
Scaling and Time Warping in Time Series Querying

Ada Wai-chee Fu1 Eamonn Keogh2 Leo Yung Hang Lau1 Chotirat Ann Ratanamahatana2

Department of Computer Science and Engineering1 Department of Computer Science and Engineering2

The Chinese University of Hong Kong University of California
Shatin, Hong Kong Riverside, USA

adafu,yhlau@cse.cuhk.edu.hk eamonn,ratana@cs.ucr.edu

Abstract

The last few years have seen an increasing
understanding that Dynamic Time Warping
(DTW), a technique that allows local flexibil-
ity in aligning time series, is superior to the
ubiquitous Euclidean Distance for time series
classification, clustering, and indexing. More
recently, it has been shown that for some prob-
lems, Uniform Scaling (US), a technique that
allows global scaling of time series, may just
be as important for some problems. In this
work, we note that for many real world prob-
lems, it is necessary to combine both DTW
and US to achieve meaningful results. This
is particularly true in domains where we must
account for the natural variability of human
action, including biometrics, query by hum-
ming, motion-capture/animation, and hand-
writing recognition. We introduce the first
technique which can handle both DTW and
US simultaneously, and demonstrate its utility
and effectiveness on a wide range of problems
in industry, medicine, and entertainment.

1 Introduction

We propose to query time series with both the accom-
modation of a scaling factor and the consideration of
time warping effects. In this section we justify our
proposal with some examples.
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1.1 Justifying the Need for Uniform Scaling
and DTW

Because time series are near ubiquitous, and are be-
coming increasingly prevalent as our ability to capture
and store them improves, there is increasing interest
in the database community in techniques for efficiently
indexing large time series collections [7, 19]. It is found
that in most domains, it is necessary to match se-
quences with tolerance of small local misalignments,
and Dynamic Time Warping has been shown to be
the right tool for this [5, 12, 21, 24]. For example, in
speech comparison, small fluctuation of the tempo of
the speakers should be allowed in order to identify sim-
ilar contents. More recently, it has been shown that in
many domains it is also necessary to match sequences
with the allowance of a global scaling factor [14]. In
this work, we argue that for most real world problems,
it is necessary to be able to handle both types of dis-
tortions simultaneously. In fact, even a casual glance
of existing literature confirms this. For example, in
query-by-humming systems, it is well understood that
we must allow for uniform scaling in addition to DTW.
The current solution is to simply do DTW at many res-
olutions that span the possible range of tempos. For
example, Meek and Birmingham [17] reports “We ac-
count for the phenomenon of persons reproducing the
same tune at different speeds . . . allow(ing) for nine
tempo mappings.” However, repeating the query nine
times clearly slows the system down. Furthermore, it
is possible that the best match occurs somewhere in-
between the nine discrete scalings. In [15], the authors
also note that in addition to the local problems han-
dled by DTW, “(people can) perform faster or slower
than usual.” They again deal with this with multiple
scaled queries, achieving reasonable performance only
by the use of parallel processing.

Dynamic Time Warping is frequently used as the
basis of gait recognition algorithms, but even in this
highly structured domain, it is recognized that uni-
form scaling is also needed. For example, [11] notes
“different gait cycles tend to have unequal lengths.” In
fact, even if we discount human variability, it is well



understood that parallax effects from cameras (static
or pan-and-tilt) can produce apparent changes in uni-
form scaling [10].

The need for uniform scaling has been noted in
bioinformatics. Moeller-Levet et al. [18] noted that
previous work that addressed only local scaling (with
DTW) is inadequate, and they stressed that “(uni-
form) scaling factors in the expression level hide simi-
lar expressions and have to be eliminated or not consid-
ered when assessing the similarity between expression
profiles”[11].

Finally, the simultaneous need for both uniform
scaling and DTW is well understood in the motion-
capture and animation community. For example,
Pullen and Bregler [20], explaining their motion-
capture editing system, noted “we stretch or compress
the real data fragments in time by linearly resampling
them to make them the same length as the keyframed
fragment . . . (then do DTW).” The computational dif-
ficulty of dealing with both uniform scaling and DTW
at the same time has even led to practitioners aban-
doning temporal information altogether! Campbell
and Bobick [3] used a phase space representation in
which the velocity dimensions are removed, thus com-
pletely disregarding the time component of the data.
This makes the learning and matching of motion pat-
terns simpler and faster, but only at the cost of a mas-
sive increase in false positives.

Let us call “DTW with Uniform Scaling” SWM,
which stands for Scaled and Warped Matching. In this
paper, we study the combined effects of scaling and
time warping in time series querying.

1.2 Motivating Examples

Below, we present two concrete examples that require
SWM to produce meaningful and intuitive results.

Example 1 (Indexing video). There is increas-
ing interest in indexing sports data, both from sports
fans who may wish to find particular types of shots or
moves, and from coaches who are interested in analyz-
ing their athletes performance over time. As a con-
crete example, we consider high jump. We can auto-
matically collect the athlete’s center of mass informa-
tion from video and convert the data into a time series
(It is possible to correct for the cameras pan and tilt;
see [6]). We found that when we issued queries to a
database of high jumps, we got intuitive answers only
when doing SWM. It is easy to see why if we look at two
particular examples from the same athlete and consider
all possible matching options, as shown in Figure 1. In
this figure, we show four different ways to match two
time series, the horizontal axis is the time axis. In
each case, we have shifted one of the two series up-
ward to show the way the points in the two series are
matched. Each vertical line in the diagrams shows the
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Figure 1: Two examples of an athlete’s trajectories
aligned with various measures

matching of two points. Visually we can say that the
two time series are similar, and hence the distance be-
tween them should be small. We want to see which of
the four measurement can generate a result that gives
a small distance as expected. From top to bottom:

• If we attempt simple Euclidean matching (after
truncating the longer sequence), we get a large
distance (which we can consider as error) because
we are mapping part of the flight of one sequence
to the takeoff drive in the other.

• If we simply use DTW to match the entire se-
quences, we get a large error because we are try-
ing to explain part of the sequence in one attempt
(the bounce from the mat) that simply does not
exist in the other sequence. This problem can be
corrected by constraints such as the Sakoe-Chiba
Band, but without scaling, the matching will be
poor.

• If we attempt just uniform scaling, we get the best
match when we stretch the shorter sequence by
112%. However the local alignment, particularly
of the takeoff drive and up-flight, is quite poor.

• Finally, when we match the two sequences with
SWM, we get an intuitive alignment between the
two sequences. The global stretching (once again
at 112%) allows DTW to align the small local dif-
ferences. In this case, the fact that DTW needed
to map a single point in a time series onto 4 points
in the other time series suggests an important lo-
cal difference in one of these sequences. Inspec-
tion of the original videos by a professional coach



suggests that the athlete misjudged his approach
and attempted a clumsy correction just before his
takeoff drive.

Example 2 (Query by Humming). The need for
both local and global alignment when working with mu-
sic has been extensively demonstrated [4, 16, 17, 24].
For completeness, we will briefly review it here. Find-
ing similar sequences of music has applications in
copyright infringement detection, analyzing the evolu-
tion of music styles [4], automatic annotation, etc. (It
is interesting to note that these studies are not confined
to human endeavors; similar techniques have been used
in animal “music”, especially in humpback whales and
songbirds [16]). However, the vast majority of research
in this area is used to support query by humming.

The basic idea of query by humming is to allow users
to search large music collections by providing an ex-
ample of the desired content, by humming (or singing,
or tapping) a snippet. Clearly, humans cannot be ex-
pected to reproduce an exact fragment of a song, so
the system must be invariant to certain distortions.
Some of these are trivial to deal with. For example,
the query can be made invariant to key by normal-
izing both the query and the database to a standard
key. However, two types of errors are more difficult to
deal with; users may perform the query at the wrong
tempo, and users may insert or delete notes. The for-
mer corresponds with uniform scaling, the latter with
DTW. The music retrieval community has tradition-
ally dealt with these two problems in two ways. The
first is to do DTW multiple times, at different scal-
ings [17]. However, this clearly produces scalability
problems. The other common approach is to only do
DTW with relatively short song snippets as queries
believing that short sequences are less sensitive to uni-
form scaling problems than long sequences. While this
is undoubtedly true, short snippets also have less dis-
criminating power.

In Figure 2, we demonstrate the problems with the
universally familiar piece of music, Happy Birthday to
You. For clarity of illustration, the music was pro-
duced by the fourth author on a keyboard and con-
verted into a pitch contour, however, similar remarks
apply to other music representations. From top to
bottom:

• Because the query sequence was performed at a
much faster tempo, direct application of DTW
fails to produce an intuitive alignment.

• Rescaling the shorter performance by a scaling
factor of 1.54 seems to improve the alignment, but
note for example that the higher pitched note pro-
duced on the third “birth. . . ” of the candidate is
forced to align with the lower note of the third
“happy . . . ” in the query.
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Figure 2: Two performances of Happy Birthday to
You aligned with different metrics. Both performances
were performed in the same key, but are shifted in the
Y-axis for visual clarity.

• Only the application of both uniform scaling and
DTW produces the correct alignment.

Having developed the intuition for DTW and US,
and having demonstrated the need to handle both
types of distortions simultaneously, we will next define
the problem of similarity measurement under SWM
more formally.

2 Problem Definition

Assume that we are given a database D which con-
tains M time series (note that this formulation does
not preclude the subsequence matching case, since it
may be trivially transformed into this formulation).
Further, assume that we are given a query Q, and a
scaling factor l, l ≥ 1, which represents the maximum
allowable stretching of the time series. The maximum
allowable shrinking is implicitly set to 1/l. 1 Hence
the query can be shortened by a factor of up to 1/l or
lengthen by a factor of up to l. Note that while 1/l is
bounded below by zero, and l is bounded from above
by infinity, such loose bounds would allow pathologi-
cal solutions to certain problems, and in any case are
surely impossible to support efficiently. We therefore

1Such formulation assumes the maximum allowable stretch-
ing and shrinking is symmetric. If this is not the case for a
specific application, it is trivial to add as an extra parameter:
the maximum allowable shrinking s.



restrict our attention to scaling factors in the range
0.5 ≤ 1/l ≤ 1 ≤ l ≤ 2. Note that this range encom-
passes the necessary flexibility documented in virtually
every domain we are aware of. For instance, in [17],
the authors reported excellent results with a query-
by-humming system that allows “a (maximum) tempo
scaling of 1.25.” [17] notes that in their experience,
amateur singers can speed up their rendition of a song
by as much as 200% or slow down to as little as 50%.

Recently it has been shown that for nearly all types
of time series data, using an appropriate global con-
straints always improves the classification or clustering
accuracy and the precision and recall of indexing [21].
Therefore a global constraint is typically enforced to
limit the warping path to a roughly diagonal portion
of the warping matrix.

Given N variable-length data sequences and a query
sequence Q, we would like to find all data sequences
that are “similar” to Q. Suppose the query sequence
is Q = Q1, Q2, · · · , Qm, where Qi is a numerical value.
We are interested in tackling the following problem.

Problem: Assume the data sequences can be longer
than the query sequence Q. Find the best match to Q
in database, for any rescaling in a given range, un-
der the Dynamic Time Warping distance with a global
constraint. By best match we mean the data sequence
with the smallest distance from Q.

This problem has never been considered in the liter-
ature before. This problem is realistic in applications
such as query by humming.

3 Preliminaries

In this section, we review separately time series query-
ing with time warping distance and also querying with
the scaling effect. For each case, we can apply a lower
bounding technique for pruning the search space.

3.1 Time Warping Distance

Intuitively, dynamic time warping is a distance mea-
sure that allows time series to be locally stretched
or shrunk before applying the base distance measure.
Definition 1 formally defines time warping distance.

Definition 1 (Time Warping Distance (DTW)).
Given two sequences C = C1, C2, · · · , Cn and Q =
Q1, Q2, · · · , Qm, the time warping distance DTW is
defined recursively as follows:

DTW(φ, φ) = 0

DTW(C, φ) = DTW(φ,Q) = ∞

DTW(C,Q) = Dbase(First(C),First(Q)) +

min







DTW(C,Rest(Q))
DTW(Rest(C), Q)
DTW(Rest(C),Rest(Q))

where φ is the empty sequence, First(C) = C1,
Rest(C) = C2, C3, · · · , Cn, and Dbase denotes the dis-
tance between two entries.

Several metrics were used as the Dbase distance in
previous literature, such as Manhattan Distance [23]
and squared Euclidean Distance [12, 22]. We will
use squared Euclidean Distance as the Dbase measure.
That is,

Dbase(Ci, Qj) = (Ci − Qj)
2

Note we deliberately omit the final square root func-
tion in our distance definitions. Such optimization
speeds up computations without altering the relative
ranking given by these distances, which is more im-
portant than the actual value in most applications.
The same optimization has been used before in [14].
However, if such optimization is not desired, we can
also consistently insert the final square root function
without altering the essence of this work.

It is well known that dynamic time warping dis-
tance can be computed by filling a warping matrix
using a dynamic programming algorithm directly de-
rived from the definition of time warping distance. A
warping path can be identified by tracing the elements
in the warping matrix that were used to compute the
time warping distance. Formally, a warping path W
for two sequences Q and C is a sequence of elements
w1, w2, · · · , wp so that wk = (ik, jk) is an entry in
the warping matrix, where ik ≥ ik−1 and jk ≥ jk−1,
max(|Q|, |C|) ≤ |W | ≤ |Q| + |C| − 1. 2

3.2 Constraints and Lower Bounding

In the previous section we have explained with ex-
amples the importance of having global constraints
on time warping in order to give meaningful results.
Keogh [12] suggested a lower bounding measure based
on such global constraints on time warping. Two com-
monly used global constraints exist. The Sakoe-Chiba
Band [22] limits the warping path to a band enclosed
by two straight lines that are parallel to the diagonal
of the warping matrix. The Itakura Parallelogram [9]
limits the warping path to be within a parallelogram
whose major diagonal is the diagonal of the warping
matrix.

[12] viewed a global constraint as a constraint on
the warping path entry wk = (i, j)k and gave a general
form of global constraints in terms of inequalities on
the indices to the elements in the warping matrix,

j − r ≤ i ≤ j + r

where r is a constant for the Sakoe-Chiba Band and r
is a function of i for the Itakura Parallelogram.

2|X| denotes the length of a sequence X.



Incorporating the global constraint into the defini-
tion of dynamic time warping distance, Definition 1
can be modified as follows.

Definition 2 (Constrained DTW (cDTW)).
Given two sequences C = C1, C2, · · · , Cn and Q =
Q1, Q2, · · · , Qm, and the time warping constraint r,
the constrained time warping distance cDTW is de-
fined recursively as follows:

Distr(Ci, Qj) =

{

Dbase(Ci, Qj) if |i − j| ≤ r
∞ otherwise

cDTW(φ, φ, r) = 0

cDTW(C, φ, r) = cDTW(φ,Q, r) = ∞

cDTW(C,Q, r) = Distr(First(C),First(Q))+

min







cDTW(C,Rest(Q), r)
cDTW(Rest(C), Q, r)
cDTW(Rest(C),Rest(Q), r)

where φ is the empty sequence, First(C) = C1,
Rest(C) = C2, C3, · · · , Cn, and Dbase denotes the dis-
tance between two entries.

The upper bounding sequence UW and the lower
bounding sequence LW of a sequence C are defined
using the time warping constraint r as follows.

Definition 3 (Enveloping Sequences by
Keogh [12]). Let UW = UW1, UW2, · · · , UWm

and
LW = LW1, LW2, · · · , LWm,

UWi = max(Ci−r, · · · , Ci+r) and

LWi = min(Ci−r, · · · , Ci+r)

Considering the boundary cases, the above can be
rewritten as

UWi = max(Cmax(1,i−r), · · · , Cmin(i+r,n)) and

LWi = min(Cmax(1,i−r), · · · , Cmin(i+r,n))

These two sequences form an envelope which en-
closes the sequence C, as shown in Figure 3.
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Figure 3: Enveloping sequences derived from two dif-
ferent constraints

The lower bounding measure by Keogh [12] bounds
the time warping distance between two sequences Q
and C by the Euclidean distance between Q and the
envelope of C. Equation (1) below formally defines the
lower bounding distance.

LBW (Q,C) =
m
∑

i=1







(Qi − UW i)
2 if Qi > UW i

(Qi − LW i)
2 if Qi < LW i

0 otherwise

(1)

3.3 Uniform Scaling

Consider a query sequence Q = Q1, · · · , Qm and a
candidate sequence C = C1, · · · , Cn.

We assume that m is not greater than n (m ≤ n);
hence, the query is typically shorter than the candidate
sequence. We assume that the data can scale up or
down by a factor of at most l, l ≥ 1. The entry Qm

may be matched to Clm when the data is shrunk by a
factor of l. To simplify our discussion we shall assume
that lm ≤ n.

In order to scale time series C = C1, · · · , Cq to pro-
duce a new time series C ′ = C ′

1, · · · , C ′
m of length m,

we use the formula

C ′
j = Cdj·q/me where 1 ≤ j ≤ m

This is similar to the formula used in [14]. We target
to find a scaled prefix in C to compare with Q. With
a scaling factor of l, q can range from dm/le to lm.

Definition 4 (Uniform Scaling (US)). Given two
sequences Q = Q1, · · · , Qm and C = C1, · · · , Cn and
a scaling factor bound l, l ≥ 1. Let C(q) be the prefix
of C of length q, where dm/le ≤ q ≤ lm and C(m, q)
be a rescaled version of C(q) of length m,

C(m, q)i = C(q)di·q/me where 1 ≤ i ≤ m

US(C,Q, l) =
min(lm,n)

min
q=dm/le

D(C(m, q), Q)

where D(X,Y ) denotes the Euclidean distance between
two sequences X and Y .

Note that the ceiling function in the definition of
C(p, q) may be replaced by the floor function. The
whole definition of C(p, q) may also be replaced by
some interpolation on the values of C(q)bi·q/pc and
C(q)di·q/pe.

3.3.1 Lower bounding uniform scaling

We create two sequences UC = UC1, · · · , UCm and
LC = LC1, · · · , LCm, such that

UCi = max(Cdi/le, · · · , Cdile)

LCi = min(Cdi/le, · · · , Cdile)



These sequences bound the points of the time series
C that can be matched with Q.

The lower bounding function, which lower bounds
the distance between Q and C for any scaling ρ, 1 ≤
ρ ≤ l, can now be defined as:

LBS(Q,C) =
m
∑

i=1







(Qi − UCi)
2 if Qi > UCi

(Qi − LCi)
2 if Qi < LCi

0 otherwise

(2)

Lemma 1. For any two sequences Q and C of length
m and n respectively, for any scaling constraint on the
warping path wk = (i, j)k of the form j/l ≤ i ≤ lj, the
value of LBS(Q,C) lower bounds the distance between
C and Q under a scaling of C between 1/l and l, where
l ≥ 1.

Proof. We can assume a matching path wk = (i, j)k

which defines a mapping between the indices i and j, so
that each such mapping constitutes a term (Qi −Cj)

2

to the required distance. We will show that each term
tlb in the square root of our lower bounding distance
LBS(Q,C) can be matched with a term t resulted from
the one-to-one mapping, with tlb ≤ t.

Based on the constraints on the scaling factor, we
have the constraint j/l ≤ i ≤ lj between i and j in
wk = (i, j)k. From this, we have i/l ≤ j ≤ il and by
definition

UCi = max(Cdi/le), · · · , Cdile)

LCi = min(Cdi/le), · · · , Cdile)

thus UCi = max(Cdi/le, · · · , Cj , · · · , Cdile) ≥ Cj , or

Qi − UCi ≤ Qi − Cj

If Qi > UCi then Qi − UCi > 0, hence

(Qi − UCi)
2 ≤ (Qi − Cj)

2

Similarly we can show that if Qi < LCi then

(Qi − LCi)
2 ≤ (Qi − Cj)

2

4 Scaling and Time Warping

Having reviewed time warping, uniform scaling, and
lower bounding, this section introduces scaling and
time warping (SWM).

Definition 5 (Scaling and Time Warping
(SWM)). Given two sequences Q = Q1, · · · , Qm and
C = C1, · · · , Cn, a bound on the scaling factor l, l ≥ 1
and the Sakoe-Chiba Band time warping constraint r
which applies to sequence length m. Let C(q) be the

prefix of C of length q, where dm/le ≤ q ≤ min(lm, n)
and C(m, q) be a rescaled version of C(q) of length m,

C(m, q)i = C(q)di·q/me where 1 ≤ i ≤ m

SWM(C,Q, l, r) =
min(lm,n)

min
q=dm/le

cDTW(C(m, q), Q, r)

To simplify our discussion we shall assume that
lm ≤ n. We are interested in being able to scale the
sequence and also to find nearest neighbor or evaluate
range query by means of time warping distance. As
noted in [14], a näıve search for the uniform scaling
problem alone requires O(|D| · (a − b)) time, where
[b, a) is the range of lengths resulting from scaling.
Time warping computation alone requires O(n2) time
for time series length of n. Hence we need to find a
more efficient technique for the SWM problem.

In previous sections, we reviewed the lower bound-
ing technique for each sub-problem. Here, we propose
to combine these lower bounds to form overall lower
bounds for the querying problem. Figure 4 illustrates
this graphically.3

We apply time warping on top of scaling, i.e. we
scale the sequence first, and then measure the time
warping distance of the scaled sequence with the query.
Typically, time warping with Sakoe-Chiba Band con-
strains the warping path by a fraction of the data
length, which is translated into a constant r. Hence,
if the fraction is 10%, then r = 0.1|C|. If the length of
C is changed according to the scaling fraction ρ, that
is, C is changed to ρC, then the Sakoe-Chiba Band
time warping constraint is r = 0.1|ρC|. Hence, we
have r = r′ρ, where r′ is the Sakoe-Chiba Band time
warping constraint on the unscaled sequence, and ρ is
the scaling factor.

The lower envelope Li and upper envelope Ui on C
can be deduced as follows: Recall that the upper and
lower bounds for uniform scaling between 1/l and l is
given by the following:

UCi = max(Cdi/le, · · · , Cdile)

LCi = min(Cdi/le, · · · , Cdile)

and the upper and lower bounds for a Sakoe-Chiba
Band time warping constraint factor of r for a point
Ci is given by:

UWi = max(Cmax(1,i−r), · · · , Cmin(i+r,n))

LWi = min(Cmax(1,i−r), · · · , Cmin(i+r,n))

Therefore, when we apply time warping on top of

3In this example, the scaling factor is l = 1.5, the time warp-
ing constraint is r′ = 10% of the length of C.



scaling the upper and lower bounds will be:

Ui = max(UWdi/le, · · · , UWdile)

= max(Cmax(1,di/le−r′), · · · , Cmin(di/le+r′,n), · · · ,

Cmax(1,dile−r′), · · · , Cmin(dile+r′,n))

= max(Cmax(1,di/le−r′), · · · , Cmin(dile+r′,n)) (3)

Li = min(LWdi/le, · · · , LWdile)

= min(Cmax(1,di/le−r′), · · · , Cmin(di/le+r′,n), · · · ,

Cmax(1,dile−r′), · · · , Cmin(dile+r′,n))

= min(Cmax(1,di/le−r′), · · · , Cmin(dile+r′,n)) (4)

The lower bound function which lower bounds the
distance between Q and C for any scaling in the range
of {1/l, l} and time warping with the Sakoe-Chiba
Band constraint factor of r’ on C is given by:

LB(Q,C) =

m
∑

i=1







(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise
(5)

Lemma 2. For any two sequences Q and C of length
m and n respectively, given a scaling constraint of
{1/l, l} (see Section 2 on problem definition), where
l ≥ 1, and a Sakoe-Chiba Band time warping con-
straint of r′ on the original (unscaled) sequence C,
the value of LB(Q,C) lower bounds the distance of
SWM(C,Q, l, r′).

Proof. The matching warping path wk = (i, j)k de-
fines a mapping between the indices i and j. Each
such mapping constitutes a term t = (Qi − Cj)

2 to
the required distance. We will show that the i-th term
tlb in our lower bounding distance LB(Q,C) can be
matched with the term t resulting in a one-to-one map-
ping, with tlb ≤ t. For the i-th term tlb, if Qi > Ui,
then tlb = (Qi−Ui)

2; if Qi < Li, then tlb = (Qi−Li)
2,

otherwise tlb = 0, which is always ≤ t.

For scaling plus time warping, as illustrated in Fig-
ure 5, the effective constraint on the range of j is given
by: di/le − r′ ≤ j ≤ dile + r′

By Equations 3 and 4

Ui = max(Cmax(1,di/le−r′), · · · , Cmin(dile+r′,n))

Li = min(Cmax(1,di/le−r′), · · · , Cmin(dile+r′,n))

thus Ui ≥ Cj , or Qi − Ui ≤ Qi − Cj

Hence if (Qi > Ui) then Qi − Ui > 0 and we have

(Qi − Ui)
2 ≤ (Qi − Cj)

2

Similarly we can show that when (Qi < Li)

(Qi − Li)
2 ≤ (Qi − Cj)

2

Time Series C

Query Q

UC

LC

U

L

← LB(C, Q)

0 100 200 300

Figure 4: An illustration of the SWM envelopes. From
top to bottom: A time series C and a query Q; The
series C bounded from above and below respectively
by UC and LC, the envelope for scaling; The series
UC bounded above by U and LC bounded below by
L, forming the overall envelope for scaling and time
warping; and the lower bounding distance LB derived
from the overall envelope.

j=    ilj =   i/l

C’

C

C’

C

e.g. l = 2

ii

Figure 5: An illustration of the scaling effect, given a
sequence C, C ′ is the result after scaling. Note that the
Sakoe-Chiba Band time warping constraint r′ applies
to C. Hence the range of j is given by [di/le−r′, dile+
r′].



5 Tightness of the lower bounds

In this section, we show that the lower bounds we have
described are tight. In general, to show that a lower
bound is tight, we need only find a case where the exact
distance is equal to the lower bound distance. However
this is not exactly applicable in our scenario. For the
lower bounds LBW (Q,C), LBS(Q,C), and LB(Q,C)
we have discussed so far, the formulae have a similar
pattern:

LB(Q,C) =

m
∑

i=1







(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise

For each point in the query sequence, we have a
lower envelope value e.g. Li and an upper envelope
value, e.g. Ui, so that the sequence Q can compare
in order to calculate the lower bounds. The values
of Li and Ui determine the lower bound value. We
want to show that both Li and Ui are “tight”. It
can happen that for certain pairs of Q,C, the exact
distance is equal to LB(Q,C) but in the computation
of LB(Q,C) not both of Li and Ui are used, and hence
we cannot be sure that both Li and Ui are set as tight
as possible. Hence we have the following definition for
tightness.

Definition 6. Consider a lower bound LB(Q,C) for
a distance D(Q,C) of the form

LB(Q,C) =

m
∑

i=1







(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise

We say that the lower bound is tight, if there exists a
set of sequence pairs so that for each pair {Q,C} in the
set, D(Q,C) = LB(Q,C), and the Ui and Lj values
for some i, j are used (in the (Qi −Ui)

2 or (Qj −Lj)
2

term) at least once in computing the lower bounds in
the set.

Lemma 3. The lower bound LBW (Q,C) for the DTW
distance with the Sakoe-Chiba Band constraint is tight.

Proof. Consider DTW with a Sakoe-Chiba Band con-
straint of r = 1. Hence in the warping path entry
(i, j), j − 1 ≤ i ≤ j + 1.

Select two pairs of {Q,C} as follows (illustrated in
Figure 6):

Q = {1, 0.9, 2, 3, 4}, C = {1, 2, 2, 3, 4};

Q′ = {1, 2, 3, 4.1, 4}, C ′ = {1, 2, 3, 3, 4}

It is easy to see that D(Q,C) = LBW (Q,C), and
D(Q′, C ′) = LBW (Q′, C ′).

For Q,C, Q2 < LW2 and hence LW2 is used in the
computation of LBW (Q,C).

For Q′, C ′, Q′
4 > UW ′

4, hence UW ′
4 is used in the

computation of LBW (Q′, C ′).
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Figure 6: Example sequence pairs (Q, C) in Lemma 3
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Figure 7: Example sequence pairs (Q, C) in Lemma 4

Lemma 4. The lower bound LBS(Q,C) for the dis-
tance between Q,C with a scaling factor between 1/l
and l is tight.

Proof. Consider scaling between 0.5 and 2. Hence l =
2.

Select two pairs of {Q,C} as follows (illustrated in
Figure 7):

Q = {4, 3, 2, 1}, C = {4.1, 4.1, 3.1, 3.1, 2.1, 2.1, 1.1, 1.1};

Q′ = {1.1, 3.1, 5.1}, C ′ = {1, 1, 3, 3, 5, 5}

It is easy to see that D(Q,C) = LBS(Q,C), and
D(Q′, C ′) = LBS(Q′, C ′).

For Q,C, LCi > Qi and all LCi are used in the
computation of LBS(Q,C).

For Q′, C ′, UC ′
i < Q′

i and all UC ′
i are used in the

computation of LBS(Q′, C ′).

Lemma 5. The lower bound LB(Q,C) for the dis-
tance between Q,C with a scaling factor bound l and
time warping with the Sakoe-Chiba Band constraint r′

is tight.

Proof. Consider a Sakoe-Chiba Band constraint of
r′ = 1 and a scaling factor between 0.5 and 2. Hence
l = 2.

Select two pairs of {Q,C} as follows (illustrated in
Figure 8):

Q = {3, 1.9, 2, 1}, C = {3, 3, 3, 3, 2, 2, 1, 1};

Q′ = {1, 2, 3.1, 3}, C ′ = {1, 1, 2, 2, 2, 2, 3, 3}

It is easy to see that SWM(Q,C, l, r′) = LB(Q,C),
and SWM(Q′, C ′, l, r′) = LB(Q′, C ′).



For Q,C, Q2 < L2 and L2 is used in the computa-
tion of LB(Q,C).

For Q′, C ′, Q′
3 > U ′

3 and U ′
3 is used in the compu-

tation of LB(Q′, C ′).
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Figure 8: Example sequence pairs (Q, C) in Lemma 5

6 Experimental Evaluation

This section describes the experiments carried out to
verify the effectiveness of the proposed lower bound-
ing distance. The experiments were executed on an
Intel Xeon 2.2GHz Linux PC with 1GB RAM. The
source code for the experiments is written in C Lan-
guage. MATLAB was also used for pre-processing the
raw data.

To evaluate the effectiveness of the proposed lower
bounding distance, and thus the proposed solution, an
objective measure of the quality of a lower bounding
distance is required. The Pruning Power P is defined
in [12] as follows,

P =
Number of objects that do not require full DTW

Number of objects in database

The Pruning Power is an objective measure because it
is free of implementation bias and choice of underlying
spatial index. This measure has become a common
metric for evaluating the efficiency of lower bounding
distances, therefore, it was adopted in evaluating the
proposed lower bounding distance.

Extensive experiments were conducted on as many
as 41 different datasets. These datasets, which rep-
resent time series from different domains, were ob-
tained from “The UCR Time Series Data Mining
Archive” [13].

As the datasets came from a wide variety of dif-
ferent domains, they differed significantly in size and
in the length of individual data sequences. In order
to produce meaningful results, both parameters must
be controlled. Thus, from each original dataset, we
derived six sets of data, each containing 1024 data
sequences, with variable lengths of 32, 64, 128, 256,
512 and 1024, respectively. Short sequences were pro-
duced by using only prefixes of the original datasets
while long sequences were produced by concatenating
original sequences. All experiments were conducted on
these derived datasets.

To compute the pruning power of the proposed
lower bounding distance, the 1-nearest neighbor search
was performed using the linear-scan algorithm. A ran-
dom subsequence was chosen from the dataset to act as
the query, and the remaining 1023 sequences acted as
the data. The search was repeated for 50 trials using
a different subsequence as query. The actual dynamic
time warping distance did not need to be calculated if
the lower bounding measure gave a value larger than
the time warping distance of the current nearest neigh-
bor. The fraction of sequences that did not require cal-
culation of actual time warping distance became the
pruning power of the lower bounding measure in that
query. The average of the 50 queries were reported as
the pruning power of that particular dataset.

Unless stated otherwise, in all experiments, the
length of data was 1024 data points; the scaling factor
was between 1.5 and its reciprocal; the length of query
was set so that the longest rescaled query is at most
as long as the data; and the width of the Sakoe-Chiba
Band was set to 10% of the length of the query. In fact,
recent evidence suggests that this is a pessimistic set-
ting, and real world problems benefit from even tighter
constraints [21].
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Figure 9: Pruning power vs. length of original data

Figure 9 shows how the pruning power of the pro-
posed lower bounding measure varies as the lengths
of data change on different datasets.4 For a major-
ity of datasets, the pruning power increased with the
length of data, suggesting that the proposed algorithm
is likely to perform well in real-life environment, in
which long sequences of data are collected for a long
period of time. More than 78% (32 out of 41) of the
datasets obtained a pruning power above 90%. All
but three of the datasets exhibited a pruning power
of over 90% at length 1024. Even at length 32, over
75% pruning power was achieved in 80% (33 out of 41)
of the datasets. Figure 10 shows the pruning power

4We note that some of the figures in this section suffer
from monochromatic reproduction. We encourage the interested
reader to visit http://www.cs.ucr.edu/~eamonn/VLDB2005/ for
large scale color graphics with additional details.



averaged over all datasets; 97% of data sequences of
length 1024 and 80% of data sequences of length 32
did not require computation of the actual time warp-
ing distances. Figure 9 may contain too much informa-
tion so we pick 6 of the more significant applications
to show the pruning power for them more clearly in
Figure 11. The applications include CSTR (speech),
ECG, Ocean, Shuttle, Wool and chaotic.
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Figure 10: Average pruning power vs. length of origi-
nal data
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Figure 11: Some significant applications

The promising pruning power will greatly reduce
the querying time. We conducted experiments to mea-
sure the time required for query evaluation in all the
41 datasets. We compare the brute force approach to
the pruning approach. In the timing we included both
the time spent on the pruning and the post-processing
where the SWM distances for remaining sequences are
actually computed. Figure 12 shows the results. The
time is consistently reduced, down to about 13% of the
time required by brute force search. We have repeated
this with some other parameters and the results are
similar.

Figure 13 shows the effect of varying the range of
allowed scaling factors on pruning power. Note the x-
axis indicates the upper bound range of allowed scaling
factor. The lower bound range of allowed scaling factor
is the reciprocal of the upper bound. For instance,
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the label 2 indicates that the range of allowed scaling
factor is between 1/2 = 0.5 and 2. In particular, the
label 1 indicates that the time warping distance was
calculated without scaling. It also implied that the
size of the range was not increasing linearly. Although
we show only 6 of the significant applications, we have
experimented on all 41 sets of real data, the important
observation is that for all sizes, a pruning power of over
90% was achieved in nearly 83% (34 out of 41) of the
datasets. For all datasets (of length 1024), the pruning
powers never dropped below 80%.

A more detailed look into the actual data provided
some insights as to why most datasets give very high
pruning power and why the few other datasets result in
less pruning power. Figure 14 shows sample sequences
from the two datasets that give the lowest pruning
power. And Figure 15 shows the sample sequences
from the two datasets that give the highest pruning
power. The difference between them is rather obvi-
ous visually. The sequences giving the lowest prun-
ing power are those that fluctuate vigorously. The
sequences giving the highest pruning power are those
that are rather smooth. This is because with vigorous
data fluctuation, the lower and upper bound envelope
will be loose, and the pruning power will be weakened.

Nevertheless, we note that vigorously fluctuating
datasets are far less common than smooth datasets.
Figure 16 illustrates this claim by showing the pruning
power averaged over all the datasets, as the range of
allowed scaling factor changes. For all scaling factors,
the average pruning powers are always above 95%.
Even if we allow for one standard deviation margin
below the average, the pruning power is still above
90% in general.

In conclusion, the result shows that the proposed
lower bounding measure effectively speeds up the
query evaluation process. It also confirms the appli-
cability of the lower bounding technique, even when a
tight lower bound may not be readily obtainable.

7 Conclusion

We show the importance of the problem of SWM: han-
dling scaling and time warping distance in time series
querying. Since the direct computation of SWM dis-
tance is very costly, we propose a lower bound tech-
nique for pruning the search space. The strategy is
that we first compute a lower bound for the SWM dis-
tance, the computation of which is very simple. If the
lower bound does not fall within our current search
range, we can prune the data sequence since it cannot
be in our qualified result. We show by experiment that
we can typically prune over 90% of the search space for
1-nearest neighbor search in a large variety of dataset.
Our method can easily be extended to cover k-nearest
neighbor search.
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Figure 14: Data giving the lowest pruning power
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Figure 15: Data giving the highest pruning power
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For future work we shall examine indexing tech-
niques for the SWM problem. Standard index struc-
tures such as the R-Tree [8], the R*-Tree [1] or the
X-Tree [2] can be used. We also may consider mech-
anisms to reduce the dimensionality of the time series
for better performance. Another important problem is
to handle sub-sequence matching for a query sequence
that can match any portion of a data sequence. Our
work can be extended in this direction along with an
indexing method based on previous work such as [7]
and [19].
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