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Abstract This paper studies the problem of processing
supergraph queries, that is, given a database containing a
set of graphs, find all the graphs in the database of which
the query graph is a supergraph. Existing works usually
construct an index and performs a filtering-and-verification
process, which still requires many subgraph isomorphism
testings. There are also significant overheads in both index
construction and maintenance. In this paper, we design a
graph querying system that achieves both fast indexing and
efficient query processing. The index is constructed by a sim-
ple but fast method of extracting the commonality among the
graphs, which does not involve any costly operation such as
graph mining. Our query processing has two key techniques,
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direct inclusion and filtering. Direct inclusion allows par-
tial query answers to be included directly without candidate
verification. Our filtering technique further reduces the candi-
date set by operating on a much smaller projected database.
Experimental results show that our method is significantly
more efficient than the existing works in both indexing and
query processing, and our index has a low maintenance cost.

Keywords Graph query processing · Graph indexing ·
Supergraph queries

1 Introduction

Graph query processing [2,3,5,10,12,13,16,20–24] has
attracted much attention in recent years thanks to the increas-
ing popularity of graph databases in various application
domains. Existing research on graph query processing is con-
ducted mainly on two types of graph databases. The first one
is large graphs such as social networks [11,14]. The second
one is transaction graph databases that consist of a set of
relatively smaller graphs. Transaction graph databases are
prevalently used in scientific domains such as chemistry [9],
bio-informatics [6].

We focus on query processing in transaction graph dat-
abases. There are two types of queries commonly studied in
the literature. One is subgraph query [3,5,10,12,13,16,20,
21,23,24], which is to retrieve all the graphs in the database
such that a given query graph is a subgraph of them. The
other one is supergraph query [2,22], which is to retrieve
all the graphs in the database such that the query graph is a
supergraph of them.

This paper focuses on supergraph query, which has a
wide range of applications in chemistry informatics (super-
structure search), computer vision (object recognition and
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shape matching), social science (insider threat detection),
etc. For example, in chemical super-structure search, the
database contains a set of compound structures with known
chemical/biological properties or functionalities. The que-
ries are compound structures with larger graph size. For
each query, the system returns a set of compound structures
that comprise or make up the query, which are further used
to determine possible chemical properties of the compound
query. Some other detailed examples of supergraph query,
such as in computer vision applications, are also given in [2].

The problem has three challenges. First, the database can
be very large. For example, there are currently over 26 mil-
lion chemical compound structures in PubChem Compounds
Database,1 which is maintained by the U.S. government. Sec-
ond, the database can be highly dynamic. In PubChem Com-
pounds Database, over 6 million new compounds have been
added in the previous year and the database is continuously
growing. Third, the query workload can be bulky and come
in a high speed. For example, PubChem implements a search
engine for the super-structure search2 and queries may come
in as a fast-speed stream.

Since processing supergraph queries involves the NP-
complete subgraph isomorphism test, sequential scan of the
database is prohibited and existing solutions use indexes.
However, to address the three challenges highlighted earlier,
we need an index that is: (1) efficient to construct for a large
database, (2) efficient to maintain over dynamic updates, and
(3) efficient to process bulky query workloads. The existing
indexes are inadequate due to the following two deficiencies.

First, the existing works utilize commonality (e.g., fre-
quent subgraphs, paths, or trees) among the database graphs
to construct their index. To extract common substructures
from the database graphs, they usually apply data mining
techniques such as frequent subgraph mining [8,18] or its
variants [2,3,7,19,20]. These mining operations are expen-
sive and incremental update on the mining results is difficult.
Thus, significant overheads are imposed on both index con-
struction and maintenance.

Second, the existing works adopt the filtering-and-
verification approach. They use the index to first filter part of
the false answers to produce a candidate set, and then verify
each candidate to see whether it is indeed a subgraph of the
query. However, the optimal filtering approach suffers from a
bottleneck that the size of the candidate set is at least the size
of the final answer set, which results in a high verification cost
because each verification is a subgraph isomorphism test.

We address the above two deficiencies by designing an
index that is both efficient to construct and update, and

1 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=
pccompound&term=all[filt].
2 http://pubchem.ncbi.nlm.nih.gov/search/search.cgi.

devising an efficient algorithm for query processing using the
index. Our index also exploits the benefit of batch process-
ing to further improve query processing, which is especially
efficient when the query graphs share much commonality, a
likely condition since queries usually come from the same
application domain. Thus, the index effectively avoids com-
mon parts among the queries being processed duplicately.

Batch processing is also inherent in many applications
especially those in which queries arrive as a high-speed
stream [1,15]. A typical example is the search engine
designed for chemical molecules. As early as Dec 2004, a
chemical software named JChem Base3 has already imple-
mented the super-structure search mode for chemical com-
pounds. Later in 2005, a chemical structure search engine that
supports super-structure search was launched by PubChem.
In these applications, often the query processing capability
is not able to keep up with the speed of the query stream; in
such situations, batch processing is particularly useful since
we can answer a batch of queries coming in about the same
time and give timely answers without sacrificing any accu-
racy of the answers.

The design of our index relies on a fast graph common-
ality extraction method based on simple statistics of graphs.
We integrate all the data graphs in the database into a single
graph, namely the integrated graph (IG), by simply following
the frequency of the edges. The IG is a compact represen-
tation of a set of graphs and has a number of good proper-
ties. First, the IG can be constructed in linear time without
involving any expensive graph operations such as subgraph
isomorphism testing. Second, it is easy and fast to maintain
the IG when the database is updated. Third, the common-
ality, including common subgraphs and supergraphs, of the
data graphs can be extracted efficiently without performing
any costly operations such as graph mining [8,18]. These
common subgraphs and supergraphs are employed to pro-
cess queries. Fourth, the graph integration can be applied to
both data graphs and query graphs in a unified way. Thus,
we similarly construct an IG on the set of query graphs for
batch query processing.

In the case when little commonality exists among the data
graphs or query graphs, our IG is still effective, because if
a graph does not share commonality with others, it only has
one place to go in the IG and hence can be located instantly.
On the contrary, existing methods that utilize commonality
for indexing do not have such a property and are likely not
efficient for handling graphs with little commonality.

Based on the concept of IG, we develop a graph query
processing system, called IGquery. We propose two new
techniques, namely direct inclusion of answers and
projected-database filtering.

3 http://www.chemaxon.com/product/jc_base.html.
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First, direct inclusion breaks the bottleneck on the candi-
date set size of the filtering approach by directly obtaining
a large subset of the answer set. Direct inclusion utilizes
the subgraph-supergraph relationship to allow groups of data
graphs to be directly included into the answer sets of groups
of query graphs, thereby dramatically reducing the verifica-
tion cost. More importantly, direct inclusion does not involve
any subgraph isomorphism test. It simply follows the fre-
quency clue in the IG of the data graphs and that of the query
graphs to check the inclusion condition, which takes only
linear time.

Second, projected-database filtering further produces a
small candidate set for the remaining answers not found by
direct inclusion. Existing work filters false results from the
entire database, which results in a relatively large candidate
set. Our projected-database filtering generates the candidate
set from a much smaller projected database instead of from
the entire database.

To the best of our knowledge, our work is the first that is
able to process graph queries in a batch manner and to per-
form direct inclusion of answers for supergraph queries. We
demonstrate by experiments on both real and synthetic data-
sets that our index construction is up to orders of magnitude
more efficient than cIndex [2] and GPTree [22]. The results
also show that our query processing is up to two orders of
magnitude faster than cIndex and GPTree and is more scal-
able, for graphs sharing both much and little commonality.
We also show that the update maintenance of our index is
efficient.

Paper organization We give preliminaries in Sect. 2. We
define the supergraph query problem in Sect. 3. We intro-
duce the concept of integrated graph in Sect. 4. We present
our index construction and query processing system, IGque-
ry, in Sects. 5 and 6. We evaluate the performance of IGquery
in Sect. 7. Finally, we review related work in Sect. 8 and con-
clude the paper in Sect. 9.

2 Preliminaries

For simplicity of presentation, we restrict our discussion to
undirected, labeled connected graphs. We also assume that
a graph has at least one edge. However, our method can be
applied to directed graphs with minor changes.

A graph g is defined as a triple (V, E, l), where V is the
set of vertices, E is the set of edges and l is a labeling func-
tion that assigns a label to each vertex and edge. We define
the size of a graph g, denoted as |g|, as the number of edges
in g, that is, |g| = |E(g)|.

A distinct edge in a graph g is defined as a triple, (lu, le, lv),
where le is the label of an edge (u, v) in g, and lu and lv are the
labels of vertices u and v in g. A distinct edge, ed , may appear

Table 1 Notations used throughout

Symbol Description

|g| The size of a graph g, defined as |g| = |E(g)|
D A graph database

Q A set of query graphs

Aqi The answer set of a query qi

As
qi

A subset of the answer set of a query qi

Cqi The candidate set of a query qi

GD An integrated graph built on D
GQ An integrated graph built on Q
host (e) The set of graphs that currently share e in G
f req(e) The cumulative # of graphs that share e in G
F The set of discriminative subgraphs as features

Fsub/Fsup The set of discriminative subgraphs/supergraphs

Sup(g, S) All supergraphs of g in S

Sub(g, S) All subgraphs of g in S

Sup(g, GS) An approximation of Sup(g, S) computed from GS

Sub(g, GS) An approximation of Sub(g, S) computed from GS

multiple times in a graph g and, we call each occurrence of
ed an instance of ed in g.

Let g and g′ be two graphs. We call that g is a subgraph
of g′ (or g′ is a supergraph of g), denoted as g ⊆ g′ (or
g′ ⊇ g), if there exists an injective function f : V (g) →
V (g′), such that for every edge (u, v) ∈ E(g), we have
( f (u), f (v)) ∈ E(g′), lg(u)= lg′( f (u)), lg(v)= lg′( f (v)),
and lg(u, v)= lg′( f (u), f (v)), where lg and lg′ are the
respective labeling functions of g and g′. The injective func-
tion f is called a subgraph isomorphism from g to g′.

Table 1 lists the notations used throughout the paper.

3 Problem definition

The supergraph query processing problem we tackle in this
paper is given as follows:

– Input: A graph database D = {g1, . . . , gn} and a set of
queries Q = {q1, . . . , qm}, where m ≥ 1.

– Output: AQ={Aq1, . . . ,Aqm }, where Aqi ={g j :g j ∈D,

g j ⊆ qi }, i.e., each Aqi contains the set of data graphs in
D that are subgraphs of qi .

Different from the existing graph query processing prob-
lems, we define our problem to process a batch of queries
at a time for the following two reasons. First, there is a
need for processing queries that come in as a high-speed
stream, which is useful in many applications (see Sect. 1)
that require prompt query response. Second, batch query
processing enables us to eliminate the repeated processing
of common parts among queries so as to obtain a higher
throughput.
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Our goal in this paper is to develop an efficient system
for processing supergraph queries (possibly with a bulky and
streaming query workload), with a low-cost index that is easy
to construct and maintain.

4 Graph integration

In this section, we discuss the approach of graph integration,
which will be used for both index construction and query
processing in subsequent sections.

4.1 Fast graph integration

Given a set of graphs G, the concept of graph integration is
to merge all the graphs in G into a single compact graph G,
whereby the repeated common substructures of the graphs
are eliminated in G as much as possible.

A straightforward approach of graph integration is to first
mine frequent subgraphs from G and then merge the graphs
in G by sharing their frequent subgraphs in the descending
order of their frequency. However, as mentioned earlier, fre-
quent subgraph mining is too costly to be applied, especially
when database update is frequent or queries come as a stream.
Therefore, we need to find a new way of solving this problem,
which we discuss as follows.

We propose a simple but effective scheme to merge a set
of graphs into a compact graph by utilizing the statistics of
the edge frequency of the graphs. Let G be a set of graphs
and G be the compact graph of G, or called the integrated
graph (IG). We keep the information of the graphs in G at the
edges of G, while eliminating duplicate edges shared among
the graphs in G. We first define the frequency of an edge e
in G, denoted as f req(e), as the number of graphs in G that
share e in G. For the purpose of query processing, we also
associate with each edge e in G the set of graphs (IDs) in G
that share e, denoted as host (e).

The basic idea of graph integration is to use the frequency
of the edges in the current G to guide the merging of an
incoming graph into G. More specifically, when merging
a graph g into G, we find all the edges in g that are also
in G, and pick the one edge that has the highest frequency
in G (if there are more than one edge having the highest fre-
quency, we simply break the tie by the lexicographic order
of the edge labels). Then, using this edge as a starting edge
in both g and G, we perform a simultaneous depth-first tra-
versal of both g and G to find their common subgraph. Let
e0 be the starting edge and e1 be the next edge to visit in
the depth-first traversal of g. Let E1 be the set of edges
that we can choose to visit next to e0 in the depth-first tra-
versal of G. We find an edge in E1 that matches e1 to visit.
If there are multiple edges in E1 matching e1, we choose
the one with the highest frequency to visit. This process

continues until we meet an edge in g that cannot be matched
in G. The matched edges in the simultaneous depth-first tra-
versal form a common subgraph of g and G. We merge g
into G by sharing this common subgraph, while we create
new edges in G for those edges in g that have not been
matched.

Note that we match edges by (lu, le, lv), i.e., the defini-
tion of a distinct edge. There may be multiple instances of
the distinct edge e0 in g. In this case, we run the simultaneous
depth-first traversal multiple times starting at each instance
of e0 in g. Among the multiple traversals, we pick up the
largest common subgraph of g and G, and we merge g into G
by sharing this subgraph.

To find the edge that has the highest frequency in G as
a starting edge for the simultaneous depth-first traversal, we
construct a header table to keep the set of distinct edges in G.
Each distinct edge ed in the header table has a pointer to the
instance of ed in G that has the highest frequency.

Algorithm 1 presents our algorithm for fast graph integra-
tion (FGI). For each incoming graph gi , FGI first finds the
frequency of each distinct edge of gi from the header table
and then picks up the edge e0 that has the highest frequency
(Lines 3–4), where e0 points to its instance e in G. Then, for
each instance e′ of e0 in gi , FGI finds the largest common
subgraph of gi and G that can be obtained by Lines 6–9. For
each run of Lines 6–9, we obtain a matching subgraph of gi

and G. We then pick the largest matching subgraph, g, and
merge gi intoG by sharing g. Then, a corresponding new edge
is created in G for each edge in gi but not in g. During the
merge, for each edge in gi , we also increment the frequency
and update the host of its matching edge in G to assist future
integration. Note that the graph IDs in each host (e) is auto-
matically sorted since the graphs are merged into G in the
ascending order of their IDs. Finally, G is outputted when all
the graphs in G are merged.

The merge of each gi into G takes only linear time in the
size of gi , assuming the number of instances of a distinct edge
in gi is a constant, which is true for most datasets. Thus, the
total complexity of Algorithm 1 is O(s|G|), where s is the
average size of the graphs in G. In the worst case, when every
graph in G consists of only one distinct edge (i.e., all edges
are identical), the complexity is O(s2|G|). However, even s2

is small for graphs in a transaction graph database.
The following example illustrates how FGI works.

Example 1 Figure 1a shows a set of graphs G that consists
of three graphs g1, g2 and g3. For clarity of presentation,
we only show the distinct edges a, b, c, and d in the graphs
and assume that all the nodes are of the same label. Initially,
the integrated graph G = g1, which is given in Fig. 1b. For
clarity, we omit the host of each edge in G and show the
edge frequency after its label. For example, a:1 means that
the edge has a label a and frequency 1. We also omit the
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Algorithm 1 Fast graph integration (FGI)
Input: A set of graphs, G = {g1, g2, . . . , gn}.
Output: The integrated graph G.

1. G ← g1;
2. for each i = 2, . . . , n do
3. Find from the header table the distinct edge in gi

that has the highest frequency in G;
4. Let e0 be this edge and it points to e in G;
5. for each instance e′ of e0 in gi do
6. Match gi with G by a depth-first traversal,

starting from e′ in gi and e in G;
7. for each edge e′′ in gi in depth-first traversal do
8. if(more than one edge in G match e′′)
9. Choose the edge with the highest frequency;
10. Let g be the largest matching subgraph of gi and G

obtained in Lines 5-9;
11. Merge gi into G by sharing g;
12. for each edge instance e of gi merged into G do
13. Increment f req(e);
14. Add graph ID i to host (e);
15. Return G;

Fig. 1 An example of FGI algorithm

pointers in the header table, but the edge instances in G that
are pointed by the header table are shown in bold.

The FGI algorithm first integrates graph g2 into the ini-
tial G. FGI first checks the frequency of all distinct edges
in g2 in the header table and picks the distinct edge a as
the starting edge for the subgraph matching with G (Line 3).
Note that there are more than one distinct edge in g2 having
the highest frequency (a, b, and c all have the highest fre-
quency of 1). In this case, we choose a as the starting edge
by the lexicographic order. Then, FGI matches g2 with G by

depth-first traversal (Lines 5–9). There are two instances of
edge a in g2. Starting from the first instance (the one on the
left in g2), the obtained matching subgraph has only one edge
(a itself); while for the second instance (the one on the top in
g2), the matching subgraph has three edges a, b and c. FGI
(Lines 10–14) then merges g2 into G by sharing the larger
matching subgraph. The resultant G after merging g2 is given
in Fig. 1c.

Then, FGI further integrates g3 to the G in Fig. 1c. The
chosen starting edge for g3 is b. When performing the depth-
first matching of g3 and G, there are two instances of c next to
b in G that can be matched with the edge c in g3. FGI (Lines
8–9) chooses c:2, which has higher frequency and obtains
the final G as given in Fig. 1d. 	


This graph integration method is simple but has several
remarkable advantages. First, by following the descending
order of edge frequency when merging the graphs, we are able
to integrate the graphs to the position that many other graphs
are integrated into. This approach shares the same princi-
ple of using frequent subgraphs as the integration guidance
to extract the common subgraphs of many graphs. Second,
our graph integration approach is very fast since it does not
involve any expensive operation such as frequent subgraph
mining or subgraph isomorphism test. The most costly step
is to perform the depth-first traversal that is linear in the size
of the graph g. The edge frequency used to guide the inte-
gration can be easily collected and maintained during the
integration process. Third, the integrated graph keeps all
neighborhood information of the graphs. Therefore, by uti-
lizing the integrated graph, we are able to extract not only
common subgraphs but also common supergraphs for effi-
cient query processing, which we discuss in Sect. 6.

4.2 What if there is no commonality?

Almost all existing work [2,3,5,10,12,13,16,20,21,23] on
either subgraph or supergraph query processing, as well as
our work, assume that commonality exists among the data
graphs. Then, an index is constructed to utilize the common-
ality to process queries. If little commonality is found among
the data graphs, then some of these existing indexes, if not
all, will not be effective.

Most of the real datasets tend to share commonality since
the data are from the same application domains. However,
when the data graphs share little commonality, our method
is still effective, because if a graph does not share common-
ality with others, it only has one place to go in the IG and
hence can be located instantly. However, the size of the IG,
and perhaps any index, on such data is likely to be large.
In the worst case, the IG can be as large as the raw database.
In Sect. 5.1, we discuss how to keep the IG on the disk.
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5 Integrated graph as index

We now discuss how we use integrated graph as an index and
how we maintain the index in case of database updates.

5.1 Index construction

Given the graph database D, our index contains two parts:
(1) An integrated graph built on D, denoted as GD; (2) A set
of feature graphs, F , extracted from GD for the purpose of
filtering. We construct GD by Algorithm 1 and discuss how
to extract features from GD as follows.

Filtering for processing supergraph queries is performed
based on the following exclusive logic [2]: let f be a feature
graph and q a query, if f � q, then ∀gi ∈ D and gi ⊇ f , we
have gi /∈ Aq . Let Sup( f,D) = {gi : gi ∈ D, gi ⊇ f }, that
is, Sup( f,D) is the set of graphs in D that are Supergraphs
of f . Then, if f is not a subgraph of q, all data graphs in
Sup( f,D) can be filtered from the answer set of q. Existing
work, cIndex [2], selects a set of features F from frequent
subgraphs mined from D. The features are selected to be dis-
tinctive and have the maximum coverage of the data graphs.
However, their feature selection is costly since it needs to
mine the frequent subgraphs first.

We propose to generate a set of discriminative subgraphs
from GD and use them as features. The main idea is to tra-
verse GD by the descending order of the host size of the edges
in a depth-first manner. At each depth-first step, we grow the
current subgraph f to obtain f ′ by adding one edge (i.e.,
f ⊆ f ′). We then define a graph f to be discriminative if
|Sup( f,D)| is significantly larger than |Sup( f ′,D)|. For-
mally, given a threshold δ(0 ≤ δ ≤ 1), if |Sup( f ′,D)|

|Sup( f,D)| < δ,
then graph f is defined to be discriminative. This method has
been shown to be very effective in selecting a set of represen-
tative patterns (so that other redundant patterns are removed)
in [17]. We approximate Sup( f,D) by intersecting the graph
IDs in host (e) of all edges in f . We denote this approximate
Sup( f,D) as Sup( f,GD) since it is computed from GD.
Although Sup( f,GD) is an approximation, it is sufficient
for the purpose of filtering (as also verified by our experi-
ments). More importantly, by using the approximation we
do not need to perform any subgraph isomorphism testing.

The size of the IG structure and that of the feature set
do not increase with the size of the database since common
structures are shared. In most cases, the IG and the feature
set are small and can be kept in the memory. However, the
total size of host (e) for all edges in the IG, as well as that of
Sup( f,GD) for the features, increases linearly in the size of
database, but they can be easily stored on and retrieved from
the disk. When the structure of the IG is also large, we can
keep those edges with a smaller f req(e) on the disk, because
these edges are not frequently accessed.

5.2 Index maintenance

We consider two types of updates in D: insertion and
deletion.

The maintenance of GD on data graph insertion is straight-
forward, as we can simply apply Algorithm 1 to merge the
new graph into GD. Insertion takes linear time in the size of
the new graph. Deletion is also simple and efficient with GD.
We keep with each graph g ∈ D a set of pointers to the set
of edges E in GD to which g is a host, i.e., the ID of g is in
host (e) for each e ∈ E . When we delete a graph g from D,
we simply delete the ID of g from host (e) for each e ∈ E . We
store host (e) as a binary tree and thus the total deletion time
is O(|E | log |host (e)|). When |host (e)| = 0, we consider
the edge e as obsolete and remove it from GD.

Note that when GD is constructed on the initial database,
we have f req(e) = |host (e)|. Later on when D is dynami-
cally updated, f req(e) keeps on increasing so as to keep the
cumulative number of graphs that ever share edge e in GD,
while host (e) is updated as the set of graphs that currently
share e. Collecting the cumulative statistics in f req(e) helps
obtain a more compact GD, while host (e) should be kept up
to date to ensure the correctness of query processing.

For the maintenance of the feature set F , we keep the edges
in GD that are used to extract each feature. When the ID of
a graph g is added to host (e) for all edges e in a feature f ,
we also add g to Sup( f,GD). When the ID of a graph g is
deleted from host (e) of any edge e in a feature f , we also
delete g from Sup( f,GD). Let α = (|Sup( f,GD)|/|D|),
where f ∈ F and |Sup( f,GD)| ≤ |Sup( f ′,GD)| for all
f ′ ∈ F , and F is the set of features computed from the
database D. If |Sup( f,GD)| becomes smaller than α|D|, we
delete f from F because f is not effective for filtering if
|Sup( f,GD)| becomes small [2]. Furthermore, if an edge
e in GD is not in any feature and |host (e)| grows as large
as α|D|, we run the depth-first search of GD to extract new
features starting from the edge e. However, since the entire
feature selection process is efficient, periodically we will dis-
card all features and select them from scratch. Note that the
value of α is determined by the feature selection process,
i.e., the value of (|Sup( f,GD)|/|D|) for the least effective
feature f ∈ F . In this way, when the size of D changes
due to database updates, the value of α is still relative to the
new |D|.

6 Query processing

We now discuss how we apply the concept of IG for query
processing. We first give the overall framework and then pres-
ent the details of each step.

The framework of our query processing system, namely
IGquery, consists of three major steps as follows.
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(1) Query integration: Construct an IG GQ for the set of
input queries Q in order to extract the commonality
among the queries and process the common parts of
the queries once rather than repeatedly for each single
query.

(2) Direct inclusion of answers: Use GQ, as well as the
indexed GD, to compute a subset of the answer set for
each query qi ∈Q.

(3) Projected-database filtering: Use GQ, as well as GD, to
compute a small candidate set for the rest of the answer
set for each qi ∈Q. The candidates are then verified by
subgraph isomorphism to give the final answer set.

6.1 Query integration

In addition to indexing, the IG is also designed to explore
the commonality among the queries in order to eliminate
repeated processing of some common part of the queries as
much as possible. Since the IG can collapse the common
substructures of the queries into a single substructure, we
can utilize these commonality to speed up the batch query
processing. More specifically, we can extract common sub-
structures and superstructures of the queries from the IG. We
then process these common parts only once, whose results
can serve as partial results for many queries (the queries that
share these common structures). Without such a query inte-
gration, the queries can only be processed one by one and
their common parts are processed repeatedly for each indi-
vidual query, which is a waste of computation. Therefore,
the usage of the IG enables the elimination of these repeated
(partial) query processing, thereby significantly improving
the query efficiency.

For this purpose, we construct an IG for the set of
queries, Q, and denote it as GQ. We first discuss how to
construct GQ. Then in Sects. 6.2 and 6.3, we discuss how the
common portions among the queries are extracted from GQ
and processed together.

GQ is constructed in the same way as GD by applying
Algorithm 1. Since the set of queries Q comes in as a stream,
we process Q in batches and compute GQ for each batch of
queries. The size of a batch can be either count-based or time-
based [4] (similar to the size of a window unit in a sliding
window), depending on different applications.

In constructingGQ, we also use f req(e) to keep the cumu-
lative edge frequency so as to guide the graph integration.
Since the nature of supergraph queries implies that the query
graphs should have subgraph-supergraph relationship with
the data graphs (i.e., sharing some common structures), we
use GD as a template for constructing GQ. That is, we set GQ
initially as GD except that we initialize host (e) = ∅ for all e
in GQ. Then for each batch of queries in Q, we update GQ by
applying Algorithm 1. In this way, we utilize the statistical

information already collected in f req(e) of GD to construct
a high-quality GQ and hence a stable performance even at
the initial stage of a stream.

Deletion in GQ is much simpler than in GD. After we pro-
cess a batch of queries, we simply re-initialize host (e) = ∅
for all e in GQ (of course we may also choose to keep part
of it for caching but this is a separate issue and we do not
discuss in this paper). In order to maintain the size of GQ, we
remove the edges in GQ with the lowest f req(e) when |GQ|
is larger than the available memory.

6.2 Direct inclusion of answers

Existing work [2] on supergraph query processing suffers
from a bottleneck that the size of the candidate set is at least
that of the answer set. We propose a new approach that can
obtain a subset of the answer set directly without costly candi-
date verification. Thus, together with an effective projected-
database filtering algorithm (see Sect. 6.3), our method
effectively overcomes this bottleneck.

6.2.1 Direct inclusion for a single query

Let us first consider the simple case with a single query q. The
idea of direct inclusion of answers is based on the following
inclusion lemma.

Lemma 1 (Inclusion Lemma) Let qsub be any subgraph of
q, i.e., qsub ⊆ q, then ∀gi ∈ D and gi ⊆ qsub, we have
gi ∈ Aq (i.e., Aqsub ⊆ Aq).

It is straightforward to prove the correctness of the inclu-
sion lemma: qsub ⊆ q and gi ⊆ qsub implies that gi ⊆ q,
which means that gi is an answer of the query q.

According to the inclusion lemma, we can maximize the
effect of direct inclusion by finding a subgraph qsub of q,
such that qsub is a supergraph of as many data graphs in D
as possible, i.e., |Aqsub | is maximized. That means qsub is
a subgraph of a query, while qsub is a common supergraph
of many data graphs. Note that all the data graphs are now
integrated into a compact graph GD; thus, GD is a common
supergraph of all data graphs. Of course, GD itself may be
too big to be a subgraph of any query, but the subgraphs of
GD can be.

Therefore, we are inspired to find the common subgraphs
of GD and q. In particular, if we map q into GD in the same
way as we merge a data graph into GD, then according to the
concept of graph integration, the largest matching subgraph
of q and GD obtained by Lines 4-10 of Algorithm 1 is a good
choice of qsub and has a strong inclusion power (i.e., qsub is
a common supergraph of many data graphs in D, and these
data graphs can be directly included into Aq ).

Algorithm 2 shows how direct inclusion works. We use
the same procedure in Algorithm 1 to find the matching sub-
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graph of q and GD (Lines 3–4). We repeat this procedure
(Lines 3–9) for each distinct edge ed of q, so that we can
take the full advantage of Algorithm 1 to obtain a larger
subset, As

q , of the answer set of q, without any expensive
operations such as subgraph isomorphism testing.

Algorithm 2 Direct inclusion
Input: GD and a query q.
Output: A subset of the answer set of q, As

q .

1. As
q ← ∅;

2. for each distinct edge ed in q do
3. Process Lines 4-10 of Algorithm 1 by

putting q in place of gi and GD in place of G;
4. Let qsub be the matching subgraph of q and GD obtained;
5. for each edge e in qsub do
6. for each gi in host(e) do
7. ++count(gi ); //count (gi ) is initially set to 0
8. Sub(qsub, GD)← {gi : count (gi ) = |gi |};
9. As

q ← As
q ∪ Sub(qsub, GD);

10. Return As
q ;

After finding qsub (Line 4), which is the largest matching
subgraph of q and GD, we use host (e) to find the data graphs
that are merged into the same place as qsub (Lines 5–7). For
each data graph gi in host (e) of an edge e in qsub, we use
a counter count (gi ) to count the number of edges that gi

shares with qsub. If a data graph gi is indeed a subgraph of
qsub, then count (gi ) must be equal to the number of edges in
gi (Line 8). This is because count (gi ) is incremented for each
edge e in qsub only if host (e) contains gi (Lines 5–7), which
means that gi shares the edge e with qsub when integrated
into GD. Thus, count (gi ) = |gi | only if count (gi ) is incre-
mented once for every edge in gi , which means that all edges
in gi (|gi | number of them) are contained in qsub (ensured
by the host lists) and thus gi is a subgraph of qsub. There-
fore, we can directly include gi in Sub(qsub,GD). Similar
to the definitions of Sup( f,D) and Sup( f,GD) in Sect. 5.1,
Sub(qsub,GD) is an approximation of Sub(qsub,D) com-
puted from GD, where Sub(qsub,D) is the set of graphs in D
that are Subgraphs of qsub. Thus, by Lemma 1, we directly
include Sub(qsub,GD) into As

q (Line 9).

6.2.2 Direct inclusion for a set of queries

The efficiency of direct inclusion can be further improved
by processing a set of queries simultaneously. We use the IG
for queries, GQ, to explore the commonality among a batch
of queries Q so that these common parts can be processed
together for direct inclusion.

The idea of direct inclusion for a single query can be
extended for multiple queries by the following lemma.

Lemma 2 (Inclusion for Multiple Queries) Let qsub be a
common subgraph of k queries, q1, . . . , qk, then ∀gi ∈ D

and gi ⊆ qsub, we have gi ∈ Aq j ,∀ j ∈ {1, . . . , k} (i.e.,
Aqsub ⊆ Aq j ).

According to Lemma 2, our task now is to find a graph
qsub which is a common subgraph of as many queries as pos-
sible, that is, we want to find qsub such that Sup(qsub,Q)

is maximized. Since we capture the commonality by graph
integration, we use GQ to find qsub.

However, there are many common subgraphs in GQ for
different groups of queries, and we cannot exhaustively use
all of them to perform the inclusion. In fact, there is a trade-
off when choosing a good qsub. If qsub is of small size, then
qsub is a common subgraph of a larger set of queries (i.e.,
|Sup(qsub,GQ)| is large). But on the database side, a small-
sized qsub tends to have only a small number of data graphs as
its subgraph, i.e., |Aqsub | is small. In this case, we are includ-
ing too few data graphs into the answer sets of many queries.
On the other hand, if qsub is large, then |Sup(qsub,GQ)| is
small though |Aqsub | is large. Thus, we are including many
data graphs into the answer sets of just a few queries. There-
fore, it is challenging to choose a good qsub for more effective
direct inclusion.

Inspired by the feature selection in index construction, we
propose to select a set of discriminative subgraphs of GQ for
performing inclusion in Lemma 2. This process is similar to
the feature selection discussed in Sect. 5.1 except that GQ is
used in place of GD.

Let Fsub be the set of discriminative subgraphs selected
for direct inclusion. For each qsub ∈ Fsub, in order to apply
Lemma 2, we need to find Aqsub and include it to the answer
sets of each query in Sup(qsub,GQ). Computing Aqsub may
still be expensive; however, we only obtain a partial Aqsub ,
i.e., As

qsub
, by Algorithm 2 and then perform the inclusion of

As
qsub

.
Algorithm 3 outlines how we perform direct inclusion

for multiple queries. As discussed earlier, we first select
the set of discriminative subgraphs Fsub from GQ. We
then obtain As

qsub
by Algorithm 2 for each qsub ∈ Fsub,

and directly include As
qsub

as a partial answer set for each
q j ∈ Sup(qsub,GQ). Note that Sup(qsub,GQ) is obtained
together with Fsub (see Sect. 5.1). Finally in Lines 6–7, for
each query q j that is not a supergraph of any qsub ∈ Fsub,
we simply obtain As

q j
by Algorithm 2.

The following example illustrates how direct inclusion for
multiple queries works.

Example 2 Figure 2a and b give a graph database D and a
set of queries Q, respectively. By applying Algorithm 1, we
obtain two IGs, GD and GQ, as shown in Fig. 2c and d. The
header tables are omitted and the host of each edge is given
in Table 2. For the easy reference of the edges in each IG, we
give a subscript for the distinct edge that has more than one
instance in the IG.
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Fig. 2 Direct inclusion for multiple queries

Table 2 Hosts for GD and GQ

IG Edge host IG Edge host

GD a1 {g1} GQ a {q1, q2, q3}
a2 {g1, g3, g5} b {q1, q2}
b1 {g1, g2, g3, g4} c1 {q1, q2, q3}
b2 {g2} c2 {q2}
c1 {g1} c3 {q2}
c2 {g1, g2, g4} c4 {q3}
d {g5} d {q1, q3}

For simplicity, we assume that we find two discriminative
subgraphs qsub1 and qsub2 as shown in Fig. 2e. By intersecting
host (e) of the edges, we obtain Sup(qsub1,GQ) = {q1, q2}
and Sup(qsub2,GQ) = {q1, q3}.

Then, Line 4 of Algorithm 3 invokes Algorithm 2 to com-
pute As

qsub1
. The largest common subgraph of qsub1 and GD

(Lines 3–4 of Algorithm 2) is qsub1 itself: the edges a, b, c1

in qsub1 matches the edges a2, b1 and c2 in GD, respectively.
Then, Lines 5–9 of Algorithm 2 check the hosts of a2, b1 and
c2 in GD (Table 2) to find the data graphs that are subgraphs
of qsub1 and we obtain As

qsub1
= {g3, g4}. The procedure

returns to Algorithm 3 and Line 5 directly includes As
qsub1

to
the answer sets of the queries in Sup(qsub1,GQ), i.e., include
g3 and g4 to Aq1 and Aq2 .

Algorithm 3 Multidirect inclusion
Input: GD, GQ, and a batch of queries Q = {q1, . . . , qm}.
Output: As

Q = {As
q1

, . . . , As
qm
}.

1. As
q j
← ∅,∀q j ∈ Q;

2. Find the set of discriminative subgraphs Fsub from GQ;
3. for each qsub ∈ Fsub do
4. Obtain As

qsub
by Algorithm 2;

5. As
q j
← As

q j
∪As

qsub
,∀q j ∈ Sup(qsub, GQ);

6. for each q j ∈ Q, where As
q j
= ∅, do

7. Obtain As
q j

by Algorithm 2;
8. Return As

Q ;

Similarly, for qsub2, Lines 4-5 also directly include
As

qsub2
= {g5} to the answer sets of q1 and q3 in Sup(qsub2,

GQ). 	

The above example clearly shows the advantages of direct

inclusion of answers. First, we do the inclusion in a “many-
to-many” manner: including many data graphs into the
answer sets of many queries. Second, each query graph
can benefit from different common subgraphs with differ-
ent groups of queries (e.g., q1 benefits from both qsub1 and
qsub2 by direct inclusion).

6.3 Filtering

With direct inclusion, we overcome the bottleneck on the
size of candidate set in existing work. However, we still need
an effective filtering algorithm in order to produce a small
candidate set for the remaining answers not found by direct
inclusion. In this section, we first present a filtering algorithm
for multiple queries. Then, we further improve by designing
a novel projected-database filtering algorithm.

6.3.1 A multi-query filtering approach

Let Cq be the candidate set of q. Given a set of fea-
tures F , the existing filtering approach computes Cq based
on the exclusive logic, that is, to filter the data graphs in
Sup( f,D),∀ f ∈ F and f � q. Therefore, we have Cq =
(D− ∪ f ∈F, f �q Sup( f,D)).

However, this filtering approach only processes a single
query at a time. Similar to what we do for direct inclusion,
we also propose to perform the filtering for a batch of queries
Q together, based on the following lemma.

Lemma 3 (Filtering for Multiple Queries) Let qsup be any
common supergraph of k queries, q1, …, qk, then Cq j ⊆
Cqsup ,∀ j ∈ {1, . . . , k}.
Proof Note that Cq = (D − ∪ f ∈F, f �q Sup( f,D)) for a

query q. Since qsup ⊇ q j , if f � qsup, then f � q j ,
but not vice versa. Therefore, (∪ f ∈F, f �q j

Sup( f,D)) ⊇
(∪ f ∈F, f �qsup

Sup( f,D)) and hence Cq j ⊆ Cqsup holds.
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Lemma 3 suggests that we should find the common super-
graph of queries, qsup, in order to perform batch filtering;
while on the database side, qsup is compared with a set of
features F which are the common subgraphs of data graphs.
Note that this is just the reverse way of extracting common-
ality as in direct inclusion. In direct inclusion, the common
subgraphs of queries and the common supergraphs of data
graphs are needed.

Let Fsup be a set of common supergraphs of queries. The
extraction of Fsup from GQ for filtering is similar to the
extraction of Fsub for direct inclusion discussed in Sect. 6.2.2.
The only difference is that we use Lines 5–8 of Algorithm 2
to find Sub(qsup,GQ) of each qsup ∈ Fsup, instead of inter-
secting host (e) of the edges.

We apply Lemma 3 in Algorithm 4 to perform filtering for
a batch of queries. First, Line 2 generates a set of discrimina-
tive common supergraphs of the queries from GQ. For each
qsup ∈ Fsup, Line 4 obtains the candidate set of qsup using
the features in F . Then, Line 5 refines the candidate sets of
all queries in Sub(qsup,GQ) by Lemma 3.

Algorithm 4 Multifiltering
Input: GQ, a feature set F , and a batch of queries Q = {q1, . . . , qm}.
Output: CQ = {Cq1 , . . . , Cqm }.
1. Cq j ← D,∀q j ∈ Q;
2. Find the set of common supergraphs of queries, Fsup;
3. for each qsup ∈ Fsup do
4. Cqsup ← (D − ∪ f ∈F, f �qsup

Sup( f, GD));
5. Cq j ← Cq j ∩ Cqsup ,∀q j ∈ Sub(qsup, GQ);
6. Return CQ ;

6.3.2 A projected-database filtering approach

The filtering algorithm discussed in Sect. 6.3.1 relies heav-
ily on the features selected. Ideally, we want a feature f
to have a large Sup( f,D) so that we can obtain a smaller
Cq = (D− Sup( f,D)). However, a large Sup( f,D) means
that f is a common subgraph of many graphs in D, which
further implies that f is likely a common subgraph of even
more queries (by the nature of supergraph queries). But for
filtering, we require f � q. Therefore, we have a dilemma
here and (D − Sup( f,D)) may be large in many cases.

In Algorithm 4, we have partially addressed this problem
by refining the candidate sets for a set of queries through their
common supergraphs qsup (Line 5). However, the problem
of a large Cq is because D is large but Sup( f,D) is relatively
much smaller. Thus, we do not really solve the problem by
Algorithm 4.

As we have just discussed, Sup( f,D) cannot be too large;
otherwise, f is only useful for a few queries but not useful for
most of the queries. Thus, it leads us to seek to reduce “D”

a

a

c

(f1: g1, g2, g4)

b

b

(f2: g1)

(a) Feature SetF

(qsup2)(qsup1)

da

b c1

c4 da

c1

c4c3

(b) Discriminative Supergraphs inGQ

Fig. 3 Filtering for multiple queries

in (D − Sup( f,D)). Clearly, we cannot actually reduce D
because D is the database. However, the concept of process-
ing a set of queries together enables us to find a projected
database. Our idea is based on the following Lemma.

Lemma 4 (Projected-Database Filtering) Let qsup be a com-
mon supergraph of k queries, q1, . . . , qk, then Aq j ⊆
Aqsup ,∀ j ∈ {1, . . . , k}.

Lemma 4 is correct by the definition of supergraph query.
Based on the lemma, we can obtain Aq j from Aqsup ; thus,
we can use Aqsup as the candidate set of the whole set of que-
ries q j ∈ Sub(qsup,GQ). In most cases, Aqsup is significantly
smaller than D and more importantly, |Aqsup | is close to |Aq j |
so that we can obtain |Cq j | � |Aq j |. We call Aqsup the pro-
jected database of qsup and name the filtering approach that
uses Aqsup for candidate generation as projected-database
filtering.

To apply the projected-database filtering, we insert Line 5
of Algorithm 5 into Algorithm 4 to first obtain Aqsup . Then,
we use Aqsup instead of Cqsup to obtain Cq j in Line 6 of
Algorithm 5.

Algorithm 5 ProjDBfiltering
1-4. Same as Lines 1-4 of Algorithm 4;
5. Aqsup ← {gi : gi ∈ Cqsup , gi ⊆ qsup};
6. Cq j ← Cq j ∩Aqsup ,∀q j ∈ Sub(qsup, GQ);
7. Return CQ ;

The following example illustrates how filtering works.

Example 3 Consider the database and the set of queries in
Figs. 2a,b, we select two features f1 and f2 from GD. As
shown in Fig. 3a, the set of graphs in Sup( f,GD) for each
feature f is also given after the colon “:”. Assume that
Fsup = {qsup1, qsup2}, as given in Fig. 3b. We compute
Sub(qsup1,GQ) = {q1, q3} and Sub(qsup2,GQ) = {q3} by
Lines 5–8 of Algorithm 2.
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Algorithm 6 IGquery
Input: D, GD , a feature set F , and a stream of queries Q = {q1, q2, . . . }.
Output: {Aq1 , Aq2 , . . . }.
1. for each batch of queries, Q, arrived in Q do
2. Construct GQ as discussed in Sect. 6.1;
3. Obtain subsets of answers As

q j
,∀q j ∈ Q, by Algorithm 3;

4. Obtain CQ by Algorithm 5;
5. for each query q j ∈ Q do
6. Cq j ← (Cq j −As

q j
); // Direct inclusion of answers

7. Aq j ← (As
q j
∪ {gi : gi ∈ Cq j , gi ⊆ q j }); // Verification

8. Output Aq j ;

Line 4 of Algorithm 4 computes Cqsup1 by filtering
using the features. Since f2 � qsup1, the data graphs in
Sup( f2,GD) = {g1} can be filtered from Cqsup1 , as well
as from the candidate sets of q1 and q3 in Sub(qsup1,GQ).
Therefore, Cq1 = Cq3 = Cqsup1 = {g2, g3, g4, g5}.

We now further apply the projected-database filtering. We
first obtain Aqsup1 = {g3, g4, g5} (Line 5 of Algorithm 5) and
then assign Cq1 = Cq3 = Aqsup1 = {g3, g4, g5}, which thus
further filters g2 from the candidate sets of both q1 and q3

simultaneously.
We then process qsup2. Since Sub(qsup2,GQ) = {q3} and

f1 � qsup2, the data graphs in Sup( f1,GD) = {g1, g2, g4}
can be further filtered from Cq3 . Thus, Cq3 is reduced to be
{g3, g5}. 	


6.4 The overall query algorithm

We present our overall algorithm, IGquery, for query pro-
cessing over a stream of queries in Algorithm 6. Each time
we process a batch of queries, either count-based or time-
based, that arrives in the stream (Line 1). We first construct
GQ in real-time (Line 2). Then, we obtain a subset of the
answer sets for the queries by direct inclusion (Line 3). For
the remaining part of the answer set, we use projected-data-
base filtering to obtain a candidate set (Lines 4–6), which is
then verified to return the final answer set (Lines 7–8).

The complexity of Algorithm 6 consists of three parts.
The first part is constructing the IG on Q, which is O(s|Q|)
as given by the analysis of Algorithm 1, where s is the aver-
age size of the query graphs in Q. The second part is direct
inclusion. In Algorithm 3, computing Fsub from GQ takes
O(s|Q|+|Q|2) time. The depth-first traversal of GQ to com-
pute Fsub takes O(s|Q|) time since the traversal follows the
size of host (e) in descending order. Since Fsub is a set of
discriminative subgraphs, we have |Fsub| = O(|Q|). Since
the intersection of the “host(e)”s for each qsub ∈ Fsub takes
O(|Q|), the total time for all intersections takes O(|Q|2).
The third part is filtering, which also takes O(s|Q| + |Q|2)
time for computing Fsup.

Therefore, the total complexity of Algorithm 6 is (O(s|Q|
+ |Q|2)+ X + Y + Z) for processing the set of queries Q,

where X is the cost for the union and intersection operations
on the graph IDs to compute the candidate sets and partial
answer sets, Y is the cost of subgraph isomorphism tests to
examine the exclusive logic in Line 4 of Algorithm 4 and
to obtain the projected database for filtering in Line 5 of
Algorithm 5, and Z is the cost of subgraph isomorphism
tests to verify the candidates in Line 7 of Algorithm 6. The
complexity of (X + Y + Z) depends on the sizes of the
candidate set and answer set, which vary for different que-
ries. Alternatively, we can give the query response time of
IGquery as follows.

Tresponse=
⎛
⎝Tsearch+

∑
q∈Q

(|Cq |×TI/O+|Cq |×Tveri f y)

⎞
⎠ .

(1)

In Eq. (1), Tsearch = (O(s|Q| + |Q|2) + X + Y ) is the
index search time using the IGs, while TI/O is the disk I/O
time for fetching each candidate graph from the disk and
Tveri f y is the time for verifying the candidates. In general,
Z =∑

q∈Q(|Cq |× (TI/O +Tveri f y)) dominates the cost and
hence all existing work seeks to minimize |Cq |. However,
|Cq | ≥ |Aq | for the existing filtering approaches, while in
our work |Cq | can be even much smaller than |Aq |.

7 Performance evaluation

We evaluate the performance of our algorithm by comparing
with cIndex [2] and GPTree [22]. We run all experiments on
a machine with a 3.0 GHz Pentium 4 CPU and 1GB RAM,
running Windows XP Professional Version 2002 SP 3. We
evaluate our algorithm extensively by a comprehensive set
of metrics:

– The effect of the discriminative threshold δ on the per-
formance of index construction and query processing
(Sect. 7.1).

– The efficiency of IG construction and the effectiveness of
IG for query processing (Sects. 7.2 and 7.3).

– The effectiveness of direct inclusion and projected-
database filtering (Sect. 7.3).

– The effect of query batch size (both count-based and
time-based) on the performance of query processing
(Sect. 7.3).

– The effect of query graph size on the performance of
query processing (Sect. 7.4).

– The effect of query answer-set size on the performance
of query processing (Sect. 7.5).

– The effect of database size on the performance of index
construction and query processing (Sect. 7.6).

– The effect of commonality on the performance of index
construction and query processing (Sect. 7.7).
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Table 3 Characteristics of datasets (Query sets)

Range of Average Range of Average
graph size graph size density density

AIDS 1–217 27.40 0.009–1.0 0.10

NCI 1–252 19.95 0.008–1.0 0.14

Table 4 Characteristics of graph databases

Range of Average Range of Average
graph size graph size density density

AIDS 1–58 15.53 0.04–1.0 0.22

NCI 1–16 10.25 0.12–1.0 0.24

– The performance of index maintenance and query pro-
cessing on database updates (Sect. 7.8).

Query sets and graph databases. We use two real data-
sets: AIDS and NCI. AIDS is the AIDS antiviral screen
dataset, which contains 10K graphs. NCI is a dataset with
250K graphs, which we obtain from the National Cancer
Institute database. Table 3 lists some characteristics of the
datasets, where the density of a graph g = (V, E) is defined
as 2|E |
|V |(|V |−1)

. More details can be found in their webpages4.
We prepare the query sets and graph databases in a way

similar to [22,2] for fair comparison. We first use the two real
datasets as the query sets. To prepare the graph databases,
we randomly generate a set of 10 K subgraphs of the graphs
in the AIDS dataset at minimum support threshold 0.001. We
also select 10–100 K subgraphs from the NCI dataset for
a scalability test. We list some characteristics of the graph
databases in Table 4.

In Sect. 7.7, we also use synthetic datasets to test the effect
of commonality. We give the details of the synthetic datasets
in Sect. 7.7.

We also prepare the query log and the feature base which
are required for cIndex as described in [2]. The settings of
GPTree are as its default [22]. We tested both the exact and
approximate indexes of GPTree, for both indexing and que-
rying; but we found that the difference between the two is
small. Thus, we only report the results of the exact index.

7.1 Effect of discriminative threshold

We first test the effect of the discriminative threshold δ on
feature selection, i.e., the selection of the set of discriminative
subgraphs, and how the performance of index construction
and query processing varies for different δ. We use the graph
database prepared from the AIDS dataset in this experiment.

4 AIDS: http://dtp.nci.nih.gov/ NCI: http://cactus.nci.nih.gov/ncidb2/
download.html.

Table 5 reports the results of index construction and query
processing with different values of δ. For index construction,
the indexing time decreases when δ decreases from 1 to 0,
which can be explained by the decrease in the number of fea-
tures as δ decreases. Overall, the index construction is very
efficient as it takes only about 1 second for all values of δ

except the very restrictive case when δ = 1.
For query processing time, it is affected by two factors,

the index probing time Tsearch and the verification time, as
shown in Eq. (1). The number of features and the number of
candidates recorded in Rows 2 and 4 of Table 5 are indicators
of these two factors, respectively. In general, more features
may generate a smaller number of candidates (with shorter
verification time) at a cost of longer index probing time.

Therefore, the choice of δ is a tradeoff. Fortunately, we can
easily pick up a sub-optimal δ that achieves a small overall
query processing time. As shown in Table 5, the best query
processing time is achieved at δ = 0.7, i.e., 18.45 millisec-
onds per query on average. However, for a wider range of
δ (0.6 ≤ δ ≤ 0.8), the query processing time as well as
the index construction time do not vary too much. This is
because the set of features remains relatively stable within
this range of δ. The same findings are also observed for other
datasets, and we omit the details for clarity. This result dem-
onstrates that our discriminative feature selection is efficient
and effective.

We choose δ = 0.7 as a default value for δ for the remain-
ing experiments.

7.2 Indexing performance: IG and other indexes

We compare the performance of our index with cIndex and
GPTree. We first report the results of index construction in
this subsection. We use the graph database prepared from the
AIDS dataset in this experiment.

Table 6 reports the overall time for index construction,
peak memory consumption, the size of IG and that of the
database, and the number of features obtained by each index.

The results show that our index construction is over three
orders of magnitude faster and consumes at least 20 times
less memory than both cIndex and GPTree. Our indexing
time includes the time for constructing the IG GD and for
selecting the discriminative features from GD. The remark-
able indexing time is because our algorithm runs in linear
time.

The results also show that the concept of IG is indeed
able to extract the commonality among the graphs, as the
number of edges in the IG is only 1.2% of that in the graph
database. This result is also consistent with the low memory
consumption of our index.

In the subsequent three subsections, we show that our
index is not only compact and efficient to construct, but also
very effective for query processing.
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Table 5 Results on the effect of
discriminative threshold
(1 ≥ δ ≥ 0)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Indexing time (ms) 13937 1969 1469 1235 1031 844 766 750 734 594 453

Feature # 2988 168 113 91 73 53 50 46 37 27 24

Query processing time (ms) 43.83 19.00 18.65 18.45 19.51 19.56 20.55 20.14 20.13 20.96 21.67

Candidate # 386 478 547 572 707 776 929 884 947 1044 1090

Table 6 Performance of indexing on AIDS

Time Memory IG/GDB size Feature
(sec) (MB) (# of edges) number

cIndex 3631 531 NA/186883 34

GPTree 16,549 408 NA/186883 159

IG 1.24 18 2195/186883 91

7.3 Query performance: effects of individual components
and batch processing

In this experiment, we show the effects of each of the indi-
vidual components on query performance. There are two
key components in IGquery, direct inclusion and projected-
database filtering, both of them utilize the IG. Since both
direct inclusion and projected-database filtering can operate
in batch mode, we also assess the effect of batch process-
ing on query performance. We use the indexes constructed
in Sect. 7.2 for this experiment and use the AIDS query set.

Figure 4 reports the average processing time per query and
the average number of candidates obtained by each algo-
rithm, where IGquery-DI and IGquery-noDI represent our
algorithm with and without direct inclusion. In Fig. 4b, we
also show the size of the answer set (in bold line) as a ref-
erence point, which is the lower bound on the candidate set
size of all existing filtering approaches.

We report the results for both count-based and time-based
batches. For the count-based batches, we test three fixed
sizes: 1, 10, and 100. For the time-based batch, a variable
number of queries may come in for each batch, for which we
randomly select x number of queries (x ∈ [1, 100]) for each
incoming batch.

We first discuss the effects of direct inclusion and pro-
jected-database filtering on query processing. Note that in
general we must include filtering in the query processing
algorithm, unless the database is very small, since otherwise
the candidate set is too large even if we can find the majority
of the answer set by direct inclusion.

As shown in Fig. 4a, when we take away direct inclu-
sion from IGquery, with only projected-database filtering our
algorithm (IGquery-noDI) is faster than cIndex and GPTree
only when the batch size increases to around 10. This result
can be explained by Fig. 4b, which shows that the number

of candidates obtained by IGquery-noDI decreases when the
batch size increases.

If we do not take into account batch processing, i.e., when
batch size is equal to 1, IGquery-noDI is worse than cIn-
dex and GPTree, since projected-database filtering favors
batch processing than single-query processing. However,
when direct inclusion is applied, our algorithm (IGquery-DI)
improves significantly and is considerably faster than both
cIndex and GPTree even when batch size is 1.

We remark that when batch size is 1, our algorithm
(denoted as IGquery-1 in subsequent experiments) do not
utilize the commonality among the query graphs for query
processing; in other words, the queries are processed one by
one as in cIndex and GPTree.

When batch processing is enabled, the advantage of
IGquery over cIndex and GPTree is immediately seen even
for a batch size as small as 10, and the improvement is sub-
stantial when the batch size increases to 100. The reason for
the improvement is because for a larger batch, more common-
ality among the queries is being shared. These common struc-
tures are processed only once, but their results can serve as
partial results for many queries, thereby significantly improv-
ing the query performance. The performance of the time-
based batch is better than that of the batch size 10 but worse
than that of the batch size 100, because the average number
of queries in a time-based batch is around 50. Therefore, no
matter in which batch mode (count-based or time-based), the
(average) batch size affects the query performance.

From Fig. 4b, we see that with batch processing, even
IGquery-noDI achieves better filtering than cIndex and
GPTree. This is because with batch processing, we devise
the concept of projected-database filtering. By using the pro-
jected database of the supergraphs of the queries, we can
generate less candidates than filtering by the query graph
alone as in cIndex and GPTree, which is evidenced by
IGquery-noDI when the batch size is 10, 100, or time-based
in Fig. 4b.

More importantly, the size of candidate set obtained by
IGquery-DI is even much smaller than the size of the answer
set, which is a bottleneck of all existing filtering approaches.
This is because without direct inclusion, the candidate set
must include at least all the answer graphs and therefore
cannot be smaller than the answer set (as is the case in
cIndex and GPTree). By direct inclusion, part of the answer
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Fig. 4 Query performance on
AIDS: effects of individual
components and batch
processing
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(b) Size of Candidate Set

set is directly included and needs not be recorded in the can-
didate set for further verification; hence we can generate a
candidate set that is smaller than the answer set. Note that
the difference between the number of candidates obtained
by IGquery-noDI and that by IGquery-DI is the number of
answer graphs obtained by direct inclusion, which is close to
the number of total answer graphs

Finally, the peak memory consumption of IGquery-noDI
and IGquery-DI is approximately 21 MB in all cases, which
is essentially the size of the IG in memory. The peak mem-
ory consumption of cIndex and GPTree is 30 and 114 MB,
respectively. Thus, our algorithm also consumes less mem-
ory than the existing approaches, which demonstrates the
compactness of the IG.

7.4 Query performance: effect of query graph size

In this experiment, we assess the effect of query graph size
on the performance of IGquery. We use five query sets, with
the following graph size ranges: [1,15], [16,30], [31,45],
[46,60], and [61,217], where the largest query graph has 217
edges.

Figure 5 reports the average processing time per query,
the peak memory consumption, and the average number of
candidates obtained by each algorithm. We report the results
for two batch sizes, 1 and 100, represented by IGquery-1 and
IGquery-100 in the figures.

Note that IGquery-1 means that the algorithm processes
the queries one by one as in cIndex and GPTree and the com-
monality among the queries is not utilized for query pro-
cessing. Therefore, IGquery-1 is essentially a special case of
batch processing when the batch size is equal to 1, that is,
IGquery-1 still performs direct inclusion and project-data-
base filtering. In this special case, the common subgraph used
in direct inclusion and the common supergraph used in fil-
tering are essentially the query graph itself.

Figure 5a shows that the query processing time of all algo-
rithms increases when the query size increases, which is also
consistent with the number of candidates as shown in Fig. 5c.

For all query sizes, both IGquery-1 and IGquery-100 are over
an order of magnitude faster than cIndex. Compared with
GPTree, IGquery-1 is considerably faster and IGquery-100 is
up to an order of magnitude faster. The results also show that
our algorithm can handle large query graphs very efficiently.
The average processing time for queries with size [61, 217]
is only 15 ms. IGquery-1 and IGquery-100 also use substan-
tially less memory than GPTree and are stable in memory
consumption. The memory consumption of IGquery-1 and
IGquery-100 are almost the same since the majority of the
memory is used to keep the IG.

Our projected-database filtering employs common super-
graphs of the queries to perform filtering; however, filter-
ing by supergraph in general generates more candidates than
filtering by the query graph itself. But in IGquery-1, this
supergraph is essentially the query graph itself (i.e., the
same as cIndex and GPTree), and thus the filtering effect of
IGquery-1 mainly comes from the features being selected,
as in cIndex and GPTree. The filtering effect of IGquery-1
(without direct inclusion) is comparable to that of the pure-
filtering approaches, cIndex and GPTree (see Fig. 4b). But
IGquery-1 also uses direct inclusion that enables part of the
answers to be directly included without being recorded in
the candidate set, which makes a major difference from the
filtering approaches. As a result, with effective filtering and
the help of direct inclusion, IGquery-1 is able to obtain fewer
candidates than both cIndex and GPTree as shown in Fig. 5c.

7.5 Query performance: effect of query answer-set size

In this experiment, we assess the effect of query answer-set
size on the performance of IGquery. We divide the queries
into four bins: [0,10), [10,100), [100,1000), and [1000,∞),
according to the size of the query answer sets.

Figure 6 reports the average processing time per query
and the average number of candidates obtained by each algo-
rithm. We do not show the peak memory consumption in the
figures, which is 21 MB for both IGquery-1 and IGquery-100,
approximately 25 MB for cIndex, and 111 MB for GPTree.
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Fig. 5 Query performance on
AIDS: effect of query graph size

[1, 15] [16, 30] [31, 45] [46, 60] [61, 217]
10

0

10
1

10
2

Query Graph Size

A
vg

. P
ro

ce
ss

in
g 

T
im

e 
(m

s)

cIndex
GPTree
IGquery−1
IGquery−100

[1, 15] [16, 30] [31, 45] [46, 60] [61, 217]
10

1

10
2

10
3

Query Graph Size

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B
)

cIndex
GPTree
IGquery−1
IGquery−100

[1, 15] [16, 30] [31, 45] [46, 60] [61, 217]
0

1000

2000

3000

4000

5000

6000

Query Graph Size

C
an

di
da

te
 S

et
 S

iz
e

cIndex
GPTree
IGquery−1
IGquery−100
Answer Set

Fig. 6 Query performance on
AIDS: effect of query answer-set
size

[0, 10) [10, 100) [100, 1000) [1000, −)
10

−1

10
0

10
1

10
2

10
3

Query Answer−Set Size

A
vg

. P
ro

ce
ss

in
g 

T
im

e 
(m

s)

cIndex
GPTree
IGquery−1
IGquery−100

[0, 10) [10, 100) [100, 1000) [1000, −)
10

0

10
1

10
2

10
3

10
4

Query Answer−Set Size

C
an

di
da

te
 S

et
 S

iz
e

cIndex
GPTree
IGquery−1
IGquery−100
Answer Set

Figure 6a shows that for all sizes of query answer set,
IGquery-1 is almost an order of magnitude faster than cIndex
and about five times faster than GPTree. When the batch size
increases, the improvement further enlarges. The speed-up
of IGquery-100 over IGquery-1 is an order of magnitude for
queries with a smaller answer set size, and more than twice
for queries with other answer set sizes. We emphasize that
the speed-up is very significant considering that IGquery-1
is already very fast.

The query performance can be explained by the candi-
date set size shown in Fig. 6b. The results show that our
direct inclusion and projected-database filtering techniques
are more effective than cIndex and GPTree. In Table 7,
we also report the number of answers obtained by direct

Table 7 Average number of answers by DI

[0, 10) [10, 100) [100, 1000) [1000,∞)

# of ans by DI 2 60 342 909

# of exact ans 3 64 469 1383

inclusion (DI), which is very close to the number of all query
answers.

7.6 Effect of database size

We also evaluate whether the performance of IGquery is
affected by the database size. We use the six databases pre-
pared from the NCI dataset for this experiment.
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Fig. 7 Indexing performance
on NCI: effect of database size
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Table 8 IG/GDB size (# of edges) for NCI

10 K 20 K 40 K 60 K 80 K 100 K

568
100634

552
187097

557
401917

553
608984

564
819324

568
1025636

Indexing performance Figure 7 reports the time and peak
memory consumption of index construction for each index.
We are not able to obtain cIndex for databases with 40K
graphs or more due to its higher memory consumption.

Similar to the previous experiment, our index construction
is several orders of magnitude faster than cIndex and over an
order of magnitude faster than GPTree, using significantly
less memory. Both indexing time and memory usage of all
the three indexes increase with database size.

An important observation of this experiment is that when
the database size increases, the size of the IG (in terms of #
of edges) does not increase, as shown in Table 8. This result
reflects that real datasets from the same source/application
share much commonality, and the IG can indeed effectively
capture the commonality in the data.

Query performance Figure 8 reports the average process-
ing time per query, the peak memory consumption, and the
average number of candidates obtained by each algorithm.

Figure 8a shows that the processing time grows steadily
when the database becomes larger, which is unavoidable
since the answer set size also increases accordingly. How-
ever, compared with cIndex, IGquery is more scalable. We
note that cIndex is not scalable mainly because its feature
selection is too expensive. Compared with GPTree, IGquery
is from several times to over an order of magnitude more effi-
cient, depending on the batch size. Figure 8b shows that the
memory consumption of cIndex and IGquery is comparable,
and is much less than that of GPTree. For both IGquery and
GPTree, the querying time and memory usage increase only
linearly with the database size.

The processing time in Fig. 8a can be clearly explained
by the size of the candidate set reported in Fig. 8c. Due to

the application of direct inclusion, IGquery is able to obtain
a candidate set much smaller than cIndex and GPTree. When
a larger batch size is used, the candidate set obtained by
IGquery can be even significantly smaller than the answer
set.

7.7 Effect of commonality

In Sect. 4.2, we claim that our index is effective even when
the data/query graphs share little commonality, which we
verify here by experiments. We find that all the real datasets
used in the literature for testing subgraph/supergraph que-
ries share much commonality among the data graphs; thus,
we use synthetic datasets to tune the degree of commonality.
Most existing work uses frequent subgraphs as commonality;
thus, we also use frequent subgraphs to indicate the degree
of commonality existing in a dataset.

We generate four datasets with four different degrees
of commonality as follows: C1:(0, –); C2:(718,101);
C3:(959391,286); C4:(>1 billion, 1363). Take C2:(718,101)
as an example, it means that at a minimum support threshold
of 0.01, the dataset C2 has 718 frequent subgraphs and the
average frequency of these frequent subgraphs is 101. Thus,
the graphs in C1 share the least commonality (in fact, a large
number of the graphs do no share any commonality at all),
while those in C4 share the most commonality.

We prepare the query sets and the graph databases from
each synthetic dataset in a similar way as we do for the real
datasets. Each query set has 10K graphs and an average size
of 20 edges. The average density of the graphs in the query
sets varies from 0.05 to 0.5 for C1 to C4. Each graph data-
base has 10 K graphs and an average size of 10 edges. The
average density of the graphs in the graph databases varies
from 0.06 to 0.67 for C1 to C4.

Indexing performance Table 9 shows that our index con-
struction is up to many orders of magnitude more effi-
cient than cIndex. We are only able to obtain the result of
GPTree for C3 (perhaps some special cases are not handled in
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Fig. 8 Query performance on
NCI: effect of database size
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Fig. 9 Query performance on
synthetic data: effect of
commonality
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GPTree). For C3, our performance is about twice better than
GPTree.

The results also indicate that it takes longer time to con-
struct our index on datasets with little commonality. This
is because more new edges need to be created for the IG
when the data graphs share little commonality, which is also
reflected by the number of edges in the IG. The ratio of the
IG size to the database size also correctly reveals the degree
of commonality of the datasets.

On the contrary, the performance of cIndex is rather unsta-
ble. This is perhaps due to the large variation in the set of fre-
quent subgraphs used for their feature selection. For example,
there are too few frequent subgraphs for C1, while there are
too many frequent subgraphs for C4 even at a high frequency

threshold but they are not discriminative enough to be used
as good features. This also explains why so few features are
selected by cIndex for C1 and C4. Our feature selection, how-
ever, does not require to first mine the frequent subgraphs.

Query performance Figure 9 reports the average process-
ing time per query and the number of candidates (aver-
aged over all queries). The peak memory consumption is
21–24 MB for IGquery, 16–24 MB for cIndex, and 61 MB
for GPTree (for C3 only).

Figure 9a shows that the performance of IGquery is very
stable over the different degrees of commonality. Compared
with GPTree for C3, IGquery is over an order of magnitude
faster. Compared with cIndex, IGquery is up to two orders
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Table 9 Performance of indexing on synthetic data: effect of
commonality

C1 C2 C3 C4

cIndex (time: s) 61 6429 482 376

GPTree (time: s) – – 1 –

IG (time: s) 3 0.3 0.5 0.8

cIndex (memory: MB) 425 420 382 427

GPTree (memory: MB) – – 47 –

IG (memory: MB) 24 24 23 22

cIndex (feature #) 11 94 583 2

GPTree (feature #) – – 4 –

IG (feature #) 328 131 870 581
IG size (# of edges)

GDB size (# of edges)
58686
81384

21862
163021

4183
165326

578
170639

of magnitude faster. The results are also reflected by the size
of candidate set shown in Fig. 9b. The fact that the candidate
set size of IGquery is significantly smaller than the answer
set size also reveals that direct inclusion is effective. The
performance of cIndex is the best for C2; however, indexing
C2 is also substantially more costly with cIndex as shown in
Table 9.

Another interesting observation from Fig. 9a is that
IGquery-1 is the first time more efficient than IGquery-100
for C1. The reason for this uncommon result is that the graphs
in the dataset C1 share very little commonality such that
batch processing no longer has the advantage, but rather has
the disadvantage as it needs to process more for the batching.

We also notice that the efficiency improvement of
IGquery-100 over IGquery-1 is not large for this experiment.
This is mainly because the sizes of the answer sets on the syn-
thetic data are only a few dozens. Given the small number
of candidates in both IGquery-1 and IGquery-100, the index
probing time Tsearch dominates the overall query processing
time, while Tsearch is roughly the same for IGquery-1 and
IGquery-100.

7.8 Evaluation on database updates

In this experiment, we show that in addition to efficient index
construction and fast query processing, our index also has a
very low maintenance cost.

We consider three different scenarios of updates: inser-
tion only, deletion only, and a random mix of both, which are
denoted as insert, delete, and mix in the discussion. We use
the database graphs prepared from the NCI dataset and per-
form updates of 10 K graphs as follows. For insertion only,
we start with a database of 10 K graphs and insert another 10
K graphs. For deletion only, we start from a database with
30 K graphs and randomly delete 10 K graphs from it. For
a mix of both, we start with a database of 20 K graphs and

Table 10 Performance on index maintenance

Insert Delete Mix

Total update time (ms) 99.12 76.90 117.95

Memory consumption (MB) 21 30 22

Table 11 Size ratio of IGs and query processing time

Insert/rebuild Delete/rebuild Mix/rebuild

IG size ratio 554/552 557/552 554/553

Query time (ms) 4.03/3.99 3.14/3.01 3.69/3.58

randomly choose to insert graphs into it from another 10 K
graphs or delete graphs from it. The final database size we
obtain at the end of all updates in each case is 20 K.

Table 10 reports the total time and peak memory taken to
update the 10 K graphs, including graph insertion/deletion
and updates of features. Clearly, the index update is very
efficient as it takes only about 0.1 s to update 10 K graphs
(on average it takes about 0.01 ms to insert/delete a graph).
The mix update scenario takes longer time due to the more
frequent increase and decrease in the size of host (e) for an
edge e that causes more frequent re-ordering of the host (e).
As for the memory consumption, the delete takes more mem-
ory only because we start with a larger database (30 K graphs
initially) and we record the peak memory consumption.

Table 11 shows the size of the IG (in terms of number of
edges) of the 20 K database at the end of each update sce-
nario. We also compare it with the size of the IG constructed
from-scratch for the 20 K database, denoted as rebuild in the
table. It is shown that the size of the IG obtained by incremen-
tal update is almost the same as that obtained by rebuilding
from-scratch.

Finally, we also show in Table 11 that the query per-
formance on the incrementally updated database does not
degrade (or only very slightly) when compared with the query
performance on the database rebuilt from-scratch. The mem-
ory consumption for query processing on the incrementally
updated database is the same as that on the database rebuilt
from-scratch, because their IGs have essentially the same
size as shown in Table 11.

8 Related work

Chen et al. propose cIndex [2] for processing supergraph
queries. They model the feature selection as the problem
of maximum coverage with cost. Therefore, filtering with
their features is effective. Zhang et al. propose GPTree [22].
They organize the database graphs with a tree structure to
allow testing subgraph isomorphism from multiple graphs to
one graph. A set of significant frequent subgraphs with high
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filtering power is selected as features. However, the effec-
tiveness of the features in both cIndex and GPTree comes
with a tradeoff: the feature generation and selection process
involves frequent subgraph mining, which is slow and hard
to maintain for database updates. On the contrary, our feature
selection process is very efficient and we are able to achieve
higher filtering power by our projected-database filtering
approach. More importantly, we propose a new technique
of direct inclusion, which enables us to outperform cIndex
and GPTree. We also further improve our work by exploring
the commonality among the queries.

A number of indexes have been proposed for processing
subgraph queries [3,5,10,12,13,16,20,21,23,24]. Most of
these methods are filtering-and-verification approaches. The
exceptions [3,16] cannot be adopted to process supergraph
queries because the number of supergraphs of the database
graphs is infinite and thus cannot be indexed. A number of
these indexes are also extended to handle similarity match-
ing. Similarity search has not been studied for supergraph
queries and may be considered as a future work.

9 Conclusions

We propose a query system, IGquery, for processing
supergraph queries on transaction graph databases. IGque-
ry constructs an index by extracting commonality among the
graphs. When little commonality exists, IGquery can also
efficiently locate the matching graphs in the index. IGquery
has the following distinguished features: (1) low index con-
struction cost and low index maintenance cost (suitable for
dynamic databases); (2) fast query processing by the dual
operations of direct inclusion and filtering; (3) capable of
batch processing and handling high-speed query streams.

Experimental results verify that (1) On index construction,
IGquery is orders of magnitude more efficient than cIndex [2]
and GPTree [22]. The index maintenance cost is also shown
to be indeed very small. (2) On query processing, IGquery
is up to two orders of magnitude faster and is also more sta-
ble, even when the queries are processed one by one (i.e.,
IGquery-1). The query performance improves further by at
least several times when queries are processed as batches. (3)
Experiments also show that IGquery is efficient on datasets
with both low or high degree of commonality.

Acknowledgments We would like to thank Mr. Chen Chen for pro-
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