For example, o is a residential estate
and w(o) is the total number of clients in this estate. Define
wmax = maxo∈O w(o) as the greatest number of clients at a
client point (or location).

We define a region to be an arbitrary shape in space D. For
example, Fig. 2a shows a spatial layout of two client points,
namely o1 and o2, and two server points, namely p1 and p2.
In Fig. 2a, R1, R2, and R3 are three regions.

(a) (b) (c) (d)

Fig. 2 Different regions with the same bichromatic reverse nearest neighbors

123



896 R. C.-W. Wong et al.

Definition 1 (Consistent region) A region R is said to be
consistent if, for any two possible new server points p and
p′ in R, BRNN(p,P ∪ {p}) = BRNN(p′,P ∪ {p′}).
A consistent region R contains all possible points p that have
the same bichromatic reverse nearest neighbors. For exam-
ple, if we start a new server point p as shown in Fig. 2b,
BRNN(p,P ∪ {p}) = {o1, o2}. Similarly, starting a new
server point p′ at another location as shown in Fig. 2c has
BRNN(p′,P ∪ {p′}) = {o1, o2}. Figure 2d shows that we
start a new server point p′′ at another possible location, and
we have BRNN(p′′,P ∪ {p′′}) = {o1}.

Since any two possible points in R1 (e.g., p in Fig. 2b
and p′ in Fig. 2c) have the same bichromatic reverse near-
est neighbors, R1 is a consistent region. Similarly, R2 is a
consistent region. However, R3 is not a consistent region
because there exists two possible new points p (Fig. 2b)
and p′′ (Fig. 2d) in R3 such that BRNN(p,P ∪ {p}) �=
BRNN(p′′,P ∪ {p′′}).

Since a consistent region R contains all possible new
server points p that have the same bichromatic reverse nearest
neighbors, we define the influence set [12] of R as the bichro-
matic reverse nearest neighbor of any possible point p in R.
This set denotes all client points that are interested in p.

Definition 2 (Influence set/value) Given a consistent region
R, we define the influence set of R, denoted BRNN-R(R),
to be BRNN(p,P ∪ {p}) where p is any possible point
inside R. The influence value of R, denoted I (R), is equal
to

∑
o∈BRNN-R(R) w(o).

For instance, since R1 is a consistent region, BRNN-R(R1) =
{o1, o2}. Similarly, for another consistent region R2, BRNN-
R(R2) is equal to {o1, o2}. When w(o1) = w(o2) = 1. I (R1)

= I (R2) = 2.
A region R is said to cover another region R′ if all areas

of R′ are inside R. For example, in Fig. 2a, R2 covers R1.
In Fig. 2a, in addition to R2, there are other arbitrary con-

sistent regions that cover R1. Denoting all possible arbitrary
consistent regions is not meaningful. Thus, we define a max-
imal consistent region as follows.

Definition 3 (Maximal consistent region) A consistent region
R is said to be a maximal consistent region if and only if there
does not exist another consistent region R′ where (1) R′ �= R,
(2) R′ covers R, and (3) BRNN-R(R) = BRNN-R(R′).

In Fig. 2a, region R1 is not a maximal consistent region,
because there exists another consistent region R2 covering
R1 where BRNN-R(R1) = BRNN-R(R2).

In MaxBRNN, we would like to return the maximal
consistent region R instead of any non-maximal consistent
region, because R has the advantage of providing informa-
tion that all possible points with the same BRNN sets are
inside R. Returning non-maximal consistent region R′misses

Fig. 3 Different regions where different client points are served

the information that some points outside R′ have the same
BRNN sets as BRNN-R(R′). Note that there are an exponen-
tial number of maximal consistent regions (in terms of |O|),
which makes the problem challenging.

Problem 1 (MaxBRNN) Given a set P of server points and a
set O of client points, we want to find the maximal consistent
region R such that, if a new server point p is set up in R, the
influence value of R is maximized. This problem is called
MaxBRNN.

We return one maximal consistent region if there exist any
ties. This problem has been shown to be 3SUM-hard [4]
which means that if it takes O(N ) time to solve 3SUM (as
conjectured) where N is the size of the dataset, then it must
take at least quadratic time to solve MaxBRNN.

There are two challenges in this problem. The first chal-
lenge is that it is difficult to find a maximal consistent region
because there are an infinite number of arbitrary consistent
regions. The second challenge is that we need to return a
maximal consistent region with the greatest influence value.

The first challenge can be addressed easily using a notion
of nearest location circles that can be used to represent the
maximal consistent regions. The second challenge will be
addressed in Sect. 3.

Definition 4 (Nearest location circle (NLC)) Given a client
point o, the nearest location circle (NLC) of o is defined
as the circle centered at o with radius |o, p| where p is the
nearest neighbor of o in P .

For example, Fig. 3 shows the same server points and
client points as Fig. 2a. The nearest neighbor of o1 in P is
p1, and the nearest neighbor of o2 in P is p2. Thus, the circle
c1 centered at o1 with radius equal to |p1, o1| is the nearest
location circle of o1 and the circle c2 centered at o2 with
radius equal to |p2, o2| is the nearest location circle of o2. In
the following, we adopt a convention that an NLC centered
at oi is denoted by ci .

In Fig. 3, we have two NLCs, namely c1 and c2. The
boundaries of these two NLCs partition the data space into
four disjoint regions, namely regions A, B, C , and D. Region
A is the region formed by the intersection between the region
occupied by c1 and the region occupied by c2. Region B is the
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Maximizing bichromatic reverse nearest neighbor 897

region occupied by c1 excluding the region occupied by c2.
Region C is the region occupied by c2 excluding the region
occupied by c1. Region D is the region excluding the region
occupied by c1 and the region occupied by c2.

Suppose a new server p is to be set up. If p is located inside
circle c1, then the nearest neighbor of o1 in P will be changed
from p1 to p. Otherwise, p is not a nearest neighbor of o1. By
this reasoning, if p is inside multiple NLCs as shown in region
A, then it will become a nearest neighbor of client points
corresponding to these NLCs. It is easy to verify that regions
A, B, C , and D are consistent and the influence set of regions
A, B, C , and D are {o1, o2}, {o1}, {o2} and {}, respectively.
Since all of these influence sets are different, we can conclude
that regions A, B, C , and D are maximal consistent regions.
Note that, if w(o1) = w(o2) = 1, the influence values of
regions A, B, C and D are I (A) = 2, I (B) = 1, I (C) = 1,
and I (D) = 0, respectively.

In Fig. 3, it is easy to deduce that region A is the solution of
MaxBRNN because the influence value of A is maximized.
Note that this region is represented by an intersection of NLC
c1 and NLC c2. In the following, we will show that the opti-
mal solution of problem MaxBRNN is represented by an
intersection of multiple NLCs only.

Lemma 1 (Intersection representation) The region R retur-
ned by the MaxBRNN query can be represented by an inter-
section of multiple NLCs.

Proof The proof can be found in [19]. ��

Lemma 1 suggests that we need to consider only the region
formed by the intersection of some NLCs (like region A) for
MaxBRNN. We do not need to consider regions that are rep-
resented by some NLCs excluding some other NLCs. For
example, by Lemma 1, region B should not be considered
since it is represented by the region occupied by c1 excluding
the region occupied by c2. Thus, this lemma reduces the
search space significantly.

We are, naturally, interested in maximal consistent regions
instead of non-maximal consistent regions. Therefore, any
reference to regions from now on will mean maximal con-
sistent regions.

We define some variations on MaxBRNN, namely Maxk
BRNN, lMaxBRNN, and lMaxkBRNN, as follows.

1. MaxkBRNN: k-BRNN of p ∈ P , denoted by kBRNN
(p,P), is a set of points o ∈ O such that p is one
of the k nearest neighbors of o in P . In MaxkBRNN,
we want to find the region R (or area) such that, if a
new server p is set up in R, the size of k-BRNN of p
(i.e.,

∑
o∈kBRNN(p,P∪{p}) w(o)) is maximized. I (R) is

equal to
∑

o∈kBRNN(p,P∪{p}) w(o) in the setting with
k-BRNN.

2. lMaxBRNN: Instead of finding one region that gives
the greatest size of BRNN, we find l regions that give
the greatest size of BRNN. Formally, let R be the set of
all possible regions. We would like to return l regions
R ∈ R with the greatest I (R) values (with respect to
BRNN).

3. lMaxkBRNN: lMaxkBRNN is a mixture of the above
two problems. We would like to find l regions R ∈ R
with the greatest I (R) values (with respect to k-BRNN).

In the following, for the sake of illustration, we will first focus
on MaxBRNN. Then, we will extend our discussion to the
above variations of the problem.

3 Algorithm

In the L2-norm space, the best-known algorithm [4] for
MaxBRNN runs in exponential time because it heavily relies
on searching the regions of which there are an exponential
number. We propose an algorithm called MaxOverlap that
utilizes the principle of region-to-point transformation and
searches a limited number of points.

In this section, we present MaxOverlap algorithm that
follows the properties given in Sect. 3.1. We also describe
how MaxOverlap can be extended to problems MaxkBRNN,
lMaxBRNN, and lMaxkBRNN.

3.1 Notation and properties

From Lemma 1, we know that the desired region R can be rep-
resented by an intersection of multiple NLCs. Based on this
lemma, we propose an algorithm that first creates the data set
D′ containing NLCs from the original data set D containing
points. Some NLCs can represent the region returned by
the MaxBRNN query. Then, we perform the region-to-point
transformation and solve the problem by searching a certain
number of points.

Specifically, first, for each client point o ∈ O, we find its
nearest neighbor p ∈ P , form an NLC c centered at o with
radius equal to |p, o| and insert it into D′. In addition, we also
set the weight of NLC c, denoted by w(c), to be w(o). Intui-
tively, w(c) is the total number of clients at point (or location)
o whose nearest location circle (NLC) is c. Then, based on the
overlapping relationship between NLCs, we develop an algo-
rithm that finds the region of MaxBRNN query efficiently.
For instance, Fig. 4 shows six NLCs where we do not show
server points in P for clarity. We denote each NLC centered
at oi by ci for i = 1, 2, . . . , 6. NLC c3 overlaps NLCs c1, c2,
and c4. We also say that an NLC ci covers another NLC c j

if all areas of c j are inside ci . For example, NLC c3 covers
NLC c4.
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Fig. 4 Overlapping NLCs

Table 1 Overlap table
NLC L(c)

c1 c2, c3

c2 c1, c3

c3 c1, c2, c4

c4 c3

c5 c6

c6 c5

(a) (b)

Fig. 5 Coverage relationship

The overlap relationship provides a key to the efficiency of
our algorithm. The intuition is that the region of MaxBRNN
query is the intersection of overlapping NLCs such that the
total weight of overlapping NLCs is maximized. Motivated
by this observation, for each NLC c, we find a list of NLCs
that overlap with c, denoted by L(c). Table 1 shows the list
of overlapping NLCs of Fig. 4 and is called an overlap table.
Each row of the overlap table is called an entry in the form
of (c, L(c)). If the context of c is clear, we write it as (c, L).

We define two cases when an NLC c1 covers another NLC
c2 as shown in Fig. 5. We say that NLC c1 covers NLC c2

closely if c1 covers c2 and the boundary of c1 has an inter-
section point with the boundary of c2 (Fig. 5a). We say that
NLC c1 covers NLC c2 disjointly if c1 covers c2 but there
is no intersection point between the boundary of c1 and the
boundary of c2 (Fig. 5b). An NLC c is said to cover a point
p if p is inside c or is along the boundary of c. For example,
in Fig. 4, both NLC c3 and NLC c1 cover point q1.

Lemma 2 (At least one intersection point) If an NLC covers
another NLC, the boundaries of the two NLCs must share
at least one point (i.e., the NLC must cover another NLC
closely).

Fig. 6 Illustration of the proof
of Lemma 3

Proof We prove by contradiction. Suppose that an NLC c1

covers another NLC c2 but c1 and c2 are disjoint as shown
in Fig. 5b. Consider NLC c1 centered at o1. We know that
there exists a server point p1 ∈ P at the boundary of NLC c1

such that p1 is the nearest neighbor of o1 in P . Similarly, for
c2 centered at o2, we also conclude that there exists a server
point p2 ∈ P at the boundary of NLC c2 such that p2 is the
nearest neighbor of o2 in P . Since c1 covers c2 disjointly, we
deduce that |p2, o1| < |p1, o1|. This leads to a contradiction
that p1 is the nearest neighbor in P from o1. ��
Let S be a set of NLCs. We define W (S) = ∑

c∈S w(c).
Let So be a set of NLCs whose intersection corresponds to
the region R returned by a MaxBRNN query. Consider two
cases. Case 1: So contains only one NLC, which means that
the optimal solution comes from a single NLC without any
overlap or intersection with other NLCs. It is easy to verify
that W (So) = wmax where wmax = maxo∈O w(o). Case 2:
So contains more than one NLC. In this case, the optimal
solution is an intersection of more than one NLC and we
derive that W (So) > wmax. The following lemma shows an
important property about overlapping NLCs.

Lemma 3 (Vantage point identification) Let So be a set of
NLCs whose intersection corresponds to region R returned
by a MaxBRNN query. If So contains more than one NLC,
then there exist two NLCs, say c1 and c2, such that region R
contains (or covers) at least one intersection point between
the boundaries of c1 and c2.

Proof We prove by contradiction. Suppose there do not exist
two NLCs, say c1 and c2, such that region R contains at least
one intersection point between the boundary of c1 and the
boundary of c2. We deduce that the shape of region R is
an NLC c in So and all other NLCs in So cover c such that
the boundary of c does not have any intersection with the
boundaries of other NLCs in So. An example of this scenario
is shown in Fig. 6 where the shaded region corresponds to
R and c2 corresponds to c. By Lemma 2, the above case is
impossible since an NLC must not cover another NLC dis-
jointly. This leads to a contradiction. ��

For example, in Fig. 4, the shaded region corresponds to
the region R returned by MaxBRNN query. R is formed by
an intersection operation among NLCs in So = {c1, c2, c3}.
There exist two NLCs c1 and c2 such that R contains one
intersection point between the boundary of c1 and the bound-
ary of c2, say q1.
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(a) (b)

Fig. 7 Other overlapping relationships

From Lemma 3, we can observe that the optimal region
R must contain one of the intersection points between at
least one pair of NLCs. In other words, intersection points of
some (or all) pairs of NLCs can be regarded as candidates in
order to perform the MaxBRNN query. We call these inter-
section points vantage points. In the next subsection, we will
describe how to make use of vantage points in evaluating a
MaxBRNN query.

In addition to the coverage relationship as shown in
Fig. 5a, there are two other kinds of overlapping relation-
ships as shown in Fig. 7a, b. From the above three possible
overlapping relationships, we observe that, for any two over-
lapping NLCs c1 and c2 in our problem setting, the boundary
of c1 and the boundary of c2 intersect at least one point and
at most two points.

Lemma 4 (Number of intersection points) If NLC c1 and
NLC c2 are overlapping, the number of intersection points
between the boundary of c1 and the boundary of c2 is either
one or two.

3.2 Algorithm MaxOverlap

Based on Lemmas 3 and 4, we develop an algorithm, Max-
Overlap, which takes O(|O| log |P|+k2|O|+k|O| log |O|)
time where k can be regarded as a small integer compared
with |O|. To the best of our knowledge, there are no exist-
ing polynomial-time algorithms for this MaxBRNN query,
and MaxOverlap is the first polynomial-time algorithm for a
MaxBRNN query.

The efficiency of MaxOverlap heavily depends on
Lemma 3. The algorithm is designed based on the principle
of region-to-point transformation. We transform the optimal
region search problem into an optimal vantage point search
problem where the optimal vantage point can subsequently
be mapped into the optimal region. The vantage points for
the search are derived from the intersection points among
NLCs.

For example, in Fig. 4, the optimal region is the inter-
section of three NLCs, namely c1, c2, and c3. Our algorithm
starts to find a set of vantage points or intersection points
between pairs of NLCs such as q1, q2, q3, and q4 (instead of
regions or NLCs). These vantage points are used to deter-
mine the optimal region directly. Let Sq be a set of NLCs

covering point q. The influence value of q is defined to be
∑

c∈Sq
w(c). If we can find an optimal vantage point (i.e., q

with the largest influence value), the optimal region of Max-
BRNN is equal to region R, which is the intersection of all
NLCs in Sq . For example, in Fig. 4, if we can find the van-
tage point q3 with the largest influence value = 3 (where
Sq3 = {c1, c2, c3}), the optimal region corresponds to the
intersection of all NLCs in Sq3 .

Formally, we describe the algorithm as follows. Suppose
So is a set of NLCs whose intersection corresponds to region
R returned by a MaxBRNN query. As we mentioned before,
it is easy to see that an NLC c with w(c) = wmax corresponds
to an optimal solution if So contains only one NLC. Let us
focus on finding a solution when So contains more than one
NLC. We know that all NLCs among So are overlapping. We
develop a three-step algorithm.

– Step 1 (Finding intersection point): We find a set Q of
all intersection points between the boundaries of any two
overlapping NLCs in the dataset. Details of this step can
be found in Sect. 3.3.1.

– Step 2 (Point query): For each point q ∈ Q, we perform
a point query for q to find a set S of NLCs covering q.

– Step 3 (Finding maximum size): We choose the set S
obtained in the above step with the largest value of W (S)

as our final solution.

It is easy to verify that the final solution chosen in Step 3 is
the optimal set So with the largest W (So) value by Lemmas 3
and 4.

A straightforward implementation for this three-step algo-
rithm is to perform these three steps one-by-one. For the first
step, we compare all pairs of NLCs and check whether each
pair are overlapping. If so, we find the intersection points of
each such pair and insert them into a set Q. Note that there
are O(|O|2) pairs. For each pair, the checking and process-
ing can be done in O(1) time (these steps will be described
in Sect. 3.3.1), Step 1 takes O(|O|2) time. Note that |Q| =
O(|O|2). Then, for Step 2, we perform a point query for
each q ∈ Q. Suppose β(N ) is the running time for a point
query over dataset of size N , Step 2 takes O(β(|O|) · |O|2)
time. It is easy to verify that the running time of Step 3 is
O(|O|2). Thus, the total running time of this straightforward
approach is O(β(|O|) · |O|2). We will improve this running
time to O(|O| log |P| + k2|O| + k|O| log |O|) with some
techniques that will be described next.

Although this straightforward approach can find an opti-
mal solution, it is inefficient because Step 1 has to process
all possible pairs of overlapping NLCs. In fact, some pairs
of overlapping NLCs need not be considered and processed
in Step 1 if there exists another pair whose intersection has a
larger influence value and thus is a better choice as a solution.
If we only process those “better” pairs of NLCs instead of all
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possible pairs in Step 1, the computation can be improved.
The following lemma points to this influence-based pruning.

Lemma 5 (Influence-based pruning) Let I be a lower bound
of the optimal influence value Io (i.e., I ≤ Io). An opti-
mal solution is a region that does not involve any NLC c
where (c, L) is an entry for c in the overlap table T and
W (L) < I − w(c).

Proof Suppose an optimal solution is a region involving
NLC c. Consider an entry (c, L). NLC c overlaps at most
|L| NLCs. Let Q′ be the set of all intersection points q
between the boundaries of c and c′ where c′ ∈ L . We know
that q ′ ∈ Q′ is covered by at most |L| + 1 NLCs (includ-
ing c itself). The influence value I ′ of q ′ ∈ Q′ is at most
W (L)+w(c). That is, I ′ ≤ W (L)+w(c). Since an optimal
solution is a region involving c, by Lemma 3, there exists
one q ′ ∈ Q′ such that I ′ ≥ I . For this q ′, we derive that
W (L) ≥ I − w(c), which leads to a contradiction. ��

With Lemma 5, we can safely remove all entries (c, L) from
the overlap table T where W (L) < I −w(c) if we know the
lower bound I of the optimal influence value. For example,
in Fig. 4, suppose that we know that the lower bound I is
equal to 3 and w(c) = 1 for each NLC c. Then, entries for
c4, c5 and c6 in Table 1 are removed safely because their cor-
responding overlapping lists L in T have W (L) = 1, which
is smaller than I − w(c) = I − 1 = 3− 1 = 2.

In the following, we describe algorithm MaxOverlap
(Algorithm 1) that interleaves the execution of these three
steps and thus prunes a lot of candidate pairs.

First of all, the algorithm constructs an overlap table T .
Let So and Io be the variables that store the set of the optimal
solution and the optimal influence value, respectively, that
are found so far. Initially, So is set to the NLC c with the
largest w(c) value and Io is set to w(c). Then, each entry
(c, L) is processed one-by-one. We introduce a variable A
that stores a set of NLCs whose entries have been processed.
A is initialized to ∅. The purpose of maintaining A is to avoid
processing each pair of NLCs more than once.

Specifically, the algorithm iteratively performs the follow-
ing steps. First, it removes an entry (c, L) with the largest
W (L) value from T for processing, since it is very likely
that NLC c is involved in the optimal solution. For each c′ ∈
L − A, it computes all intersection points between c and c′.
For each intersection point q, it performs a point query to
find all NLCs covering q. Let S be the result of this point
query. If W (S) > Io, then Io is updated with W (S) and So is
updated with S. Next, c is inserted into A. Finally, the algo-
rithm performs an influence-based pruning step to remove
all unnecessary NLCs from consideration. This computation
is repeated until all entries in T are exhausted.

Algorithm 1 Algorithm MaxOverlap
1: for each o ∈ O do
2: construct an NLC for o
3: end for
4: build the overlap table T
5: choose the NLC c with the largest w(c)
6: So ← {c}
7: Io ← w(c)
8: A← ∅
9: while there exists an entry in T do
10: remove an entry (c, L) with the largest value of W (L) from T
11: for each NLC c′ ∈ L − A do
12: compute the intersection points between the boundary of c and

the boundary of c′ (See Section 3.3.1)
13: for each intersection point q found do
14: perform a point query from q to find all NLCs covering q
15: let S be the result of the above point query
16: I ← W (S)

17: if I > Io then
18: So ← S
19: Io ← I
20: end if
21: end for
22: end for
23: A← A ∪ {c}
24: remove all entries (c′, L ′) from T where W (L ′) < Io − w(c′)
25: end while

Example 1 (MaxOverlap) Consider the example shown in
Fig. 4 and the overlap table shown in Table 1. Suppose
w(c) = 1 for each NLC c. Firstly, we choose an NLC,
say c1, with the largest w(c) value. Then, we initialize
Io = 1, So = {c1}, and A = ∅.

Secondly, we perform the iterative steps as follows. We
remove entry (c3, L), where L = {c1, c2, c4}, from the over-
lap table T since it has the largest W (L) value. We then
consider processing three possible pairs of NLCs between
c3 and an NLC in L , namely (c3, c1), (c3, c2), and (c3, c4).
Take (c3, c1) for illustration. We compute the two intersec-
tion points between the boundary of c3 and the boundary of
c1, namely q4 and q3 (as shown in Fig. 4).

Then, we perform a point query for q4 and obtain result
S = {c3, c1}, which covers q4. Then, I is set to W (S) (i.e., 2).
Since I > Io, we update So = S = {c3, c1} and Io = I = 2.

In addition to q4, we also perform a point query for q3.
Similarly, we obtain S = {c1, c2, c3} which covers q3 and
I = 3. Similarly, since I > Io, we update So and Io to be
{c1, c2, c3} and 3, respectively.

Next, A is updated to {c3}. Since entries for c4, c5, and c6

have their L ′s such that W (L) < Io−w(c) (i.e., 1 < 3− 1),
we perform an influence-based pruning step to remove these
entries from the overlap table.

After processing entry (c3, L), we continue with process-
ing the entry (c1, L), since it has the second greatest W (L)

value. So and Io remain unchanged in this case, and A is
updated to A ∪ {c1} = {c1, c3}. We do not need to remove
any entries with the influence-based pruning in this iteration.
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Since only entry (c2, L) is left in the overlap table, we pro-
cess it. Since L − A = ∅, this entry is skipped. No updates
are necessary for So and Io, and A is updated to A ∪ {c2} =
{c1, c2, c3}. The algorithm terminates.

The final answer can be found from So and Io. That is, the
optimal solution is the region that is a result of the intersection
of {c1, c2, c3}, and the influence value is 3.

With Lemma 5, it is easy to verify the following theorem.

Theorem 1 (Correctness) Algorithm 1 returns the region R
with the largest influence value (i.e., the optimal solution
returned by the MaxBRNN query).

3.3 Detailed steps

In this section, we first describe how we compute the inter-
section points between the boundaries of two NLCs. Then,
we analyze the complexity of algorithm MaxOverlap.

3.3.1 Intersection point computation

In this section, we describe how we compute the intersection
points between the boundaries of two NLCs c1 and c2. The
boundary of an NLC c can be expressed as a mathematical
equation. Consider the Cartesian coordinate system. Suppose
that c1 and c2 are the NLC centered at coordinate (a, b) with
radius r and the NLC centered at coordinate (c, d) with radius
s, respectively. They can be expressed as (x−a)2+(y−b)2 =
r2 and (x − c)2 + (y − d)2 = s2, respectively.

Suppose c1 and c2 overlap. By Lemma 4, we know that
the boundaries of c1 and c2 have at most two intersection
points, say q1 and q2. It is easy to derive q1 and q2 given the
centers and the radii of c1 and c2 by elementary mathematical
techniques. Note that the intersection point computation for
q1 and q2 takes O(1) time.

We summarize the above result with the following lemma.
This lemma is used to help to explain some concepts in our
extensions which will be discussed in Sects. 4 and 5.

Lemma 6 (Intersection point computation) Given two over-
lapping NLCs c1 and c2, calculating the intersection points
between the boundaries of c1 and c2 can be done in O(1)

time by elementary mathematical techniques.

3.3.2 Complexity

Algorithm MaxOverlap has the following five detailed steps.

Step 1 (NLC construction): For each o ∈ O, we perform a
nearest neighbor query at o to find the nearest point p in P
from o. Then, we create an NLC centered at o with radius
|o, p|. Let α(N ) be the running time of a nearest neighbor
query over the dataset of size N . Since there are |O| data

points in O, Step 1 requires O(|O|α(|P|)) time.

Nearest neighbor queries can be computed in logarith-
mic time. Since each nearest neighbor query over N two-
dimensional data points can be solved in O(log N ) time with
an index that consumes O(N ) space (e.g., a trapezoidal map
over the Voronoi diagram [9]), each nearest neighbor search
over dataset P requires O(log |P|). Thus, the total running
time of this step is O(|O| log |P|).

In our implementation, we adopt the R*-tree [2] which is
available in commercial databases to support nearest neigh-
bor queries. Although R*-tree does not have good worst-case
asymptotic performance, it has been shown to be fairly effi-
cient in real cases and has been commonly adopted for near-
est neighbor queries. Specifically, we build an R*-tree RP
over all data points in P and then perform a nearest neighbor
query for each o ∈ O.

Step 2 (Overlap table construction): For each NLC c centered
at o with radius r , we perform a range query from o with a
radius r to find all NLCs that overlap with this range. Let L
be the result of this range query excluding c. In the overlap
table, we create an entry (c, L) for this NLC. Let β(N ) be the
running time of a range query over dataset of size N . Since
there are |O| NLCs, Step 2 requires O(|O|β(|O|)).

In the literature, β(N ) is theoretically bounded. Let k be the
greatest result size of a range query (i.e., the greatest number
of NLCs that overlap a given NLC). Since a range query can
be executed in O(k + log |O|) time [7], Step 2 can be done
in O(|O|(k + log |O|)).

For similar reasons, in our implementation, we also adopt
the R*-tree to support range queries. Specifically, we build
another R*-tree RC over all NLCs that are created in the
above step, and then perform a range query for each o.

Step 3 (Initialization): We initialize So, Io and A, which takes
O(|O|) time.
Step 4 (Entry Sorting): We sort all entries (c, L) in the
overlap table T in descending order of W (L), which takes
O(|O| log |O|) time.
Step 5 (Iterative Step): We repeat the following steps until
no entry remains in the overlap table T . We pick entry (c, L)

with the greatest W (L) value in T , which takes O(1) time.
Then, for each c′ ∈ L − A, we perform the following sub-
steps.

1. We compute the intersection points between the bound-
aries of c and c′. As shown in Sect. 3.3.1, the cost of
computing the intersection points is O(1).

2. For each intersection point q found in the above step, we
perform a point query for q to find all NLCs covering q
and obtain S. Let θ(N ) be the running time of a point
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query over a dataset of size N . A point query over dataset
containing NLCs runs in O(θ(|O|)). Since there are at
most two intersection points for one pair of NLCs, this
sub-step requires O(θ(|O|)) time.

Recall that k is the greatest number of NLCs overlapping with
a given NLC (i.e., the greatest size of L of an entry (c, L) in
the overlap table T ). Performing the above sub-steps requires
O(kθ(|O|)) time. Since there are at most |O| entries in T ,
Step 5 takes O(k|O|θ(|O|)) time.

With the techniques described in [6], θ(|O|) = O(k +
log |O|) and thus the running time of Step 5 is O(k|O|(k +
log |O|)).

Theorem 2 (Running time) The running time of Algorithm
MaxOverlap is O(|O|α(|P|) + |O|β(|O|) + k|O|θ(|O|) +
|O| log |O|) where k is the greatest size of L of an entry (c, L)

in the overlap table T .

MaxOverlap algorithm makes use of nearest neighbor
search, range search and point search, which is an impor-
tant feature since it opens the opportunity of leveraging the
rich literature on these topics to optimize MaxOverlap. For
example, since α(|P|) can be accomplished in O(log |P|)
[9], β(|O|) can be done in O(k + log |O|) [7], and θ(|O|)
can be achieved in O(k + log |O|) [6], the running time can
be simplified to O(|O| log |P| + k2|O| + k|O| log |O|).

MaxOverlap has to store (1) the R*-tree RP built over all
points in P , (2) the R*-tree RC built over all NLCs and (3)
the overlap table. Let the sizes of RP and RC be |RP | and
|RC |, respectively. In the overlap table, there are at most |O|
entries and each entry has size at most O(k). The storage of
the overlap table is O(k|O|). The space cost of our algorithm
is equal to O(|RP | + |RC | + k|O|).

3.4 Extension to MaxkBRNN, lMaxBRNN
and lMaxkBRNN

Up to now, we have discussed how MaxOverlap solves the
MaxBRNN problem. Here we discuss how MaxOverlap can
be extended to problems MaxkBRNN, lMaxBRNN, and
lMaxkBRNN. We can simply focus on lMaxkBRNN since
it is the most general problem among these problems.

The adaptation of MaxOverlap is straightforward. We only
need to make two modifications in the algorithm. Firstly, we
construct an NLC according to the k-th nearest neighbor of
o in P rather than according to the nearest neighbor of o in
P (See lines 1–2 in Algorithm 1). Secondly, we maintain l
regions with the greatest influence values, rather than main-
taining only one region with the greatest influence value (See
lines 16–18 in Algorithm 1).

4 Extension to other L p norms

We have so far considered L2-norm. However, there are also
real-life applications for MaxBRNN in other metrics. One
example is the Manhattan city distance or the L1-norm space.
L2-norm is in fact a special case of L p-norm or Minkowski
distance, which is a metric on Euclidean space.

Given two points in a n-dimensional Euclidean space, x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Minkowski
distance of order p between x and y is defined as:

dp(x, y) =
(

n∑

i=1

|xi − yi |p
)1/p

The Minkowski distance of order p corresponds to L p-norm.
Minkowski distance is typically used with p being 1 or 2.
The latter is the Euclidean distance, while the former is the
Manhattan distance. The case of p = ∞ is also known as
the Chebyshev distance.

In this section, we discuss how MaxOverlap can be used
with any Minkowski distance of order 1 or above. MaxOver-
lap that was designed for the L2-norm for two-dimensional
Euclidean space cannot be extended directly. This is because
with the L2-norm in 2-dimentsional Euclidean space, there
are at most two intersection points between two nearest loca-
tion circles, but with an arbitrary Minkowski metric, it is pos-
sible that there are an infinite number of intersection points
between two nearest location regions (which will be dis-
cussed later in this section). We propose some novel tech-
niques to handle this issue.

This section is organized as follows. In Sect. 4.1, we
introduce the concept of nearest location region (NLR) for
Minkowski distance of order 1 or above. A NLR can be con-
sidered as a generalization of nearest location circles defined
for the L2-norm. Section 4.2 describes how we extend Max-
Overlap to handle problem MaxBRNN for Minkowski dis-
tance of order 1 or above.

4.1 Nearest location region

In the L2-norm space, the fundamental concepts used in Max-
Overlap is nearest location circles (NLCs). These circles are
very important because they can be used to represent max-
imal consistent region (according to Lemma 1). Intuitively,
MaxOverlap finds a set of NLCs the intersection of which
gives the greatest influence value.

Similar to the L2-norm space, in an arbitrary L p-norm
metric space D, we define a fundamental concept called
a nearest location region (NLR). Similarly, these regions
can also be used to represent maximal consistent region.
Then, MaxOverlap can be re-used. In an arbitrary space D,
MaxOverlap finds a set of NLRs whose intersection gives the
greatest influence value.
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Fig. 8 Nearest location region
(NLR) for different Minkowski
metrics

(a) (b) (c) (d)

(a) (b) (c)

Fig. 9 Illustration of vantage points for any Minkowski distance metric

Definition 5 (Nearest location region (NLR)) Given a cli-
ent point o, and consider Minkowski distance of order s, let
p be a point in P nearest to o. The nearest location region
(NLR) of o is defined to be a region R = {q : ds(o, q) ≤
ds(o, p)}. For each point q along the boundary of the region
R, ds(o, q) = ds(o, p).

For s = 2, the NLR of a client point o is a circle (as dis-
cussed in Sect. 2) (See Fig. 8a). For s = 1 or L1-norm, the
NLR is a rhombus (or more precisely, a square rotated 45◦
clockwise) (See Fig. 8b). For s = ∞ or the L∞-norm space,
the NLR is a square (See Fig. 8c).

4.2 Extension

Though the NLR can be seen as a counterpart for the NLC
for L2-norm, the shapes of NLRs for Minkowski distances of
different orders vary. Due to the variation in this shape, some
results discussed before can be re-used but some cannot.

It is relatively easy to see that Lemmas 1, 2, 3, and 5
can be rewritten by replacing NLCs with NLRs. For con-
venience, we re-state these four lemmas as Lemmas 7, 8, 9
and 10, respectively.

Lemma 7 (Intersection representation) The region R retur-
ned by the MaxBRNN query for any Minkowski metric of
order 1 or above can be represented by an intersection of
multiple NLRs.

Lemma 8 (At least one intersection point) If an NLR covers
another NLR, the boundaries of the two NLRs must share
at least one point (i.e., the NLR must cover another NLR
closely).

Lemma 9 (Vantage point identification) Let So be a set of
NLRs whose intersection corresponds to region R returned

by a MaxBRNN query. If So contains more than one NLR,
then there exist two NLRs, say r1 and r2, such that region R
contains (or covers) at least one intersection point between
the boundaries of r1 and r2.

Lemma 10 (Influence-based pruning) Let I be a lower
bound of the optimal influence value Io (i.e., I ≤ Io). An
optimal solution is a region that does not involve any NLR
r where (r, L) is an entry for r in the overlap table T and
W (L) < I − w(r).

However, Lemmas 4 and 6 cannot be re-stated directly.
Consider the L2-norm metric. Lemma 4 states that there are
at most two intersection points when two NLCs overlap while
Lemma 6 describes how to compute intersection points of two
NLCs and its time complexity. In general, for a Minkowski
metric, there can be a lot of (up to an infinite number of)
intersection points when two NLRs overlap. For example,
Fig. 9a shows two overlapping NLRs r1 and r2 where there
are only two intersection points. However, Fig. 9b shows
two overlapping NLRs r1 and r2 where there is a continuous
curve (from q1 to q2) such that each point along this curve
is an intersection point. Thus, there are an infinite number
of intersection points along this curve. Similarly, in Fig. 9c,
there are an infinite number of intersection points along the
curve from q1 to q2.

Recall that MaxOverlap includes a step that finds all inter-
section points (what we called vantage points) for problem
MaxBRNN. If there are a lot of intersection points, Max-
Overlap will be very inefficient because it has to compute all
of them. In the following, we modify the definition of van-
tage points in order to improve the efficiency of MaxOverlap
in any L p-norm metric space. The major idea is based on the
following End Point Principle.

Principle 1 (End point principle) Given a pair of nearest
location regions r1 and r2, instead of using all intersection
points between the boundaries of r1 and r2, we choose only
the end points of each continuous curve representing inter-
section points for performing point query in MaxOverlap.
Such end points are called the vantage points.

The above principle suggests that it is sufficient to just
use the end points (instead of all intersection points) to find
the optimal solution to MaxBRNN in a metric space. We will
later show how MaxOverlap algorithm can return the optimal
solution to MaxBRNN following this principle.

123



904 R. C.-W. Wong et al.

Fig. 10 Proof of Lemma 11

For example, in Fig. 9a, since q1 and q2 are the only two
intersection points between two overlapping NLRs r1 and r2,
there are only two end points, namely q1 and q2. According
to the above principle, MaxOverlap can perform point query
according to each of these two points. Figure 9b shows that
two overlapping NLRs r1 and r2 have a continuous curve
(from q1 to q2) such that each point along this curve is an
intersection point. q1 and q2 are two end points of this curve.
Similarly, in Fig. 9c, q1 and q2 are two end points of the curve
representing the intersection points between two NLRs r1

and r2.

Definition 6 (Vantage point for Minkowski metric) Given a
pair of nearest location regions r1 and r2, we define the van-
tage points between r1 and r2 to be all end points along each
continuous segment (or curve) such that each point along this
segment is an intersection point.

For example, in Fig. 9a, q1 and q2 are the only two vantage
points between r1 and r2. In Figs. 9b, c, q1 and q2 are also
the only two vantage points between r1 and r2.

The question is whether given two nearest location regions
which overlaps, there exists a continuous curve represent-
ing intersection points between the boundaries of these two
nearest location regions such that it has two end points? The
answer is affirmative.

Lemma 11 Given two overlapping NLRs, there exists a con-
tinuous curve representing intersection points between the
boundaries of these two NLRs such that it has two end points.

Proof We prove by contradiction. Suppose that there does
not exist a continuous curve (with two end points) represent-
ing intersection points between the boundaries of the two
overlapping nearest location regions. Then, one nearest loca-
tion region covers another nearest location region disjointly
(See Fig. 10). Similar to the proof in Lemma 2, it can be
concluded that this scenario is not possible. This leads to a
contradiction.

In the following lemma (Lemma 12), we show that it is suf-
ficient to just use the vantage points as defined in Definition 6
(instead of all intersection points) to find the optimal solution
of problem MaxBRNN for any Minkowski metric. After that,
we will show how algorithm MaxOverlap following the End
Point Principle can return the optimal solution of problem
MaxBRNN.

Lemma 12 (Vantage point identification) Let So be a set of
NLRs whose intersection corresponds to region R returned
by a MaxBRNN query. If So contains more than one NLR,
then there exist two NLRs, say r1 and r2, such that region R
contains at least one vantage point between r1 and r2.

Proof We prove by contradiction. Suppose there do not exist
two NLRs, say r1 and r2, such that region R contains at least
one vantage point between r1 and r2. By Lemma 9, we know
that there exists two NLRs, say r1 and r2, such that region R
contains at least one intersection point q between the bound-
ary of r1 and the boundary of r2 that is not equal to any van-
tage point between r1 and r2. Without loss of generality, we
assume that q appears along the continuous segment/curve
between two end points q1 and q2 representing intersection
points. Note that q1 and q2 are two of the vantage points
between r1 and r2. For example, consider Fig. 11a showing
two NLRs, namely r1 (centered at o1) and r2 (centered at o2).
q is along the curve segment between q1 and q2.

Suppose the optimal region R is denoted by the shaded
region. There are four possible cases.

– Case 1: R covers q1 and q2 (e.g., Fig. 11b)
– Case 2: R covers q1 but not q2 (e.g., Fig. 11c)
– Case 3: R covers q2 but not q1 (e.g., Fig. 11d)
– Case 4: R does not cover q1 or q2 (e.g., Fig. 11e)

However, Case 1, Case 2, and Case 3 are impossible because
we assume that R does not cover any vantage points where
q1 and q2 are vantage points. Thus, Case 4 is the only possi-
ble case where R does not cover q1 and q2. We consider two
sub-cases.

Case (a): q appears along the boundary of R
(e.g., Fig. 11f). Note that q is along the boundary of R and
q is along a continuous segment between q1 and q2. The
reason why q occurs along the boundary of R is that there
exists another NLR r3 covering q such that the boundary of
r3 intersects with the continuous segment between q1 and q2.
It is easy to verify that q is a vantage point between r3 and
r1 (or r2). Figure 11g shows an example that such a rhombus
r3 exists. Thus, R covers a vantage point, which leads to a
contradiction.

Case (b): q does not appear along the boundary of R
(e.g., the case shown in Fig. 11h). In this case, there exists
another point q ′ that appears along the boundary of R (with
the same influence value). This case is similar to Case (a), and
R covers a vantage point q ′, which leads to a contradiction.
��
With Lemma 12, it is easy to prove the following theorem.

Theorem 3 (Correctness) Algorithm MaxOverlap following
Principle 1 returns R with the largest influence value (i.e.,
the optimal solution returned by the MaxBRNN query).
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Fig. 11 Illustration of the proof
of Lemma 12

(a) (b) (c) (d)

(h)(g)(f)(e)

Next, we analyze the complexity of MaxOverlap for a
Minkowski metric of order s.

Similarly, we have the following five detailed steps.

– Step 1 (NLR (or NLC) Construction),
– Step 2 (Overlap Table Construction),
– Step 3 (Initialization),
– Step 4 (Entry Sorting) and
– Step 5 (Iterative Step).

Recall that in the L2-norm space, Step 1 constructs NLC. For
an arbitrary metric space, MaxOverlap can construct NLRs
using an VP-tree [8]. Similar to Sect. 3.3, we can derive that
the time complexity of Step 1 is O(|O|α(|P|)) where α(N ) is
the running time of a nearest neighbor query over the dataset
of size N in the given metric space.

In Step 2, we follow a similar step and compute the time
complexity to be O(|O|β(|O|)) where β(N ) is the running
time of a range query over dataset of size N in the given
metric space. Note that the VP-tree requires some adaptions
in order to index the NLRs as the data objects.

Step 3 and Step 4 are the same as before. Their complex-
ities are O(|O|) and O(|O| log |O|), respectively.

Step 5 is the same as before. That is,

–Step (i): For each pair of NLRs, namely r1 and r2, we com-
pute the vantage points between r1 and r2 (instead of intersec-
tion points). Note that for Minkowski distance, the boundary
of each NLR can be formulated by a set of polynomial equa-
tions, and solving for such equations gives us the intersecting
points.
–Step (ii): For each vantage point q found, we perform a
point query for q on the VP-tree used in Step 2.

Let X be the running time of computing the vantage points
between two NLRs in D, and let k be the greatest number of

NLRs which overlap with a given NLR. Since there are at
most O(k|O|) pairs of NLRs, Step (i) takes O(k|O|X) time.

Consider Step (ii). The complexity analysis is similar to
Sect. 3.3. Let n be the greatest possible number of vantage
points between two NLRs in D. Let θ(N ) be the running
time of a point query over a dataset of size N in the given
L p-metric space. Thus, since there are at most O(k|O|n)

vantage points, Step (ii) takes O(k|O|nθ(|O|)) time.
Combining Step (i) and Step (ii), we deduce that Step 5

takes O(k|O|X + k|O|nθ(|O|)) time.

Theorem 4 (Running time wrt D) The running time of Algo-
rithm 1 in D is O(|O|α(|P|) + |O|β(|O|) + |O| log |O| +
k|O|X + k|O|nθ(|O|)) where k is the greatest size of L of
an entry (c, L) in the overlapping table T .

The above complexity analysis is very general and can be
applied to all L p-metric spaces. For example, consider the
L2-norm metric. Since there are at most two vantage points
between two given nearest location circles (or regions), n=2.
The computation of vantage points between two NLCs takes
O(1) time. Thus, X is equal to O(1) time. The above
complexity then reduces to O(|O|α(|P|) + |O|β(|O|) +
|O| log |O| + k|O| · 1+ k|O| · 2 · θ(|O|)) = O(|O|α(|P|)+
|O|β(|O|)+ k|O|θ(|O|)+ |O| log |O|).

Note that finding intersection points between two near-
est location regions is a problem that has been studied in
geometry. However, MaxBRNN is not just simply equal to
the problem of finding intersection points. In our proposed
method called MaxOverlap for MaxBRNN, we first find the
set of all vantage points (which is a subset of all intersec-
tion points between any two nearest location regions) and
then perform a point query according to each vantage found
in order to obtain the optimal region from the results from
all point queries. The challenge in this paper is the proof
of the correctness of algorithm MaxOverlap using only the
“vantage” points instead of all intersection points, which has
not been studied in the literature.
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Next, we illustrate how the time complexity can be applied
in the other two common metric spaces, namely the L1-norm
space (Sect. 4.2.1) and in the L∞-norm space (Sect. 4.2.2).

4.2.1 L1-norm space

In the above discussion, of the theoretical time complexity of
algorithm MaxOverlap, n is the greatest number of vantage
points between two NLRs. We will show that n is bounded
(specifically, by O(1)) in the L1-norm space.

The nearest location regions in the L1-norm space are
rhombi. Let us illustrate some vantage points with the
L1-norm metric. Consider Fig. 12a showing two rhombi r1

(centered at o1) and r2 (centered at o2). There is only one
continuous (line) segment between q1 and q2 such that each
point along this segment is an intersection point. The end
points along this segment are q1 and q2. Thus, they are the
vantage points between r1 and r2. Consider Fig. 12d show-
ing another two rhombi r1 and r2. Since r1 and r2 have only
two intersection points, namely q1 and q2, the vantage points
between r1 and r2 are these two points.

n is bounded for the L1-norm. Specifically, n is at least
one and is at most four. This can be verified by listing all pos-
sible cases where two rhombi overlap as shown in Fig. 12a–i
(Note: We do not show any symmetric cases). Thus, we have
the following lemma.

Lemma 13 (At most four vantage points) If rhombus r1 and
rhombus r2 overlap, the number of vantage points between
r1 and r2 ranges from 1 to 4.

We now consider the time complexity of MaxOverlap for the
L1-norm metric. By Lemma 13, we know that the greatest
number of vantage points between two NLRs (n) is 4. As
for L2-norm, we can compute vantage points in O(1) time.

Thus, X = O(1). Thus, we have the following theorem about
the running time of algorithm MaxOverlap for L1-norm.

Theorem 5 (Running time wrt L1-norm) The running time
of MaxOverlap for L1-norm is O(|O|α(|P|)+ |O|β(|O|)+
|O| log |O| + k|O|θ(|O|)) where k is the greatest size of L
of an entry (c, L) in the overlapping table T .

Similarly, since α(|P|) can be accomplished in O(log |P|)
[9], β(|O|) can be done in O(k+ log |O|) [7] and θ(|O|) can
be achieved in O(k + log |O|) [6], the running time can be
simplified to O(|O| log |P| + k2|O| + k|O| log |O|).

4.2.2 L∞-norm space

The case in the L∞-norm space is similar to the case in the
L1-norm space. In the L∞-norm space, the nearest location
region of each o ∈ O is a square centered at o instead of a cir-
cle or a rhombi. Similar to the L1-norm space, the number of
vantage points is at most four for each pair of squares. We can
easily derive the following theorem about the running time
complexity of MaxOverlap. In the L1-norm space, we use
notations α, β, and γ . In the L∞-norm space, we overload
notations α, β, and γ to represent the same concepts.

Theorem 6 (Running time wrt L∞-norm) The running time
of Algorithm 1 in the L∞-norm space is O(|O|α(|P|) +
|O|β(|O|)+|O| log |O|+ k|O|θ(|O|)) where k is the great-
est size of L of an entry (c, L) in the overlapping table T .

Similarly, using the techniques in [6,7,9], we can simplify
the running time to O(|O| log |P| + k2|O| + k|O| log |O|).

(h)(g)(f) (i)

(b)(a) (c) (d) (e)

Fig. 12 Different overlapping cases in the L1-norm space
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5 Extension to three-dimensional case

The key idea of the efficiency of for a two-dimensional space
is vantage points. Since there are a limited number of vantage
points, the performance of MaxOverlap can be guaranteed.
In this section, we discuss how we extend the concept of van-
tage points in a three-dimensional space/case. Unfortunately,
the techniques used in the two-dimensional case (which con-
sider two nearest location regions) cannot be used directly in
the three-dimensional case. Some novel techniques (which
consider three nearest location spheres) should be used. We
will discuss the novel techniques in detail in this section.

For the sake of illustration, we first discuss how to extend
to a three-dimensional case by considering the L2-norm
space in Sect. 5.1. We then briefly discuss adaptations to
other metric spaces in Sect. 5.2.

5.1 Three-dimensional case with the L2-norm space

5.1.1 Nearest location sphere

In a two-dimensional space, each client is associated with
a nearest location circle. Similarly, in a three-dimensional
space, each client is associated with a nearest location sphere
(NLS).

Definition 7 (Nearest location sphere) Given a client point
o, the nearest location sphere (NLS) of o is defined to be a
region such that, for each point q along the boundary of the
region, |o, q| is equal to |o, p|where p is o′s nearest neighbor
in P in a three-dimensional space.

Theorem 7 MaxBRNN problem in the three-dimensional
space is 3SUM-hard when the L2-norm space is used.

Proof In order to prove this theorem, we consider the follow-
ing decision problem for MaxBRNN called DMaxBRNN.
Given a set P of server points, a set O of client points and
a positive integer K , does there exist a maximal consistent
region R such that, if a new server point p is set up in R, the
influence value of R is at least K ?

The proof is by transforming a 3SUM hard problem of
3LINES to problem DMaxBRNN. 3LINES: Given a set L of
n lines in a three-dimensional space with integer coefficients,
does there exist three lines in L such that these three lines
have a point in common.

We set K = n + 3. Suppose the three-dimensional space
contains three axes, namely x, y, and z. Given an instance
of 3LINES, we transform the instance as follows. Firstly, we
construct a cuboid Q covering all the vertices of the arrange-
ment of the lines in L such that each face of Q is parallel to
the plane containing any two of the three axes. This cuboid
can be constructed in the following three steps.

–Step 1: Consider two axes, x and y.

– For each line l in L , we do the following sub-steps.
• We project l on the plane containing x and y axes.

Let the projected line be l ′.
• We compute the slope of l ′ on the plane containing

x and y axes.
– We sort the projected lines in the ascending order of

their slopes.
– For each pair of adjacent lines in the sorted list, we find

the intersection points between these two projected
lines.

– For each intersection point, we find the corresponding
point in the three-dimensional space by computing the
intersection point between two corresponding lines in
the three-dimensional space.

– Among all these intersection points, we find the left-
most, rightmost, topmost, and bottommost points. Let
the resulting set of these points be Ixy .

–Step 2: We do similar tasks as Step 1 but we consider the
axes y and z. Let the resulting set in this step be Iyz .
–Step 3: We do similar tasks as Step 2 but we consider the
axes z and x . Let the resulting set in this step be Izx .

Let I = Ixy ∪ Iyz ∪ Izx . According to set I , we construct
cuboid Q in O(n log n) time by finding the minimum value
and the maximum value of all points in I for each axis. Let q
be the center of Q and d be the diameter of Q. Without loss
of generality, we assume that the coordinate of q is (0, 0, 0).

Then, we find the minimum distance � from a vertex of
the arrangement of the lines in L to a line in L . This can be
done by the following steps. For each point v in I , we com-
pute a variable �v to be the minimum distance of v to each
line in L . Finally, we compute � to be minv∈I �v .

We then construct two points, b+ and b−, such that b+ =
(0, 0, β) and b− = (0, 0,−β) where β is a real number to
be determined later.

For each line l in L , we find the intersection points between
l and Q, namely pl and pl

′. We create two spheres. The
first sphere (denoted by D+l ) is a sphere passing through
three points, namely pl , pl

′, and b+, while the second sphere
(denoted by D−l ) is a sphere passing through points pl , pl

′
and b−. Let wl be the width of the intersection between D+l
and D−l which is illustrated in Fig. 13.

Note that setting different values of β yields different
widths wl . It is easy to verify that βl is smaller if and only if
wl is larger. Next, we find a large value of β such that wl is
at most� for every line l in L . By elementary trigonometry,
we show that β should be set to �+�−1 · d2.

Note that every point inside Q is in D+l or D−l . Thus, it
is in at least n spheres. We conclude that there exists a point
in Q in at least n + 3 disks if and only if three lines in L
intersect in a common point. ��
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Fig. 13 The width of the intersection between two spheres D+l and
D−l

Fig. 14 Illustration for the problem when we define vantage points
according to two nearest location spheres only

(a) (b)

Fig. 15 Illustration for a three-intersecting overlap

5.1.2 Vantage point

In two-dimensional space we define vantage points according
to two nearest location circles. It may at first appear that we
can define vantage points in three-dimensional space accord-
ing to two nearest location spheres. However, this is problem-
atic. Suppose that we adopt the definition of vantage points
given in Definition 6. That is, given a pair of nearest location
spheres s1 and s2, the vantage points between s1 and s2 are
all end points along continuous segment (or curve) such that
each point along this segment is an intersection point. Con-
sider Fig. 14 showing that two nearest location spheres, s1 and
s2, overlap. In this figure, all intersection points between the
boundaries of s1 and s2 lie on a ring, denoted by r . According
to Definition 6, since there are no end points for this ring, any
point lying on it is a vantage point. Since there are an infinite
number of points on this ring, we have an infinite number of
vantage points. In other words, MaxOverlap cannot perform
efficiently according to this definition.

Consequently, we define vantage points according to three
nearest location spheres.

(a) (b)

Fig. 16 Illustration for a two-intersecting-and-one-covering overlap

Before we define vantage points, let us consider the over-
lapping relationships between three nearest location spheres.
Given three nearest location spheres, namely s1, s2 and s3,
assuming that they are overlapping and have a common inter-
section, two cases exist:

– Case 1 (Three-intersecting overlap): In this case, each of
the three nearest location spheres intersects with others
as shown in Fig. 15a. In general, the intersection among
these three spheres has non-zero volume. A special case
is that the intersection is just a single point as shown in
Fig. 15b. It is easy to see that there are at least one and
at most two intersection points among the boundaries of
all three spheres. For example, in Fig. 15a, there are two
intersection points, namely q1 and q2. in Fig. 15b, there
is one intersection point, namely q1.

– Case 2 (Two-intersecting-and-one-covering overlap): In
this case, there exists two nearest location spheres, say s1

and s2, such that one intersects with the other. Besides,
the remaining nearest location sphere, say s3, covers the
intersection between s1 and s2. This case is illustrated in
Fig. 16a. We call s1 and s2 the overlapping spheres. In
general, the intersection among these three spheres has
non-zero volume. A special case where the intersection
is just a single point is shown in Fig. 16b. It is easy to
see that all intersection points between the two overlap-
ping spheres form a ring. For example, Fig. 16a shows
such a ring r where s1 and s2 are overlapping spheres.
Fig. 16b shows a special case where the ring is collapsed
to a single point q1.

With Lemma 16, it is easy to conclude the following.

Lemma 14 (Two possible cases) When three nearest loca-
tion spheres overlap and they have a common intersection,
there are only two possible cases, namely three-intersecting
overlap and two-intersecting-and-one-covering overlap.

All examples shown in Figs. 15 and 16 are possible. But,
all examples shown in Fig. 17 are impossible.

We are now ready to define vantage points in a three-
dimensional space.
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(a) (b)

(c) (d)

(e) (f)

Fig. 17 Impossible overlap relationships

Definition 8 (Vantage point in three-dimensional space) Let
s1, s2 and s3 be three nearest location spheres. The vantage
points among these three spheres are defined as follows.

– If they form a three-intersecting overlap, then the vantage
points among these spheres are defined to be all intersec-
tion points among these spheres.

– If they form a two-intersecting-and-one-cover overlap,
then the vantage point among these spheres is defined
to be a randomly selected point along the ring between
two-intersecting spheres in this overlap.

Figure 15 shows some examples where three spheres form a
three-intersecting overlap. The vantage points are q1 and q2

in Fig. 15a while the vantage point is q1 in Fig. 15b. Figure. 16
shows some examples where three spheres form a two-
intersecting-and-one-cover overlap. The vantage point can
be any one of the points along the ring r , says q1, in Fig. 16a
while the vantage point is q1 in Fig. 16b.

It is easy to compute the vantage points as defined above.
We next consider whether some previous lemmas can be
used. It is easy to see that Lemmas 1, 2, and 5 hold in a three-
dimensional space if we consider nearest location spheres
(NLSs) instead of nearest location circles (NLCs) with the
appropriate restatement of the lemmas as below. Specifi-
cally, Lemmas 1, 2, and 5 become Lemmas 15, 16, and 17,
respectively. In the following, when we write the boundary
of a given sphere, for the sake of consistency with our two-

dimensional space discussion, we mean the surface of the
sphere in a three-dimensional space.

Lemma 15 (Intersection representation) The three-
dimensional spatial region R returned by a MaxBRNN query
in a three-dimensional space can be represented by an inter-
section of multiple NLSs.

Lemma 16 (At least one intersection point) If an NLS cov-
ers another NLS, the boundaries of the two NLSs must share
at least one point.

Lemma 17 (Influence-based pruning) Let I be a lower
bound of the optimal influence value Io (i.e., I ≤ Io). An
optimal solution is a three-dimensional spatial region that
does not involve any NLS s where (s, L) is an entry for s in
the overlap table T and W (L) < I − w(s).

However, Lemmas 3, 4, and 6 need to be re-stated according
to the new definition of vantage points (instead of intersection
points) in a three-dimensional space (which we will introduce
next).

Lemma 18 (Vantage point computation) Given three over-
lapping NLSs s1, s2 and s3, calculating the vantage points
among the boundaries of s1, s2 and s3 can be done in O(1)

time by elementary mathematical techniques.

The remaining question is how we re-state Lemmas 3 and
4. One may ask the following questions.

– What are the minimum number and the maximum num-
ber of vantage points when two nearest location spheres
overlap?

– Is it sufficient to just use vantage points we just defined
to find the optimal solution of problem MaxBRNN in the
three-dimensional space?

The first question is related to Lemma 4 and the second ques-
tion is related to Lemma 3.

We can answer the first question with the following
lemma.

Lemma 19 (At least one and at most two intersection points)
There are at least one and at most two vantage points when
three nearest location spheres overlap and they have a com-
mon intersection.

Proof Suppose that we are given three nearest location
spheres with a common intersection. According to Lemma 14,
there are two possible cases, namely three-intersecting over-
lap and two-intersecting-and-one-covering. If the spheres
form a three-intersecting overlap, it is easy to verify that
there are at least one vantage point and at most two vantage
points in Fig. 15. If they form a two-intersecting-and-one-
covering overlap, it is easy to verify that there is exactly one
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vantage point in Fig. 16. In conclusion, there is at least one
and at most two vantage points when they overlap. ��

We can answer the second question with the following
lemma.

Lemma 20 (Vantage point identification) Let So be a set of
nearest location spheres whose intersection corresponds to a
three-dimensional spatial region R returned by a MaxBRNN
query. If So contains at least three nearest location spheres,
then there exist three nearest location spheres, say s1, s2 and
s3, such that the three-dimensional spatial region R contains
at least one vantage point among the boundaries of three
spheres s1, s2 and s3.

Proof We first make the following claim, which is the same
as the current lemma we are proving but focuses on intersec-
tion points instead of vantage points.

Claim: “Let So be a set of nearest location spheres
whose intersection corresponds to a three-dimensional spa-
tial region R returned by a MaxBRNN query. If So contains
at least three nearest location spheres, then there exist three
nearest location spheres, say s1, s2 and s3, such that the three-
dimensional spatial region R contains at least one intersec-
tion point among the boundaries of the three spheres s1, s2

and s3.”
This claim can be proven in the same way as Lemma 3.
The next step for the proof of Lemma 20 is to show that

the optimal three-dimensional spatial region R contains at
least one vantage point among the boundaries of some three
spheres s1, s2 and s3. Note that every vantage point is an
intersection point, but it is possible that an intersection point
is not a vantage point.

We prove this by contradiction. Suppose that there do not
exist three nearest location spheres such that R contains at
least one vantage point among the boundaries of these three
spheres. In other words, by the above claim, there exist three
nearest location spheres, say s1, s2, and s3, such that R con-
tains at least one intersection point q among the boundaries
of these three spheres but q is not a vantage point.

According to Lemma 14, we have only two possible cases.

Case 1: Suppose that s1, s2, and s3 form a three-intersecting
overlap (See Fig. 15). In this case, it is easy to verify that
all intersection points among the boundaries of these three
spheres are vantage points. This case is not possible, leading
to a contradiction that q2 is an intersection point but not a
vantage point.
Case 2: Suppose that s1, s2, and s3 form a two-intersecting-
and-one-covering overlap (See Fig. 16). In this case, it is
possible that an intersection point among the boundaries of
these three spheres is not a vantage point. We consider two
sub-cases.

Case (a): q appears along the boundary of R (e.g., the case
shown in Fig. 18a). Note that q is along the boundary of R
and q is along the ring for the two overlapping spheres s1

and s2. The reason why q occurs along the boundary of R is
that there exists another sphere s4 covering q such that the
boundary of s4 intersects with the ring. It is easy to verify
that s1, s2, and s4 form a three-intersecting overlap, and thus
q is a vantage point among three spheres s1, s2, and s4. This
leads to a contradiction that q is not a vantage point.
Case (b): q does not appear along the boundary of R (e.g.,
the case shown in Fig. 18b). In this case, there exists another
point q ′ that appears along the boundary of R (with the same
influence value). This case is similar to Case (a). With the
use of q ′, we also conclude that R covers a vantage point q ′,
which leads to a contradiction. ��

Similarly, after knowing the answers of these two ques-
tions, it is easy to show that MaxOverlap returns a correct
solution.

Theorem 8 (Correctness) MaxOverlap returns a three-
dimensional spatial region R with the largest influence value
(i.e., the optimal solution returned by the MaxBRNN query)
in a three-dimensional space.

MaxOverlap algorithm for the three-dimensional case is
shown in Algorithm 2.

Algorithm 2 Algorithm MaxOverlap in a three-dimensional
case
1: for each o ∈ O do
2: construct an NLS for o
3: end for
4: build the overlap table T
5: choose the pair of overlapping NLSs, say s1 and s2, with the largest

W ({s1, s2})
6: let p be {s1, s2}
7: So ← {p}
8: Io ← W (p)

9: A← ∅
10: while there exists an entry in T do
11: remove an entry (s, L) with the largest value of W (L) from T
12: for any three NLSs s, s′, s′′ ∈ L do
13: compute the vantage points among the boundaries of s, s′ and s′′
14: for each vantage point q found do
15: perform a point query from q to find all NLSs covering q
16: let S be the result of the above point query
17: I ← W (S)

18: if I > Io then
19: So ← S
20: Io ← I
21: end if
22: end for
23: end for
24: A← A ∪ {s}
25: remove all entries (s′, L ′) from T where W (L ′) < Io − w(s′)
26: end while
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Next, we analyze the complexity of MaxOverlap in a
three-dimensional space. Similarly, we have the following
five detailed steps.

– Step 1 (NLR (or NLC) Construction),
– Step 2 (Overlap Table Construction),
– Step 3 (Initialization),
– Step 4 (Entry Sorting) and
– Step 5 (Iterative Step).

Steps 1–4 are the same as that for two-dimensional case, but
we consider D instead of the L2-norm space. Their com-
plexities are O(|O|α(|P|)), O(|O|β(|O|)), O(k|O|), and
O(|O| log |O|), respectively, where we overload notations
α, β, and γ to represent the same concepts in the three-
dimensional case.

Step 5 is similar to the two-dimensional case. That is,

–Step (i): For any three NLSs with a common intersection,
namely s1, s2, and s3, we compute the vantage
points among s1, s2 and s3.

–Step (ii): For each vantage point q found, we perform a
point query for q.

Since the total number of vantage points is O(k2|O|) and
performing a point query for each q is O(θ(|O|)), Step 5
takes O(k2|O|θ(|O|)) time.

Theorem 9 (Running time in a three-dimensional case) The
running time of Algorithm 2 in a three-dimensional case
is O(|O|α(|P|)+ |O|β(|O|)+ |O| log |O| + k2|O|θ(|O|))
where k is the greatest size of L of an entry (s, L) in the
overlapping table T .

5.2 Three-dimensional case with other Minkowski metrics

In Sect. 5.1, we solved the MaxBRNN problem in the three-
dimensional case with the L2-norm space. In this section, we
discuss how to apply the techniques discussed in Sect. 5.1
to the three-dimensional case with any arbitrary Minkowski
distance metric of order 1 or above.

We first illustrate how the techniques can be extended to
two common metric spaces, namely the L1-norm space and

(a) (b)

Fig. 18 Illustration for the proof of Lemma 20

the L∞-norm space. Under the L2-norm space, given a cli-
ent point o, we have the nearest location sphere centered at o.
However, under the L1-norm space, we have an octahedron
centered at o as shown in Fig. 19a while under the L∞-norm
space, we have a cube centered at o as shown in Fig. 19b.
The same principle discussed in Sect. 5.1 still applies under
the L1-norm space and the L∞-norm space. We just replace
the sphere used under the L2-norm space by the octahedron
under the L1-norm space or the cube under the L∞-norm
space.

The techniques can be generalized to any Minkowski dis-
tance metric of order 1 or above since we can always construct
a convex NLR centered at a client point.

5.3 Other metric spaces

Other metric spaces can be considered under some condi-
tions. In an arbitrary metric space, we can also construct
nearest location regions. The set {p : d(p, o) = r} is called
the sphere of radius r with centre o. This generalizes the
notion of spheres in a Euclidean space to arbitrary metric
spaces. Such a set forms the nearest location region for o if r
is the distance to o′s nearest neighbor in terms of the metric.
Note that the sphere in a metric space need not look like
a sphere in Euclidean space. We have seen spheres of dif-
ferent shapes for Ls-norms. In general, the nearest location
region can be disconnected, or it may be discrete.

In the discussion of our method for the Minkowski met-
rics, the only properties for nearest location regions that we
use are that they should be contiguous and convex. There-
fore, if a metric generates convex contiguous nearest loca-
tion regions, then our method can also be used. One may also
consider the possibility of transforming the given metric to
one with the above properties while preserving the nearest
neighbor characteristics. One such related work is [14].

6 Empirical study

We have conducted extensive experiments to test our pro-
posal. The experiments are run on a Pentium IV 2.2 GHz
PC with 1GB memory, on a Linux platform. The algorithms
were implemented in C/C++. We deployed four real datasets

(a) (b)

Fig. 19 Nearest location object in different Minkowski metrics for the
three-dimensional case
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Table 2 Summary of the real
datasets

Dataset Cardinality

CA 62,556

LB 53,145

GR 23,268

GM 36,334

that are available at http://www.rtreeportal.org/spatial.html.
The summary of the real datasets is shown in Table 2 where
C A, L B, G R, and G M contain two-dimensional points rep-
resenting geometric locations in California, Long Beach
Country, Greece, and Germany, respectively. For datasets
containing rectangles, we transformed them into points by
taking the centroid of each rectangle. For all datasets, each
dimension of the data space is normalized to range [0,
10,000]. Since our problem involves two datasets, namely
P and O, we generated four sets of experiments for real
datasets, namely C A-G R, L B-G R, C A-G M , and L B-G M ,
representing (P,O) = (C A, G R), (L B, G R), (C A, G M),
and (L B, G M), respectively.

Similar to [21], we also created synthetic datasets each
of which contains P following Gaussian distribution and O
following Zipfian distribution. The coordinates of each point
were generated in the range [0, 10,000]. In P , each coordinate
follows Gaussian distribution where the mean and the stan-
dard derivation are set to 5,000 and 2,500. In O, each coor-
dinate follows Zipfian distribution skewed toward 0 where
the skew coefficient is set to 0.8. In both cases, all coordi-
nates of each point were generated independently. Since we
are studying the problem with two-dimensional points, the
dimensionality is set to 2 in the dataset generator.

The weight of each client point in both real datasets and
synthetic datasets is set to 1 in the following experimental
results. We also conducted experiments where the weight of
each client point is any positive integer. Since the results are
similar, for the interest of space, we only report the results
when the weight is equal to 1. In the experiments, we focus
on the study of lMaxkBRNN since it is more general than
MaxBRNN, MaxkBRNN, and lMaxBRNN.

We further divide MaxOverlap into two algorithms called
MaxOverlap-P and MaxOverlap-NP. MaxOverlap-P is our
proposed algorithm that considers pruning described in
Lemma 5. MaxOverlap-NP is similar, but it does not use
any pruning according to Lemma 5. In the following, when
we describe MaxOverlap, we mean both algorithms.

We compare our proposed algorithm with two algo-
rithms. The first one is the best-known algorithm for Max-
BRNN problem called Arrangement [3,4]. The second one
is an algorithm called Buffer-Adapt [10] which is origi-
nally designed to solve problem MaxBRNN in the L1-norm
(instead of the L2-norm) and is now adapted for problem

MaxBRNN in the L2-norm. Specifically, in Buffer-Adapt,
for each client point o, its nearest location box is constructed
(together with its nearest location circle) similar to [10].
Then, the box is scaled by

√
2. It is easy to see that the

scaled nearest location box of each client point covers its
nearest location circle. A variable called sol is used to store
the optimal solution found so far. Initially, sol is set to ∅. The
adapted algorithm starts the ordinary plane-sweep algorithm
[10]. Whenever the algorithm finds a set A of intersecting
boxes, if the weighted size of A is greater than the weighted
size of sol, it performs a refinement step that computes a
set B of intersecting circles (that are covered by the boxes
of A) such that the weighted size of B is maximized. If the
weighted size of B is greater than that of sol, we update sol
by B. We iteratively perform the above steps until we process
all boxes. The final solution can be found in sol.

As indicated earlier, we adopted an R*-tree [2] as an
indexing structure for the nearest neighbor search and the
k-th nearest neighbor search where the node size is fixed to
1k bytes.1 The maximum number of entries in a node is equal
to 50, 36, 28, and 23 for dimensionality equal to 2, 3, 4, and
5, respectively. We set the minimum number of entries in a
node to be equal to half of the maximum number of entries.

We evaluated the algorithms in terms of two measure-
ments: (1) execution time and (2) storage.

The execution time corresponds to the time of executing
the algorithms. The memory usage of MaxOverlap is equal
to the memory used by the indexes and the overlap table (i.e.,
the R*-tree RP built over all data points in P , the R*-tree
RC built over all NLCs and the overlap table). The memory
used by Arrangement is equal to the memory used by the
total number of faces between adjacent Voronoi cells used in
the algorithm. The memory used by Buffer-Adapt is equal to
the memory used by the indexes and the data structures used
in the plane-sweep algorithm (i.e., the R*-tree RP built over
all data points in P , the lookup table built over all nearest
location boxes where each entry of the table stores a NLC
in addition to a nearest location box and the data structures
used in the plane-sweep algorithm).

We have also evaluated MaxOverlap in terms of other
measurements, namely (3) pruning power, (4) overlap table
storage, (5) R-tree storage, (6) average no. of overlaps, and
(7) average influence value.

Pruning power is equal to the number of client points that
are pruned without any consideration given to the influence-
based pruning. R-tree storage corresponds to the memory
consumption due to indexing, namely RP and RC . Average
no. of overlaps is the average number of NLCs that overlap
with an NLC in the data set. The average influence value is
the average influence value of regions in the output of the

1 We choose a smaller page size to simulate practical scenarios where
the dataset cardinality is much larger.
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lMaxkBRNN query. If l is equal to 1, the average influence
value is equal to the highest influence value.

In the experiments, we study the effect of cardinality, k
and l. All experiments were conducted 100 times and we
report the average for the results.

We present our results in four parts. The first three parts
are based on datasets of dimensionality equal to 2 while the
last one is based on datasets of dimensionality equal to 3.

The first part (Sect. 6.1) focuses on the performance com-
parison between all algorithms in the L2-norm space. The
second part (Sect. 6.2) focuses on the scalability of our pro-
posed algorithm on datasets with larger cardinality in the
L2-norm space. The third part (Sect. 6.3) gives the exper-
imental studies in the L1-norm space. The fourth part
(Sect. 6.4) studies the performance of algorithm MaxOverlap
in the dataset of dimensionality equal to 3.

6.1 Performance in the L2-norm metric

Since Arrangement algorithm is not scalable with respect to
large datasets, we conduct the comparison experiments with
smaller O, namely 50, 100, 150, 200, and 250, and P of size
equal to 2|O|. We adopt the C A-G R dataset where (P,O) =
(C A, G R). Since these values are smaller than the cardinal-
ity of the real datasets, we sample the data points accordingly.
We set l = 1 and k = 1. Figure 20a shows that the execution
times of all algorithms increase with the cardinality of data-
sets. The execution time of Arrangement is much greater than
that of MaxOverlap. MaxOverlap performs 1,000,000 times
faster than Arrangement when |O| = 250. In particular, Max-
Overlap only runs within 0.1s but Arrangement runs more
than 1 day on this dataset. This is because MaxOverlap, which
makes use of the overlap relationships between NLCs, runs in
polynomial-time while Arrangement, which considers Voro-
noi cells (which is exponential in terms of the total number of
client points), runs in exponential time. In addition, Buffer-
Adapt performs slower than MaxOverlap by orders of mag-
nitude. This is because Buffer-Adapt has some drawbacks
related to the L1-norm. Firstly, it introduces an additional
overhead related to the boxes for the L1-norm (which does
not exist in our original problem that depends on the circles
for the L2-norm). Secondly, an intersection among a certain
set of boxes used in Buffer-Adapt does not imply an existence
of an intersection among the corresponding circles (which
can represent the optimal solution). Since Buffer-Adapt has
“larger” boxes (compared with circles), it is more likely that
the boxes are intersecting. Thus, more refinement steps need
to be done redundantly. Furthermore, in these small data sets,
the execution times of MaxOverlap-P and MaxOverlap-NP
are similar.

For the same setting, in Fig. 20b, the storage usage of all
algorithms increase with the cardinality of the dataset. The

storage requirement of Arrangement is much larger than that
of MaxOverlap. For example, when |O| = 250, Arrangement
consumes about 28 times more memory than MaxOverlap.
This is because Arrangement needs to keep track of Voro-
noi cells, which consumes considerably more memory com-
pared with the indexing structures used in MaxOverlap. In
addition, the storage of Buffer-Adapt is slightly greater than
that of MaxOverlap due to the additional storage overhead
of boxes.

As mentioned above, there exists work [10] that addresses
problem MaxBRNN in the L1-norm and this can be adapted
to the problem in the L2-norm. In the following, we apply the
original algorithm (for the L1-norm) to the problem in the
L2-norm directly without any adaption. We call this algo-
rithm Buffer. Specifically, algorithm Buffer returns a sin-
gle point that maximizes its influence value in the L1-norm
only. We took this point for the MaxBRNN query in the
L2-norm and obtained the (weighted) size of BRNN set. The
(weighted) size corresponds to the influence value returned
by Buffer. Since Buffer is not designed for the L2-norm,
the influence value with respect to the L2-norm is smaller
than the influence value returned by algorithm MaxOverlap
(or Buffer-Adapt). In all experiments with the same setup
as above, we found that, on average, the influence value of
the point returned by Buffer in the L2-norm is about 26.9%
of the optimal influence value returned by MaxOverlap (or
Buffer-Adapt), which suggests that Buffer cannot be used
as an approximate algorithm for problem MaxBRNN in the
L2-norm.

We also tried to adapt Buffer so that the adapted approach
returns the optimal region (in form of box) in L1-norm.
Then, we pick a sample set of points in the optimal region to
perform the MaxBRNN queries in the L2-norm and obtain
the average (weighted) size of BRNN sets, which corre-
sponds to the influence value returned by Buffer. Let N
be the sample size. We tested this adapted approach with
N = 250, 500, 750, 1,000. On average, the influence value
returned by Buffer is at most 34.69% of the optimal influ-
ence value returned by algorithm MaxOverlap (or algorithm
Buffer-Adapt).

6.2 Scalability

The experiments reported in the previous section demonstrate
that MaxOverlap is considerably better than Arrangement
and Buffer-Adapt in terms of execution time and memory
consumption. In this section, we study the scalability of Max-
Overlap using both synthetic datasets and real datasets (recall
that Arrangement is not scalable to handle large datasets).
The default values of the synthetic datasets are shown in
Table 3. In these experiments, we do not sample the real
datasets; instead, the cardinality of the real datasets used in
the experiments are shown in Table 2. The default values
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Fig. 20 Effect of cardinality
(small real data set where
O=GR and P=CA)

(a) (b)

Table 3 Default synthetic data-
set cardinalities

Default value

(|O|) 50 k

(|P|) 2|O|

of l and k are both 1. Figures 21 and 22 show the results
when we vary the cardinality of the dataset (i.e., |P|) and k,
respectively.

Effect of cardinality: Figure 21a shows that the execu-
tion times of MaxOverlap-P and MaxOverlap-NP algorithms
increase with |P| where |P| = 2|O|. Since MaxOverlap-P
prunes some client points while MaxOverlap-NP does not,
MaxOverlap-P runs faster than MaxOverlap-NP. Figure 21b
shows that nearly 99% of client points are pruned by Lemma 5
in MaxOverlap-P. We observe that although nearly 99% of
client points are pruned, the performance gain for MaxOver-
lap-P is not nearly 99%. This is because the client points c
processed in MaxOverlap-P has large sizes of L(c), which
takes a lot of execution time. However, the client points c′
pruned in MaxOverlap-P but processed in MaxOverlap-NP
has small sizes of L(c). Thus, the performance gain is not
nearly 99%. Figure 21c depicts the expected increase in the
storage requirement for the overlap table and the R-tree stor-
age with the cardinality of dataset, because both O and P
increase in size. In Fig. 21d, the average no. of overlappings
increases slightly with the cardinality of dataset, |P|. With
more data points, it is more likely that an NLC overlaps
with another NLC. Thus, the average number of overlaps
increases. In addition, from Fig. 21d, the average influence
value increases with the cardinality of dataset because the
average number of overlaps is increased.

Effect of k: As shown in Fig. 22a, the execution times of
MaxOverlap increase with k. This is because as k increases,
we need to find more nearest neighbors. Figure 22b shows
that the pruning power of MaxOverlap-P is robust to changes
in k. From Fig. 22c, the overlap table storage increases with
k but the R-tree storage remains unchanged. With a larger k
value, it is more likely that an NLC for a client point overlaps
with another NLC. Then, the number of NLCs that overlap

with an NLC is larger. Thus, the overlap table size is larger.
Since k is independent of the R-tree storage, the R-tree stor-
age remains unchanged. Figure 22d shows that the average
number of overlaps and the average influence value increase
with k. As we described, a larger value of k increases the
chance of NLC overlaps, and thus the average number of
overlappings. With a larger average number of overlaps, it is
more likely that the average influence value in the l regions
returned by the query is larger.

Effect of l: We have conducted experiments with l values of
1, 5, 10, and 15. The execution time, the pruning power, the
overlap table storage, the R-tree storage, the average number
of overlaps, and the average influence value all remain nearly
unchanged when l is increased. In the interest of space, we
omit the figures.

Effect of real datasets: We have conducted experiments
on the four sets of real datasets, namely C A-G R, L B-G R,

C A-G M , and L B-G M . The results are also similar to syn-
thetic datasets. For space reasons, we only show the figures
for C A-G R and C A-G M . Figures 23 and 24 show the results
for C A-G R while Figs. 25 and 26 show the results for
C A-G M .

Conclusion: We find that MaxOverlap is more efficient than
the best-known algorithm, Arrangement. It utilizes less mem-
ory as well. Our proposed algorithm is scalable to large data-
sets, while Arrangement is not.

6.3 Extension to the L1-norm space

In the previous sections, we reported experiments in the
L2-norm space. In this section, we choose the L1-norm met-
ric and study the performance of our extension into L1. The
reason why we chose the L1-norm metric is that it is well-
known and commonly used. We compared our proposed
algorithm MaxOverlap (which can be adapted to solve prob-
lem MaxBRNN in the L1-norm space) with algorithm Buffer
(which is an algorithm for solving the same problem in the
L1-norm space).

Figure 27 shows the execution times of MaxOverlap and
Buffer for synthetic datasets. We vary the cardinality of the
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Fig. 21 Effect of cardinality
(synthetic data set)

(a) (b)

(c) (d)

Fig. 22 Effect of k (synthetic
data set)

(a) (b)

(c) (d)

dataset, parameter k and parameter l where the results can
be found in Fig. 27a, b ,c, respectively. Figure 28 shows the
execution times for real dataset CA-GR.

In these figures, the execution time of MaxOverlap is
higher than that of Buffer. In the previous sections, we
showed that MaxOverlap has good performance in the
L2-norm space. Since MaxOverlap can be adapted to solve
problem MaxBRNN in any metric space, and thus it is very
general, it is not tailor-made to solve MaxBRNN problem
in any particular metric space. Thus, it cannot make use of

some properties in this particular metric space to speed up the
computation. Thus, in the L1-norm space, the execution time
of MaxOverlap is higher than that of Buffer as shown in the
figures. We note, however, that the difference in real dataset
is slight. Coupled with the fact that MaxOverlap can work in
any metric space while Buffer cannot, it is obvious that Max-
Overlap is more robust across a wider range of applications.

As before, the execution times of all algorithms increase
with the cardinality of the dataset and k, and they remains
nearly unchanged when l increases.
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Fig. 23 Effect of k (real data
set CA-GR)

(a) (b)

(c) (d)

Fig. 24 Effect of l (real data set
CA-GR)

(a) (b)

(c) (d)

6.4 Extension to three-dimensional case

In this section, we report the results of experiments in the
three-dimensional space by using the L2-norm metric. Sim-
ilarly, we also implemented algorithm Arrangement to work
in the three-dimensional case. Since it is not scalable, we
conducted experiments in a small dataset where the cardi-
nality of the synthetic dataset is 250. The execution time of
Arrangement is 212,566 s while the execution time of Max-
Overlap is 0.07 seconds. Thus, MaxOverlap runs faster than
Arrangement by several orders of magnitude.

In the following, we show experimental results with larger
datasets. Since Arrangement is not scalable, in the follow-
ing, we only show the results of MaxOverlap. Figure 29a, b
show that, as expected, the execution time of MaxOverlap
increases with the cardinality of the dataset and parameter
k. Figure 29c shows that the execution time of MaxOverlap
remains nearly unchanged when l changes. The explanations
are similar to what we reported before. We note that the exe-
cution time of MaxOverlap in the three-dimensional space
is much larger than the execution time of MaxOverlap in the
two-dimensional space (shown in the previous experimental
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Fig. 25 Effect of k (real data
set CA-GM)

(a) (b)

(c) (d)

Fig. 26 Effect of l (real data set
CA-GM)

(a) (b)

(c) (d)

(a) (b) (c)

Fig. 27 Comparison between MaxOverlap and buffer in the L1-norm space (synthetic data set)
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Fig. 28 Comparison between
MaxOverlap and buffer in the
L1-norm space (real data set
CA-GR)

(a) (b)

(a) (b) (c)

Fig. 29 Performance of MaxOverlap in the three-dimensional space (synthetic data set)

results). This is because it has to process more dimensions
in the three-dimensional space.

7 Related work

Bichromatic reverse nearest neighbor (BRNN) search was
first proposed by Korn and Muthukrishnan [12]. The fastest
BRNN algorithm is due to Stanoi et al. [15]. BRNN search
has been used to to discover the most “influential” server
among a number of servers, which has the largest BRNN
set [22], and to address other problems [13,16]. None of the
above works, however, can be applied to solve MaxBRNN,
because, as explained in Sect. 1, there are a large (or infinite)
number of points in the data space, and it is infeasible to
perform a large (or infinite) number of MaxBRNN queries.

The existing work which are closely related to ours is
that of Cabello et al. [3,4], which considers MaxBRNN
for L2-norm in the two-dimensional space. In that work,
the problem is shown to be 3SUM-hard. If it takes O(N )

time to solve 3SUM (as conjectured) where N is the size
of the dataset, then it must take at least quadratic time to
solve MaxBRNN. Cabello et al. proposes a method based on
the arrangement of NLCs of the client points. This method
involves three major steps. The first step is to construct a
set of NLCs for client points. Similar to our method, this
step can be done in O(|O| log |P|) time. The second step
is to find an arrangement according to a set of NLCs. The
best-known efficient method to find an arrangement [1] has

the running time of O(N 2) time where N is the number of
points in the dataset. In our case, since each point corre-
sponds to an NLC, N is equal to |O|. The third step is to find
the best region by traversing from a Voronoi cell to another
cell by the face between these two cells iteratively. Since
the algorithm relies heavily on the total number of possible
faces between adjacent Voronoi cells used in the arrangement
and the total number of possible faces is O(2γ (|O|)) where
γ (|O|) is a function on |O| and is �(|O|), the method is
exponential in terms of |O|. Specifically, the complexity is
O(|O| log |P|+ |O|2+2γ (|O|)). In other words, this method
is not scalable with respect to dataset size. Cabello’s proposal
is the only known method for L2-norm but it does not include
any empirical studies.

MaxBRNN problem is also studied in the L1-norm metric
[10]. This algorithm finds an optimal location l instead of a
region maximizing the influence value of l, but the work is
limited to the L1-norm.

Some other related problems have been studied [5,23].
The first one [5] proposes to find a location p for a new
server in order to minimize the maximum distance between
p and any client point o ∈ O. The second one [23] pro-
poses the min-dist optimal location query. Given a set P of
servers, a set O of client points and a spatial region Q, the
min-dist optimal location query returns a location in Q that
minimizes the average distance from each client point to its
closest server if a new site is built at this location.

In the preliminary version of this paper [20], we intro-
duce the MaxOverlap problem and proposed the MaxOverlap
algorithm in the two-dimensional case when the metric space
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is the L2-norm space. In his paper, we extend the problem
definition to any Minkowski metric of order 1 or above for
two- and three-dimensional spaces and propose appropriate
algorithmic solutions. These problem had not been studied
previously despite their importance and practical relevance.

8 Conclusion

In this paper, we propose an efficient algorithm called Max-
Overlap to address MaxBRNN problem. We experimen-
tally show the efficiency of our proposed algorithm. We also
extend our approach to any metric space and the three-dimen-
sional spaces.

There are a lot of promising research directions. Firstly,
it would be interesting to consider higher dimensions.
Secondly, some recent works [18,21] consider the capac-
ity of each server, while we have so far assumed that each
server can serve as many clients as possible, consistent with
the assumptions in the literature. This was done to be able to
have baseline comparisons with existing work. With the con-
sideration of server capacity, each client point may be asso-
ciated with a farther server (instead of the nearest server) for
forming an NLC in order to satisfy the capacity requirement.
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