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Abstract—In classical association rules mining, a minimum support threshold is assumed to be available for mining frequent itemsets.

However, setting such a threshold is typically hard. In this paper, we handle a more practical problem; roughly speaking, it is to mine N

k-itemsets with the highest supports for k up to a certain kmax value. We call the results the N-most interesting itemsets. Generally, it is

more straightforward for users to determine N and kmax. We propose two new algorithms, LOOPBACK and BOMO. Experiments show

that our methods outperform the previously proposed Itemset-Loop algorithm, and the performance of BOMO can be an order of

magnitude better than the original FP-tree algorithm, even with the assumption of an optimally chosen support threshold. We also

propose the mining of “N-most interesting k-itemsets with item constraints.” This allows user to specify different degrees of

interestingness for different itemsets. Experiments show that our proposed Double FP-trees algorithm, which is based on BOMO, is

highly efficient in solving this problem.

Index Terms—Association rules, N-most interesting itemsets, FP-tree, item constraints.
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1 INTRODUCTION

MINING association rules is an important problem in
data mining [1], [3], [4], [7], [8], [9], [11], [12], [13], [15],

[20], [21], [23]. An example of such a rule is:

8x 2 persons; buysðx; }bread}Þ ) buysðx; }butter}Þ;

where x is a variable and buy(x,y) is a predicate that says that
person x buys item y. This rule indicates that a high
percentage of people who buy bread also buy butter. A
more formal definition of association rules is given in [3]. Let
I ¼ fi1; i2; . . . ; img be a set of items. Any subset of I is called
an itemset. Let D be a database of a set of transactions. Each
transaction, T , consists of a set of items from I, i.e., T � I. A
transaction T is said to contain X if X � T , and X � I. An
association rule has the form X¼)Y , where X;Y � I, and
X \ Y ¼ ;. The support of a rule X¼)Y is s% in D if s% of
the transactions in D contain X [ Y . The support of an
itemset Z is the percentage of transactions inD containing Z.
The confidence of a ruleX¼)Y is c% if c% of the transactions
in D that contain X also contain Y . Typically, this method
requires a user specified minimum support threshold and a
minimum confidence threshold, and all the association rules
having support above the minimum support threshold and
confidence above the confidence threshold are returned as
answers.

Mining association rules can be divided into two steps:
1) finding all the itemsets having sufficient supports and
2) generating association rules from these frequent (or
large) itemsets. After Step 1), Step 2) is straightforward and
trivial in terms of computational time, hence, a lot of effort
is focused on Step 1), i.e., we would like to mine all itemsets

of cardinality > 1, whose supports are greater than a

certain threshold value.
However, without specific knowledge, users will have

difficulties in setting the support threshold to obtain their

required results. If the support threshold is set too large,

there may be only a small number of results or even no

result. In which case, the user may have to guess a smaller

threshold and do the mining again, which may or may not

give a better result. If the threshold is too small, there may

be too many results for the users, too many results can

imply an exceedingly long time in the computation, and

also extra efforts to screen the answers. As an example of

the difficulty in choosing a threshold, for the census data of

United States 1990 available at the Web site of IPUMS-98

[10], for two different sets of data, the thresholds for finding

a reasonable number of itemsets are found to differ by an

order of magnitude. See Tables 4 and 5 in Section 5 for an

example of where the reasonable support thresholds may

vary from 0.3 percent to 21.42 percent for different data sets

of different nature.
In [16], and also in [18], mining based on “closed

itemsets” is addressed. For a closed itemset X, no superset

is contained in the same set of transactions that contain X.

This partially alleviates the problem of the result size.

However, it does not address the basic problem of setting a

suitable support threshold.
Another argument against the use of a uniform threshold

for all itemsets is that the probability of occurrence of a

larger size itemset is inherently much smaller than that of a

smaller size itemset. From our observations, it would be

better for users to specify a threshold on the amount of

results instead of a fixed threshold value for all itemsets of

all sizes. For example, in multimedia data querying, we find

that it is much more natural to allow users to specify the

number of nearest neighbors rather than to specify a certain

threshold on the “distance” from their query point. We have
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first introduced this problem definition for mining associa-
tion rules in [7].

Definition 1. A k-itemset is a set of items containing k items.

Definition 2. The N-most interesting k-itemsets: Let us sort
the k-itemsets by descending support values, let S be the support
of the Nth k-itemset in the sorted list. The N-most interesting k-
itemsets are the set of k-itemsets having support � S.1

Definition 3. The N-most interesting itemsets is the union of
the N-most interesting k-itemsets for each 1 � k � kmax,
where kmax is the upper bound of the size of itemsets we would
like to find. We say that an itemset in the N-most interesting
itemsets is interesting.

Other than basket data, an important application for
mining the N-most interesting itemsets is for the problem of
subspace clustering, where we are interested in finding
clusters hidden in different subspaces of the given data
space. In particular, it can be applied to the problem and
methodology as set up in [2].

Recent work has highlighted the significance of the
constraint-based mining technique [19], [14], [17]; users
can specify their focus in mining by means of a specific set
of constraints that allow them to explore and control the
interesting patterns. For example, in a supermarket, we may
only want to know the relationships among items of
particular types, such as soft drink and alcohol. Wang
et al. [25] propose support constraints as a way to specify
general constraints on minimum support. It employs a
support pushing technique that allows the highest possible
minimum support to be pushed so as to tighten up the
search space while preserving the essence of a priori.
However, the algorithm still requires a user specified
support threshold. In Section 3, we define a more practical
problem of finding N-most frequent itemsets with con-
straints as defined in [25], [17], and propose some solutions
to this problem.

In the next section, we give some background of our
work. We present our new approaches for mining N-most
interesting itemsets in Section 3. A preliminary version of
the above result can be found in [6]. We then define the item
constraints problem in Section 4 and introduce the Double

FP-trees algorithm. We also consider the case of using

maximum support thresholds in Section 4.3. Experimental
results are given in Section 5.

2 BACKGROUND

To our knowledge, Itemset-Loop [7] is the first algorithm for

the mining of N-most interesting itemsets. Itemset-Loop

makes use of the a priori candidate generation mechanism
which relies on the property of subset closure: If a k-itemset

is large, then all its subsets are also large. This property

does not hold for mining N-most interesting itemsets. That

is, if a k-itemset is among the N-most interesting k-itemsets,

its subsets may not be among the N-most interesting

itemsets. Therefore, we examine other algorithms for the

association rule mining problem. We note that, the FP-tree

[9] approach does not rely on the candidate generation step.
We, therefore, consider how to make use of the FP-tree for

the N-most interesting itemsets mining.
An FP-tree (frequent pattern tree) is a variation of the trie

data structure, which is a prefix-tree structure for storing

crucial and compressed information about frequent pat-

terns. It consists of one root labeled as “NULL,” a set of item

prefix subtrees as the children of the root, and a frequent-

item header table. Each node in the item prefix subtree

consists of three fields: item-name, count, and node-link,

where item-name indicates which item this node represents,
count indicates the number of transactions containing items

in the portion of the path reaching this node, and node-link

links to the next node in the FP-tree carrying the same item-

name, or null if there is none. Each entry in the frequent-

item header table consists of two fields, item-name and head

of node-link. The latter points to the first node in the FP-tree

carrying the item-name.
Let us illustrate by an example the algorithm to build an

FP-tree using a user specified minimum support threshold,

�. Suppose we have a transaction database shown in Fig. 1
with � ¼ 2. By scanning the database, we get the sorted

(item:support) pairs,

hðc : 3Þ; ðd : 3Þ; ða : 2Þ; ðb : 2Þ; ðe : 2Þ; ðf : 1Þi:

The frequent 1-itemsets are: c, d, a, b, e. We use the tree

construction algorithm in [9] to build the corresponding FP-

tree. We scan each transaction and insert the frequent items

(according to the above sorted order) to the tree. First, we

insert hc; d; a; bi to the empty tree. This results in a single path:
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Fig. 1. Database and corresponding FP-tree.

1. If multiple itemsets have the same support S, we pick all of them
according to Definition 2. Therefore, the resulting set may contain more
than N itemsets. There is an extreme case where too many patterns exist
with the same support S; in this case, we suggest to report the scenario to
user instead of returning all the patterns.



rootðNULLÞ ! ðc : 1Þ ! ðd : 1Þ ! ða : 1Þ ! ðb : 1Þ:

Then, we insert hc; d; b; ei. This leads to two paths with c and

d being the common prefixes:

rootðNULLÞ ! ðc : 2Þ ! ðd : 2Þ ! ða : 1Þ ! ðb : 1Þ

and

rootðNULLÞ ! ðc : 2Þ ! ðd : 2Þ ! ðb : 1Þ ! ðe : 1Þ:

Third, we insert hc; d; ai. This time, no new node is created,

but the first path is changed to:

rootðNULLÞ ! ðc : 3Þ ! ðd : 3Þ ! ða : 2Þ ! ðb : 1Þ:

Finally, we insert hei to the tree and we get the resulting tree

as shown in Fig. 1, which also shows the horizontal links for

each frequent 1-itemset in dotted-line arrows.
With the initial FP-tree, we can mine frequent itemsets of

size k,where k � 2. AnFP-growthalgorithm [9] is used for the

mining phase. We may start from the bottom of the header

table and consider item e first. There are two paths: ðc : 3Þ !
ðd : 3Þ ! ðb : 1Þ ! ðe : 1Þ and ðe : 1Þ. Since the second path

contains only item e, we get only one prefix path for

e : h c : 1; d : 1; b : 1i, which is called e’s conditional pattern

base (the count for each item is one because the prefix path

only appears once together with e). We also call e the base of

this conditional pattern base. Construction of an FP-tree on

this conditional pattern base (conditional FP-tree), which

acts as a transaction databasewith respect to item e, results in

an empty tree since the support for each conditional item is

less than � in the building phase.Next,we consider item b.We

get the conditional pattern base: hc : 1; d : 1; a : 1i, hc : 1; d : 1i.
Construction of an FP-tree on this conditional pattern base

results in an FP-tree with a single path: rootðNULLÞ !
ðc : 2Þ ! ðd : 2Þ. Mining this resulting FP-tree by forming all

thepossible combinationsof items canddwith theappending

of b. If we represent all frequent itemsets in the form of

(itemset: count), we get the frequent itemsets ðcb : 2Þ, ðdb : 2Þ,
and ðcdb : 2Þ. Similarly, we consider items a, d, and c to get the

frequent itemsets. The resulting large itemsets after the

mining phase are:

fc : 3; d : 3; a : 2; b : 2; e : 2; cd : 3; ac : 2;

ad : 2; bc : 2; bd : 2; acd : 2; bcd : 2g:

3 MINING N-MOST INTERESTING ITEMSETS

In this section, we introduce two new algorithms for mining

N-most interesting itemsets. We adopt ideas of the FP-tree

structure [9] in our algorithms. Let D be the given

transaction database. We assume an upperbound of kmax

on the size of interesting itemsets to be found. We keep a

current resulting set of N-most interesting k-itemsets, and

call it resultk; a current support threshold � is kept for all the

itemsets. The variable �k stores the current support thresh-

old for the k-itemsets.

3.1 A Build-Once and Mine-Once Approach, BOMO

In the original FP-tree method [9], the FP-tree is built only

with the items with sufficient support. However, in our

problem setting, there is no support threshold given

initially. We, therefore, propose to build a complete FP-tree

with all items in the database. Note that this is equivalent to

setting the initial support threshold � to zero. The size of an

FP-tree is bounded by the size of its corresponding database

because each transaction will contribute at most one path to

the FP-tree, with the path length equal to the number of

items in that transaction. Since there is often a lot of sharing

of frequent items among transactions, the size of the tree is

usually much smaller than its original database [9].
Although the initial value of � is zero, it will be

dynamically increased as we progress with the mining

step. Besides �, we use different thresholds for itemsets of

different sizes. When nothing is known about the itemsets,

we can set �k to be zero for all k, 1 � k � kmax. With �k ¼ 0,

we would blindly include any k-itemsets in our current set

of result, resultk. However, in the process of mining, we

shall generate k-itemsets with their supports. Once we have

encountered any N k-itemsets for some k � kmax, we know

that we are interested in k-itemsets with supports at least as

great as any of these N k-itemsets.
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Fig. 2. BOMO algorithm for mining N-most interesting itemsets.



Observation 1. Given any N k-itemsets for some 1 � k � kmax,

the N-most interesting k-itemsets have support � any of these

N itemsets.

Therefore, during the mining phase, we adjust �k once we

have found at leastN itemsets of size k: We assign �k to be the

support of theNth most frequent k-itemset discovered so far.

In order to do this, we maintain a sorted list of the support

values of theNmost frequent k-itemsets discovered, for each

1 � k � kmax. Figs. 2, 3, and 4 show the main algorithm, the

tree-building step and the mining step. The values of �k are

used to determine if an itemset should be included in the

current resultk. Here is an example. Suppose N ¼ 5 and

kmax ¼ 3, we set � ¼ 0, �1 ¼ �2 ¼ �3 ¼ � ¼ 0. Supposewe have

found the following 1-itemsets:

fa : 8; b : 8; c : 6; d : 6; e : 4; f : 4g:

Then, �1 ¼ 4. Considering large 2-itemsets, suppose fcd :

5; ab : 8; ac : 6; bd : 4; bc : 6; ad : 6g have been found so far in

the mining process. We can set �2 to 5 since the support of

the Nth most frequent 2-itemset so far, cd, is 5.
In the mining phase, we set the initial threshold value of

� to be zero. During mining, we increase � by assigning to it

the minimum value among the supports of the Nth most

frequent k-itemset discovered so far for 1 � k � kmax:

� ¼ minð�1; �2; . . . ; �kmax
Þ ð1Þ

We shall see later that as the threshold becomes greater, the

pruning power will also be greater.

Lemma 1. At the end of the first for loop of NFP-mine() (see

Line 1 in Fig. 4), if there are at least N different items in the set

of k-itemsets discovered so far, then for j < k, �j � �k.

Proof. If �k ¼ 0, it is trivial. Consider �k > 0. Suppose the
N-most frequent k-itemsets contains N different items, let
the itemsets be I1; I2:::; IN . From I1, we can form k subsets
of ðk� 1Þ-itemsets. In Ii, if it contains some items not
contained in I1; :::; Ii�1, then, if there is only one such
item x, we can form k� 1 subsets with k� 1 elements
each, each subset formed by removing each of the items
not equal to x. These subsets are different from all the
ðk� 1Þ-itemsets generated from I1; :::; Ii�1. If Ii contains
more than one items which are not in I1; :::; Ii�1, one can
form k subsets with k� 1 elements by removing any item
from Ii. When we finish the subset formation from
I1; . . . ; IN , we can get at least N ðk� 1Þ-itemsets, and
their supports are � �k. We can repeat the argument
with smaller subsets until we come to the 1-itemsets. In
the FP-tree mining process, the subsets are generated
either earlier or at the same iteration as the generation of
the k-itemset. Therefore, for j < k, �j � �k. tu

Corollary 1. At the end of the first for loop of NFP-mine(), if
there are at least N different items in the set of kmax-itemsets
discovered so far, then � ¼ �kmax

.

The above is true since � ¼ minð�1; �2; . . . ; �kmax
Þ andLemma 1

implies that for j < kmax, �j � �kmax
. Therefore, if the condition

in the Corollary is satisfied, then instead of updating � as
minð�1; �2; . . . ; �kmax

Þ, we can update � only when �kmax
is

updated. The pruning effectwill be unchanged, but lesswork
is spent on the update of � and �i.

3.1.1 Pruning Conditional FP-Trees

Based on the fact that an element of the header table cannot
form a conditional pattern tree that consists of itemsets
having supports greater than the support of this element,
we have the following pruning step for BOMO: When
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Fig. 3. BOMO tree construction.



forming the conditional FP-tree for an element, �, in the

header table, we compare the support of �, which is equal

to the total sum of the counts in the horizontal link of �,

with �. If it is smaller than �, we can stop forming the

conditional FP-trees for all the elements starting from � to

the bottom element of the header table.

3.1.2 Preevaluation Step

To enhance the performance of BOMO, we use a pre-

evaluation step to evaluate a better initial lower bound for �

and �k, 2 � k � kmax. We assign an array, Ck, of size N for

�k, for 2 � k � kmax. Consider the FP-tree built from NFP-

build(), for each path of length k from the root node, we

examine the kth node (last node in the path). Among all

such kth nodes, we pick the N largest values of the counts

stored in the nodes, and these values are entered into Ck.

For example, in the FP-tree in Fig. 1, consider k ¼ 3 and

N ¼ 2. Nodes labeled a:2 and b:1 are the only third

elements at all the paths leading from the root node, and

their counts are kept in C3, namely, the counts of 2 and 1.

Then, we assign �k to the Nth largest count value stored in

Ck. Consider the example in Fig. 1, with N = 1 and kmax = 3.

We get two paths rootðNULLÞ ! ðc : 3Þ, rootðNULLÞ !
ðe : 1Þ for k=1; one path rootðNULLÞ ! ðc : 3Þ ! ðd : 3Þ for

k=2; two paths rootðNULLÞ ! ðc : 3Þ ! ðd : 3Þ ! ða : 2Þ,
rootðNULLÞ ! ðc : 3Þ ! ðd : 3Þ ! ðb : 1Þ for k=3. Therefore,
the Nth largest values stored in C1, C2, C3 are 3, 3, and 2,

respectively, and we initialize �1, �2, �3 to be 3, 3, and 2,

respectively. Using (1), we can determine �. We use these

initial lower bounds for our mining phase. From experi-

ments, we found that the improvement of this preevalua-

tion step can be up to 10 percent of the total execution time.

3.1.3 Construction Order of Conditional FP-trees

We also study the starting position when processing the
frequent-item header table (Line 2 of Fig. 4). The ordering
can have significant impact since the thresholds �, �k,
1 � k � kmax, are updated dynamically and, if we encounter
more suitable itemsets with high support counts earlier, we
can set the thresholds better and increase the subsequent
pruning power.

Top-down: One possible choice is to start from the top of
the header table and go down the table to form a
conditional pattern base for each item in the table. For
example, in Fig. 1, the ordering will be fc; d; a; b; eg. This is
based on the observation that frequent items are most likely
located at the top levels of the FP-tree and, hence, we can
prune the less frequent itemsets by finding the more
frequent itemsets first. However, itemsets of larger sizes
are usually distributed widely throughout the tree and, as a
result, with this ordering, the increase rate of �k for large k is
slow while that for small k is fast. According to (1), � is also
increased slowly. This can lead to a large number of large
conditional FP-trees.

Bottom-up: The other extreme is to go from the bottom
of the header table upwards to the top. For example, in
Fig. 1, the ordering will be fe; b; a; d; cg. However, the
bottom items have the smallest supports and the corre-
sponding itemsets discovered will also have small supports
and, hence, the pruning power is also small.

Starting from the middle: We have tried different
starting positions and scanning orders of the header table
in our experiments, and find that starting at the middle of
the header table; then, from the middle item going upward
to the top and then from the (middleþ1) item down to the
bottom of the table, is a good choice. For example, in Fig. 1,
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the ordering will be fa; d; c; b; eg. The reason is that the
increase rate of � is faster and less conditional FP-trees are
formed. This ordering will be used in all of our experiments
discussed in Section 5. We found that it can achieve
1 percent to 10 percent improvement in time efficiency.

3.2 A Loop-Back Approach, LOOPBACK

Compared to the original FP-tree algorithm in [9], BOMO
requires building an initial FP-tree with all items, while the
original method may build an initial FP-tree for a subset of
the items. Hence, we may consider the possibility of
building a smaller initial FP-tree. In order to do so, we
should have an initial support threshold � > 0. Here, we
suggest such an approach, the initial value of � is
determined by the smallest support among the N most
frequent 1-itemsets. Let us consider the example in Section 2,
with N = 3. Since the support of the third largest 1-itemset is
2, the threshold � is set to 2. We use the tree building
algorithm to build the FP-tree. Therefore, we get c, d, a, b,
and e as the large 1-itemsets. The constructed FP-tree is the
same as that in Fig. 1.

Using the previous example to illustrate the mining
mechanism, we start from the top of the header table and
invokeNFP-mine(Treeinit; NULL; �; �1; �2; . . . ; �kmax

).Assume
kmax ¼ 3, i.e., we find large itemsets up to size k ¼ 3, the
resulting large itemsets once we execute NFP-mine() are:

k ¼ 1 : hc : 3; d : 3; a : 2; b : 2; e : 2i;
k ¼ 2 : hcd : 3; ac : 2; ad : 2; bc : 2; bd : 2i;
k ¼ 3 : hacd : 2; bcd : 2i:

Up to this point, there may be cases that the number of k-
itemsets, where k � 2 is less thanN because the threshold, �,
found in the building phase is not small enough. For the
above example, there are only two large 3-itemsets found.
There are not enough 3-itemsets since N ¼ 3. Therefore, a
smaller � should be used in order to mine more itemsets in
the mining phase. However, this method is exhaustive and
we use a loop-back method to handle the problem. As long
as there are not enough itemsets for certain level(s), we
decrease � by a factor f , 0 < f < 1, such that �new ¼ � � f .
Let us call the original � value �old. We call NFP-build() to
update the FP-tree in an incremental manner (see the
discussion of incremental tree building below). Then, we
can call NFP-mine() to mine itemsets of supports � �new.
This is our basic idea for LOOPBACK.

After we have sorted the supports of items, we can find
the N-most interesting 1-itemsets. We initialize the support
threshold value, �. For LOOPBACK approach, we set � to be
the support of the Nth sorted largest 1-itemset.2

3.2.1 Some Pruning Considerations

We can use an incremental approach to build or update the
FP-tree. For each loop back (round), there is no need to
rebuild the whole tree using the building phase. We only
need to consider transactions which contain any newly
added 1-itemsets (itemsets with support smaller than �old in

the previous round, but larger than or equal to �new in the
current round) in each round. We insert new branches to, or

modify the counts of, existing branches of the FP-tree built
in the previous round.

Skipping k-itemsets: In each round of loop-back, we

keep itemsets which have been found so far from previous

rounds, and use both �old and �new to filter the itemsets
found during the mining phase. We do not need to generate

itemsets whose supports � �old, because they have already
been found and kept in previous rounds. Each time we loop

back and redo NFP-mine(), we do not need to consider any
more k-itemsets if we have already found the N or more

number of itemsets of size k because we have found N-most
interesting k-itemsets which have supports � �old. If we

continue to consider k-itemsets, we shall only discover
k-itemsets of smaller support values.

Lemma 2. If N or more k-itemsets are found in a current round,

then the N-most interesting k-itemsets are found.

Skipping old items: In the mining phase, we do not

need to consider all the items in the header table. We only
need to consider items which are newly added to the header

table in the current round as well as old items which were
the base items of the conditional pattern bases for some

itemsets having supports < �old in the previous round.

3.3 Generalization: Varying Thresholds Nk for
k-Itemsets

In the previous consideration, we fix a number N on the
resulting number of itemsets for itemsets of all sizes

considered. However, in general, frequent itemsets will be
more numerous for smaller itemsets and less so for itemsets

of greater size. It would be more flexible if we allow the

user to specify possibly different numbers, Nk, of resulting
k-itemsets for different values of k. This is a generalization

of the original problem definition. With the generalization,
we need to modify the two algorithms we proposed before.

However, the change is very minor. We only have to change
the meaning of �k, 1 � k � kmax. �k will be the support of the

Nkth most frequent k-itemset discovered so far, �k ¼ 0 if the
number of k-itemsets discovered so far is less than Nk. The

other parts of the algorithms remain intact.

4 MINING WITH ITEM CONSTRAINTS

If we mine the N-most interesting itemsets, though we have

removed the requirement of support threshold, the uniform
threshold on the number of itemsets is still a restriction. As

pointed out in [25], a more flexible set up is to allow users to
set different thresholds for different items or itemsets. An

example given in [25] is that in a supermarket scenario, the
itemset fbread;milkg is usually much more frequent than

the itemset ffood processor; pang. However, the latter is a

valuable itemset even though the occurrence is less
frequent. Here we aim at achieving this flexibility.

Consider a set of items, I, partitioned into several bins

B1; B2; . . . ; Bm, where each bin Bi contains a set of items in
I. We define item constraint in a way similar to the support

constraint defined in [25] and [17], however, instead of a
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2. If k � N , we are sure that using only the large 1-itemsets for the initial
FP-tree is not enough to form itemsets of size � N . Therefore, we should
choose the support of the ðkþ 1Þth 1-itemset as the threshold during the
building phase of the initial round.



constraint by support, we set a constraint by the number of
itemsets. Item constraint ICi has the form:

ICiðBi1 ; . . . ; BisÞ ¼ Ni;

where s � 0, and Bij and Bil may be equal. It specifies what
particular items or groups of items should or should not be
present in the pattern [25].

We adopt the concepts of open and closed interpreta-
tions in [25]. An itemset (or pattern) I matches a constraint
ICi in the open interpretation if I contains at least one item
from each bin in ICi and these items are distinct. An itemset
I matches a constraint ICi in the closed interpretation if I
contains exactly one item from each bin in ICi and these
items are distinct, I does not contain any other items.

With open interpretation, consider the set X of all
k-itemsets containing at least one item from each Bij for a
given ICi, for jICij � k � kmax, where kmax is a user defined
parameter for the maximum size of an itemset to be mined.
For each such value of k, we sort the k-itemsets according to
their supports in descending order. Let the Nith greatest
support be �, then we say that all k-itemsets in X with
support not less than � are interesting for the constraint, for
each jICij � k � kmax. Note that the same threshold value,
Ni, is used for all possible values of k. We call these itemsets
the Ni-most interesting itemsets for ICi in the open
interpretation.

For closed interpretation, consider the set X of all
k-itemsets containing exactly one item from each Bij for a
given ICi, therefore, the size of these itemsets is k ¼ jICij.
We sort these k-itemsets according to their supports in
descending order. Let the Nith greatest support be �, then
we say that all k-itemsets in X with support not less than �
are interesting for the constraint. We call these itemsets the
Ni-most interesting itemsets for ICi in the closed inter-
pretation.

Given ICi, and Ni for 1 � i � cmax, where cmax is the
number of item constraints, we would like to find the Ni-
most interesting itemsets for each ICi, in either the open
interpretation or the closed interpretation. Note that kmax is
also necessary for the open interpretation.

Supposewepartition a set of items into four bins as shown
in the first table in Fig. 5, and specify the constraints in the
second table in the same figure. Consider itemsets I1 ¼ ðacdÞ,
I2 ¼ ðabfÞ, I3 ¼ ðbcÞ, the correspondingbinpatterns for I1, I2,
I3 are ðB1; B2; B3Þ, ðB1; B2; B4Þ, and ðB2; B2Þ, respectively.We
say that I1 matches IC1, IC3, and IC4 in the open
interpretation, andmatches only IC4 in the closed interpreta-

tion; I2 matches IC1, IC3, and IC5 in the open interpretation,

and matches IC5 in the closed interpretation; I3 matches IC3

in theopen interpretation, butmatchesnoneof the constraints

in the closed interpretation.
In this section, we propose two algorithms for mining

N-most interesting itemsets with item constraints. The first

algorithm is a straightforward modification of the BOMO

algorithm. The second algorithm improves on the first one by

maintaining the constraints information with a second FP-

tree. The reason for choosing BOMO instead of LOOPBACK

is that BOMO outperforms LOOPBACK in most cases in our

empirical study.

4.1 Single FP-Tree Approach

With the closed interpretation, an itemset that matches a

given constraint ICi must be of size jICij since it contains

exactly one element from each bin in ICi. Therefore, we

need only one dynamic support threshold �i for such

itemsets. The value of �i is set to be the support of the

itemset that matches ICi which has the Nith highest

support among all such itemsets that match ICi discovered

so far. We also set a global threshold,

� ¼ minð�1; �2; . . . ; �cmax
Þ: ð2Þ

With the open interpretation, an itemset that matches ICi

can have size equal to or greater than jICij. Therefore, the
itemset size ranges from jICij to kmax. We assume that kmax

is greater than the size of all item constraints jICij. For each
constraint ICi and each possible itemset size k, we use a

support threshold �ik for pruning. The value of �ik is set to

be the support of the k-itemsets that matches ICi which has

the Nith highest support among all such k-itemsets that

match ICi discovered so far. Any newly encountered

k-itemset that satisfies ICi but is smaller than �ik is not

considered interesting. �ik is initialized to zero for all

possible values of i and k. We also set a global threshold,

� ¼ minðvalues of �ik for all possible i and kÞ: ð3Þ

We use the BOMO algorithm as the basic architecture and

apply a simple constraint matchingmechanism.We build an

FP-tree for all the items in the transactions and mine for

interesting itemsets based on the BOMO algorithm. � is used

as the support threshold for building conditional FP-trees.

With the closed interpretation, an itemset, I, having support

� �i is to bematchedwith ICi. If there is a match, we add I to

the current result set and update �i. With the open

interpretation, if jICij � k � kmax, then a k-itemset, I, having

support� �ik is to bematchedwith ICi. If there is amatch,we

add I to the current result set and update �ik if necessary.

4.2 Double FP-Trees Approach

If the number of constraints is large, the single FP-tree

approach will consume a lot of computation and storage in

the matching process. In the second approach, we try to use

a compact data structure to store the constraints. We

propose to employ an FP-tree for storing the set of

constraints since it is a highly compact structure. We

observe three advantages in doing this:
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Fig. 5. Partition of the set of items into different bins and the item
constraints.



1. The FP-tree is usually smaller than the original
constraint set [9] since constraints may share
common bins.

2. We can perform the matching of itemsets and
constraints in a more efficient way.

3. We can also have a better support pruning strategy.

We propose to employ a special order of scan on the FP-tree
storing the constraints so as to speed up the pushing of the
dynamic minimum support thresholds as well as using a
pruning strategy to tighten the threshold values.

We build an FP-tree, transaction FP-tree, for the items in
the transactions. We can also build another FP-tree,
constraint FP-tree, for the bins in the constraints.

Fig. 6 shows the FP-trees constructed from the database
given in Section 2 and the constraints given in Fig. 5. The
node structure of a constraint FP-tree is shown in Table 1,
which is different from the node structure of a transaction
FP-tree described in Section 2.

In constructing the constraint tree, we first scan the
constraint set and find the support for each bin. Then, we
create an empty constraint FP-tree with root = “NULL.” For
each constraint, ICi, the bins in the header table of the tree are
sorted in descending order of their supports.We insert all the
bins in the constraint as a path to the tree in a way similar to
the transaction FP-tree, exceptwe do not need toworry about
the counts since there will not be any repeated constraints.
Common prefixes between patterns of different constraints
share the same treepath, otherwise,wecreate apathwithnew
nodes. For the node, Node, representing the last bin of the
pattern ICi, we setNode:c to i denoting ICi. We say thatNode

corresponds to constraint ICi. If no such constraint can be
determined forNode, thenNode:c ¼ 0, indicating that it does
not correspond to any constraint. For each node Node,
�minðNodeÞ is initialized to zero. If Node:c ¼ 0, then we set
�ðNodeÞ ¼ MAXINT , where MAXINT is a large number
greater than the number of transactions in the givendatabase.
This will indicate that the node does not get involved in
setting the overall global threshold �. If Node:c 6¼ 0, then we
set �ðNodeÞ ¼ 0 as an initial value.

Observation 2. A bin pattern formed by the bins from the root to
any node of the constraint FP-tree can match at most one
constraint in the closed interpretation.

Using the previous example, there is no constraint
matching the pattern represented by the bins from the root
to its right child Node3 representing the bin pattern (B3),
therefore, the element Node3:c is undefined (zero). On the
other hand, element Node2:c ¼ 1 because the pattern
(B2; B1) represented by the root node down to Node2
matches IC1ðB1; B2Þ.

Overall strategy: The basic idea of our Double FP-trees
approach is that we visit each item a in the header table of
the conditional transaction FP-tree, T , of a base pattern �,
and form the conditional transaction FP-tree for the base
pattern a [ � using the minimum support threshold from
the constraint FP-tree, TIC . Note that the initial transaction
tree can be treated as a conditional transaction FP-tree with
� ¼ �.

Update of �min at the root node: This minimum support
threshold can be set to �min of the root of TIC and is exactly
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Fig. 6. Double FP-trees.

TABLE 1
Elements in a Constraint FP-Tree Node



equal to � in (2). This minimum support threshold can be

increased during the mining process, whenever we find an

itemset interesting for a constraint ICi, by updating � of the

corresponding constraint FP-tree node and pushing the

value of �min to the ancestors of this node till the root.
We perform the above steps recursively until a single

path conditional FP-tree is obtained for a base pattern �.

Then, we generate each possible itemset combination from

the single path SP and try matching the itemset with the

constraints in the constraint FP-tree in a top-down manner.

Matching is done by the following steps:

1. Translate the itemset to the corresponding bin
patterns.

2. Sort the bin patterns according to the ordering at the
bin header table.

3. Try matching the sorted bin patterns to any path in
the constraint FP-tree.

Example. Let the base pattern be � ¼ �1�2 . . .�e. Suppose

the single path SP is rootðNULLÞ ! �1 ! �2 . . . ! �n.

Then, we generate each possible itemset combination

(2n � 1 combinations) from SP and try matching the

itemset with the constraints in the constraint FP-tree in a

top-down manner. Suppose we have m bins,

B1; B2; . . . ; Bm. Let Bb1Bb2 . . .BbnBbðnþ1Þ . . .BbðnþeÞ be the

bin pattern of the itemset �1�2 . . .�n�1�2 . . .�e. We sort

the bin pattern according to the top-down order in the

constraint header table, and get Bs1Bs2 . . .BsðjþeÞ. At each

tree level l (level of root is zero), there is at most one node

matching the lth bin (Bsl) in the pattern. If a matching is

found, we match the next bin (Bsðlþ1Þ) with the children

of this node. We say that the itemset matches a constraint

ICi if its sorted bin pattern matches exactly a tree path

rootðNULLÞ ! Bt1 ! Bt2 . . . ! BtðjþeÞ

(i.e., Bs1 ¼ Bt1; dotsBsðjþeÞ ¼ BtðjþeÞÞ, and the constraint

representedby thebottommatchednodeof thispath is ICi.
We include the itemset in the current resulting set if

we find a match between the itemset and constraint ICi,
and the support of the itemset is not less than the Nith
greatest support of the interesting itemsets (for ICi)
found so far. Figs. 7, 8, and 9 show the Double FP-trees
algorithm.

Observation 3. The value of � at the root of TIC is equal to the

value of � of (2) at any point of the execution.

Example. We illustrate the algorithm in more details using

the previous running example from Fig. 5. We set

N1 ¼ N2 ¼ . . . ¼ N6 ¼ 1, and kmax ¼ 4. We build the

transaction FP-tree and the constraint FP-tree according

to the supports of items and bins, respectively, using a

function similar to NFP -build in BOMO. Assume we

start from the bottom of the header table of the FP-tree,

T , in Fig. 6a, we visit the item f first. The corresponding

bin pattern of f [ �, where �ð¼ ;Þ is the base pattern for

T , is ðB4Þ. Since �minð¼ 0Þ of the root of the constraint

tree, TIC , is not greater than the support of f [ �ð¼ 1Þ, we

try to match the bin pattern B4 with TIC using function

Mapping. There is no match between B4 and the child

nodes of the root of TIC , so we discard f [ �. Next, we

form the conditional FP-tree of f using threshold ¼
�minð¼ 0Þ of root of TIC . We get ðfe : 1Þ, which form the

sorted bin pattern ðB3; B4Þ and it is interesting for IC2. So

we update �minðNode4Þ ¼ �ðNode4Þ ¼ support of fe ¼ 1,

and push the value of �min upward to the ancestors of

Node4 using function Update TIC .
Next, we consider item e in T , the corresponding bin

pattern of e [ � is ðB3Þ. Since support of eð¼ 2Þ is greater
than �min of root of TIC , we try matching e [ � with TIC .
Although Node3 matches B3, Node3.c is undefined,
therefore, we discard e [ �. Then, we consider the
conditional FP-tree of e, which is a single path tree,
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Fig. 7. DFP-tree algorithm for mining N-most interesting itemsets with constraints.



rootðNULLÞ ! ðc : 1Þ ! ðd : 1Þ ! ðb : 1Þ. We get the pos-
sible itemset combinations:

ðeb : 1Þ; ðebd : 1Þ; ðebdc : 1Þ; ðed : 1Þ; ðedc : 1Þ; ðec : 1Þ

and the corresponding bin patterns: ðB2; B3Þ, ðB2; B3; B3Þ,

ðB2; B2; B3; B3Þ, ðB3; B3Þ, ðB2; B3; B3Þ, ðB2; B3Þ. Since none

of them matches TIC , they are discarded.
Similarly, we can process the items b, a, d, and c in the

item header table.

Order of Scan: Instead of visiting each item in the item

header table sequentially from head to tail or from tail to

head of the table for the transaction FP-tree, we employ a

new ordering scheme. Starting from the bottom of the bin

header table for the constraint FP-tree, for each bin B, we

first build the conditional transaction FP-trees which consist

of any item in the item header table that belongs to B. This

bottom-up approach allows the values of �ðnodeÞ and

�minðnodeÞ of the leaf nodes to be updated (increased) as

soon as possible and, hence, we can speed up pushing the

nodes in upper levels of the constraint FP-tree. Since the
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Fig. 8. Algorithm mining N-most interesting itemsets with constraints.

Fig. 9. Matching itemset with constraints in constraint FP-tree.



propagation of �min will increase the value of �, we can
achieve better pruning power. Experiments show that this
ordering can achieve 6 percent improvement in time
efficiency.

From the running example, the order of visiting the item
header table in Fig. 6a is f ! e ! d ! a ! b ! c. Therefore,
after we have visited binB4, we can set �min ofNode4,Node6,
and Node7 to MAXINT and invoke function Update TIC to
push �min to Node2, Node3, Node5 and their ancestors if
necessary.

Pruning Strategy: When generating the conditional FP-
tree of an item a, instead of setting the threshold to be �min

of the root of TIC , as shown in Step 2d in Fig. 8, we set the
threshold � to be the minimum value of �min among all the
constraint FP-tree nodes belonging to the bin of a. This
increases the pruning effect during mining. Experiments
show that this pruning can achieve 6 to 8 percent
improvement in time efficiency.

Lemma 3. An itemset containing an item a with support s is not
interesting if s is less than the minimum value of �min among
all the constraint FP-tree nodes belonging to the bin of a in the
closed interpretation.

For example, the threshold for item f’s conditional FP-
tree is the minimum �min among Node4, Node6, and Node7
in Fig. 6b.

Corollary 2. Given an itemset I with support s, let Blowest be the
last bin in the sorted bin pattern for I according to the
constraint header table, I is not interesting if s is less than the

minimum value of �min among all the constraint FP-tree nodes

belonging to Blowest.

Therefore, we can further strengthen the pruning power
of � in Step 2e of Fig. 8 by finding a suitable �min from the
items in � for building the conditional FP-trees of �.

4.2.1 Open Interpretation

We employ similar strategies for the open interpretation as
for the close interpretation. There is some more complica-
tion since, for each constraint ICi, we need to consider the
k-itemsets for jICij � k � kmax. Therefore, at each node Node
in the constraint FP-tree, if it corresponds to a constraint
ICi, we keep a list of values �ik for jICij � k � kmax. Instead
of at most one branch of the constraint FP-tree matching an
itemset, there may be more than one branch matching an
itemset in the open interpretation. As a result, the Mapping

function in Fig. 9 would take more time.

4.3 Maximum Support Thresholds

In this section, we consider the case of pruning interesting
itemsets which have supports greater than a user specified
maximum support threshold �max. In other words, we
would like to find the Ni-most interesting itemsets for each
constraint IC, where the supports of these itemsets are less
than the maximum support threshold �max. The rationale of
employing �max is that itemsets with very high supports can
be trivial to the users. Suppose we have a database for
maternity medical records at a local hospital, then all
patients in the records will be female and almost all will be
living in the same country. Hence, the support of the
itemset containing “female” and the country name will be
very high. Such trivial frequent itemsets are typically not
interesting. On the other hand, itemsets with smaller
supports may be more interesting since users may not have
the explicit knowledge about these itemsets.

A simple way to employ the maximum support thresh-
olds with our algorithm is to discard itemsets of supports
greater than �max instead of inserting them into the current
result. The other parts of the algorithm remain unchanged.

5 PERFORMANCE EVALUATION

Wefirst compare theperformanceofBOMOandLOOPBACK
with the Itemset-Loopalgorithm[7] andamodifiedversionof
FP-tree algorithm for mining N-most interesting itemsets.
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Parameter Setting

TABLE 3
Synthetic Data Description



Then, we evaluate the Double FP-trees and Single FP-tree
algorithms for constraint-based mining. All experiments are
carried out on a SUN ULTRA 5 10 machine running SunOS
5.6 with 512MB Main Memory. Both synthetic and real data
sets are used.

5.1 N-Most Interesting Itemsets

Real Data: Three sets of real data are from the census of
United States 1990 [10] and BMP-POS [26]. The first set is a
small database (tiny.dat) of the census data with 77 different
items and 5,577 tuples, the second set is a large database
(small.dat) of the census data with 77 different items and
57,972 tuples. These are also the data set used for the
previous work of algorithm Itemset-Loop [7]. The third one
(BMS-POS) is a point-of-sales data set from a large
electronics retailer, which contains 515,597 tuples with
1,657 different items.

Synthetic Data: Several sets of synthetic data are
generated from the synthetic data generator in [5]. The
generator follows the data generation method in [3] with
the parameter setting and data sets shown in Table 2 and
Table 3.

For each data set (real or synthetic), we perform the
experiment under different values of N in the N-most
interesting itemsets. We varyN from 5 to 200, and kmax from
4 to 16. We compare the performance of our new approaches
with the Itemset-Loop algorithm. We also evaluate the
performance of the FP-tree algorithm when a known
(optimal) threshold, �opt, is given, i.e., a threshold which is
just small enough to make sure that all the required N-most
interesting k-itemsets are of supports greater than or equal to
this threshold, this method does not need any loop-back.3

Tables 4 and 5 show the ideal thresholds for different
datasets.4 We measure the total response time as the total
CPU and I/O time used for both the building and themining
phases. Each data point plotted in the graphs is determined
by the mean value of several runs of the experiment.

First, we compare the performance using different data
sets. For each level k, we find the N most interesting
itemsets. The threshold decrease rate, f , is set to 0.2. We
find that all our approaches outperform Itemset-Loop and
have similar performance as the FP-tree algorithm with
ideal threshold, �opt, for real data sets. The execution times

for Itemset-Loop in Figs. 10b and 11 are too large to be

shown. For example, for tiny.dat with N = 20, kmax = 10, the
execution time of Itemset-Loop is about 32,000 sec.

It may be expected that with the optimal threshold of �opt,
the original FP-tree algorithm [9] discussed in Section 2

should be the fastest because it does not require any loop

back and it can build the smallest necessary initial FP-tree.
However, in some cases, we found that this method

(denoted by FP-tree with ideal threshold) requires more

total response time than our methods. The reason is that the

number of k-itemsets of supports � �opt is too large for
some values of k so that a large number of itemsets are

generated. From experiments, we find that if �opt is too small

and N is large, then the original FP-tree algorithm does not

perform well, even with an ideal threshold. An example is
the data set T5.I2.D100K with N = 20, kmax = 10 and �opt =

0.002 percent, the execution time of FP-tree algorithm

(180,000 sec) is more than 100 times of that of our methods

(about 1,400 sec for LOOPBACK).
To improve the performance of the original FP-tree

method, we use the set of thresholds, �k, 1 � k � kmax, and

dynamically update �k as in our NFP-tree algorithm for the

pruning of small itemsets. We denote this method by

Improved FP-tree with ideal threshold.
Fig. 10b shows that LOOPBACK is faster than BOMO for

the small real data set. The whole mining process only
requires a few number of loopbacks and �opt is large.

Therefore, building a complete FP-tree in BOMO becomes

an overhead relative to the small trees built in LOOPBACK,
and the enhancements in BOMO are not significant. Fig. 11b

shows that BOMO requires more memory than others.
Since the synthetic data sets are much larger, it requires a

longer time to scan the database in the building phase of

each loop. Also, the mining phase requires much more time

than the building phase. The avoidance of redundant work
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TABLE 4
Ideal Thresholds, �opt ð%Þ, for Different Data Sets with kmax ¼ 4

TABLE 5
Ideal Thresholds, �opt ð%Þ, for Different Data Sets with kmax ¼ 10

3. It is highly unlikely that a real application can determine an optimal
threshold. However, we use this setting as a kind of bound for optimal
performance for comparison.

4. The support values listed here are in terms of the percentage of the
transactions that contain an itemset.



in BOMO becomes significant. Therefore, LOOPBACK takes

longer time to complete the mining. See Figs. 12, 13, and 14.

Among the new approaches, BOMO is the fastest and is
comparable to the ImprovedFP-treemethod.BOMOdoesnot
require any loopbacks and, hence, eliminate any redundant
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Fig. 10. Real datasets. (a) small.dat, kmax = 4. (b) tiny.dat, kmax = 10.

Fig. 11. Real dataset: BMP-POS. (a) execution time for kmax = 10. (b) memory usage for kmax = 10.

Fig. 12. Synthetic datasets with kmax = 4. (a) T5.I2.D100K. (b) T20.I6.D100K.



work in both tree building andmining.All experiments show

that the main memory requirement for storing the complete

FP-tree is less than 100MB, and the totalmemoryusage for the

largest data set is around 300MB, as shown in Fig. 14. This

shows that BOMO is a good choice for mining N-most

interesting itemsets.
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Fig. 13. Synthetic datasets with kmax = 10. (a) T.20.I8.D100K. (b) T.20.I10.D100K.

Fig. 14. Synthetic dataset: T10.I4.D1M. (a) execution time for kmax = 10. (b) memory usage for kmax = 10.

TABLE 6
Execution Time (sec) with Different N for Different k



Generalization: Next, we test the performance of our
algorithms under different N values for different values of
k. We set N to be 30, 27, 24, . . . , 3 for k = 1, 2, 3, . . . , 10,
respectively, when kmax = 10. We set N to be 30, 20, 10, 5 for
k = 1, 2, 3, 4, respectively, when kmax = 4. Table 6 shows the
execution times for the different methods. Again, BOMO is
comparable to the improved FP-tree algorithm with an ideal
threshold.

In real applications, it is generally very difficult to pick
an optimal support threshold. If the guess is too large, then
the conventional approach would not get the proper results
and, therefore, our approach is definitely much better. We
evaluate the effect of guessing a non-optimal threshold that
is too small for the FP-tree method. We decrease �opt by
different factors and use the resulting values as the
nonoptimal thresholds for the algorithm. Fig. 15a shows
the increase in the number of itemsets for each size k and
the total response time when the nonoptimal threshold gets
smaller. Fig. 15b shows that when user sets a non-optimal
threshold, the BOMO algorithm can greatly outperform the
improved FP-tree method.

We test the use of different decrease factor, f , for
LOOPBACK, as shown in Fig. 16. In each loop-back, we
decrease the threshold by a certain factor (decrease factor)
which ranges from 0.1 to 0.8. In general, the smaller the f ,
the faster our algorithm is as the number of loop-backs is
reduced. However, if f becomes too small, the difference
between the new and old thresholds (�new and �old) in each
loop becomes large, the number of itemsets with supports
that fall between these two thresholds increases and,
therefore, the pruning effect of � becomes insignificant.
This explains why there is an increase in execution time if f
is too small, as shown in Fig. 16.

Near the end of Section 3.1, we discussed the different
ordering of conditional FP-tree construction from the
header table. There, we propose an ordering starting from
the middle. It is of interest to examine some other ordering
also starting from the middle. Here, we compare the one
from Section 3.1, we call BOMO with an ordering of
(middle, middleþ1, middle�1, middleþ2, middle�2, . . . )
“BOMO with special order.” The results are shown in
Fig. 17. The two orderings are comparable and there is no
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Fig. 15. Effect of guessing small thresholds, synthetic dataset: T5.I2.D100K. (a) number of itemsets for kmax=4, N=30

Fig. 16. Different decrease rate, synthetic datasets. (a) T5.I2.D100K with kmax=4. (b) T20.I8.D100K with kmax=10.



significant winner. For all other experiments, we apply the
ordering at Section 3.1

5.2 Constraint-Based Mining

We make use of the effectiveness of BOMO for the
implementation of the single anddouble FP-trees algorithms.

Real Data. The real census data set provided in 1990 [22]
is used. The dataset has 23 attributes, 63 items, and
126,229 transactions. This is the same set of data used in
the previous work in [25]. To generate support specifica-
tions, we group the items from the same attribute into a bin,
giving 23 bins B1; B2; . . . ; B23 [25]. Let Vi be a bin variable.
We specify constraint ICi in the closed interpretation:

ICiðV1; V2; . . . ; VkÞ ¼ Ni; where 0 < k � kmax: ð4Þ

We specify Ni in two ways: 1) Ni is specified by user.
2) Ni = number of itemsets matching ICi with supports
� �iðV1; V2; . . . ; VkÞ, where

�iðV1; V2; . . . ; VkÞ
¼ minð�k�1 � SðV1Þ � . . .� SðVkÞ; 1Þ; � > 1; SðVjÞ

is thesmallest supportof the itemsinthebinrepresentedbyVj.
Synthetic Data. We use the same synthetic data

generator as stated in Section 5.1. We set the number of
transactions = 100K, number of items = 500, average length
of transactions = 10, and the default setting for all other
parameters. We partitioned the support range into four
intervals such that Bi contains the items with support in the
ith interval and each Bi contains approximately the same
number of items [24]: j B1 j¼ 122, j B2 j¼ 122, j B3 j¼ 122,
and j B4 j¼ 124. Table 7 shows the constraints in the closed
interpretation, where Ni is determined by (4).

We consider the real data set. We vary the constraint set
size by randomly choosing 10 percent, 20 percent, 40 per-
cent, . . . , 100 percent constraints out of the original set. We
set Ni using (4) with � ¼ 5, and kmax ¼ 5. The results are
shown in Fig. 18a. The Double FP-trees approach outper-
forms the Single FP-tree approach with a great margin.

As expected, the matching in the closed interpretation is
faster than that in the open interpretation. An itemset can

match at most one constraint in the closed interpretation,
while it can match several constraints in the open interpreta-
tion. Moreover, we can apply Lemma 3 for the closed
interpretation, and we cannot do so for the open interpreta-
tion since any item in the base of a conditional FP-tree can
both be included and excluded during matching.

Next, we vary the size of the constraint set, but have a
uniform N for all the constraints. We set N ¼ 5 for kmax up
to 5. Again, Double FP-trees outperforms Single FP-tree.
Fig. 18b shows that the Double FP-trees approach requires
only 400-700 seconds for the mining, while the Single
FP-tree approach may require more than 100,000 seconds.
From the results, we can see that the use of constraint FP-
tree allows an efficient matching between itemsets and
constraints. Moreover, we can build less numbers of
conditional FP-trees with smaller sizes by making use of a
local and larger �min, instead of a global minimum �min as in
the Single FP-tree approach, for pruning when building
conditional FP-trees.

With the synthetic data, we also test the performance
against different N and kmax values. Fig. 19a shows the
result for N = 5, 10, . . . , 30. Since the constraint set is much
smaller than that of the real data, the mining time required
for different N values of the same approach does not vary
much. However, using a tree structure for constraint
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Fig. 17. Execution time for different orderings. (a) Real data set: BMS-POS, with kmax = 10. (b) Synthetic data set: T10.I4.D1M, with kmax = 10.

TABLE 7
Constraints for Synthetic Data in the Closed Interpretation



matching benefits our Double FP-tree approach to a certain

extent as shown in the figure.
Fig. 19b shows the result of different kmax. We set kmax =

2, 4, . . . , 10. The Double FP-trees method gives a close to

linear performance in both interpretations.
In conclusion, the Double FP-tree algorithm is much

more scalable than the exhaustive Single FP-tree method. It

is highly effective no matter the number of constraints is

large like that in the real data set or small like that in the

synthetic data set.
Mining with Maximum Support Thresholds. We vary

the maximum support threshold �max in the following ways:

1) For real data, �max = 20 percent, 30 percent, 40 percent, 50

percent, or 100 percent. 2) For synthetic data, �max =

5 percent, 6 percent, 7 percent, 8 percent, 9 percent, or

100 percent. The cases where �max ¼ 100 percent are cases

where we do not have any overhead in handling maximum

support thresholds, as there is essentially no threshold.

From experiments, we find that the performances of the

Double FP-trees algorithm with different �max are similar.
For the real data set with Ni specified by (4), the execution
time varies from 590 to 650 seconds. For the synthetic
dataset with N = 5 , the time varies only from 750 to
770 seconds, which is less than 10 percent. Therefore, the
overhead in handling the maximum support threshold is
very small, and mining interesting itemsets with maximum
support thresholds can be considered as an alternative
when users, who may have some special knowledge of the
data, want to find interesting but nontrivial itemsets.

6 CONCLUSION

In this paper, we propose two algorithms for mining
N-most interesting itemsets. We allow users to control the
number of results. Experiments show that our proposed
method outperforms the previous Itemset-Loop algorithm
by a large margin and it is also comparable to the FP-tree
algorithm, even when given an ideal threshold. For thresh-
olds that are too small for the original FP-tree algorithm,
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Fig. 18. Real data set. (a) Different N using (4). (b) Uniform N = 5

Fig. 19. Synthetic data set. (a) Uniform N = 5, 10, . . . , 30. (b) N = 5, different kmax.



our proposed method can have a much superior perfor-

mance. For thresholds that are too large, the original FP-tree

algorithm will not give a proper answer, in fact, it may not

return any itemsets.
With the efficient BOMO algorithm, we then consider the

constraint-based itemsets mining. We define item con-

straints which allow users to specify the particular set of

items they are interested. This caters for the case where

particular users would only like to look for certain

interesting patterns. We propose the Double FP-trees

approach for mining constraint-based interesting itemsets,

and show by experiments that it is highly efficient.
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