
Collective Spatial Keyword Queries: A Distance
Owner-Driven Approach

Cheng Long† Raymond Chi-Wing Wong† Ke Wang‡ Ada Wai-Chee Fu§
†The Hong Kong University of Science and Technology

‡Simon Fraser University
§The Chinese University of Hong Kong

†{clong,raywong}@cse.ust.hk ‡wangk@cs.sfu.ca §adafu@cse.cuhk.edu.hk

ABSTRACT
Recently, spatial keyword queries become a hot topic in the litera-
ture. One example of these queries is the collective spatial keyword
query (CoSKQ) which is to find a set of objects in the database
such that it covers a set of given keywords collectively and has the
smallest cost. Unfortunately, existing exact algorithms have severe
scalability problems and existing approximate algorithms, though
scalable, cannot guarantee near-to-optimal solutions. In this paper,
we study the CoSKQ problem and address the above issues.

Firstly, we consider the CoSKQ problem using an existing cost
measurement called the maximum sum cost. This problem is called
MaxSum-CoSKQ and is known to be NP-hard. We observe that the
maximum sum cost of a set of objects is dominated by at most three
objects which we call the distance owners of the set. Motivated by
this, we propose a distance owner-driven approach which involves
two algorithms: one is an exact algorithm which runs faster than
the best-known existing algorithm by several orders of magnitude
and the other is an approximate algorithm which improves the best-
known constant approximation factor from 2 to 1.375.

Secondly, we propose a new cost measurement called diameter
cost and CoSKQ with this measurement is called Dia-CoSKQ. We
prove that Dia-CoSKQ is NP-hard. With the same distance owner-
driven approach, we design two algorithms for Dia-CoSKQ: one is
an exact algorithm which is efficient and scalable and the other is
an approximate algorithm which gives a

√
3-factor approximation.

We conducted extensive experiments on real datasets which ver-
ified that the proposed exact algorithms are scalable and the pro-
posed approximate algorithms return near-to-optimal solutions.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
Spatial keyword querying, Distance owner-driven approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

1. INTRODUCTION
With the proliferation of spatial-textual data such as location-

based services and geo-tagged websites, spatial keyword queries
have been studied extensively recently [11, 8, 23, 3]. Given a set
of spatial-textual objects and a query constituted by a location and
a set of keywords, a typical spatial keyword query finds the object
that best matches the arguments in the query. One example is to
find the object closest to the query location among all objects that
cover all the keywords specified in the query [23].

In some applications, users’ needs (expressed as keywords) are
satisfied by multiple objects collectively instead of a single ob-
ject [4]. For instance, a tourist wants to have site-seeing, shop-
ping and dining which could only be satisfied by multiple objects,
e.g., tourist attractions, shopping malls and restaurants. Another
example is that a user would like to set up a project consortium
of partners within a certain region that combine to offer the capa-
bilities required for the successful execution of the whole project.
Finding multiple objects collectively to satisfy users’ needs can be
addressed by Collective Spatial Keyword Query (CoSKQ) [4].

Specifically, CoSKQ is described as follows. Let O be a set of
objects. Each object o ∈ O is associated with a spatial location,
denoted by o.λ, and a set of keywords, denoted by o.ψ. Given a
query q with a location q.λ and a set of keywords q.ψ, CoSKQ is to
find a set S of objects such that S covers q.ψ, i.e., q.ψ ⊆ ∪o∈So.ψ,
and the cost of S, denoted by cost(S), is minimized.

There are different cost functions for cost(S). One cost
function is called the maximum sum cost function, denoted by
costMaxSum(S), and was studied in [4]. It is the linear combi-
nation of two max components: the maximum distance between q
and an object in S and the maximum distance between two objects
within S. CoSKQ adopting this cost function is called MaxSum-
CoSKQ. The other cost function is called the diameter cost func-
tion, denoted by costDia(S). It is defined to be the diameter
of S ∪ {q}. In fact, diameter-related cost functions have been
commonly adopted in graph databases [1, 13, 2, 15] and spatial
databases [25, 26, 27]. To the best of our knowledge, we are the
first to study this cost function for CoSKQ. CoSKQ adopting this
cost function is called Dia-CoSKQ.

Given a query q, an object o is said to be relevant (to q) if o
contains at least one keyword in q.ψ. We denote by Oq the set of
all relevant objects to q. It is sufficient to focus on Oq only for a
specific query q. Given a set S of objects, S is said to be feasible
if S covers q.ψ. Thus, the optimal solution of CoSKQ is a feasible
set with the smallest cost.

Although MaxSum-CoSKQ (which is proved to be NP-hard) has
been studied by Cao et al. [4], the best-known exact algorithm
which we call Cao-Exact is not scalable to large datasets and the
two existing approximate algorithms which we call Cao-Appro1

and Cao-Appro2 do not have a very good theoretical guarantee.
Specifically, Cao-Exact is a best-first search method based on the
feasible set space whose size is O(|Oq ||q.ψ|). Though equipped
with some pruning techniques, Cao-Exact is prohibitively expen-
sive when the dataset is large. For example, in our experiments,
Cao-Exact took more than 10 days for a query containing 6 key-
words on a dataset with 8M objects.

In this paper, we propose two algorithms for MaxSum-CoSKQ,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is an exact
algorithm and MaxSum-Appro is a 1.375-approximate algorithm.

MaxSum-Exact is more scalable compared with the best-known
algorithm, Cao-Exact. A key observation which is used by
MaxSum-Exact is that the number of distinct costs of all possible
feasible sets is cubic (in terms of |Oq |) although the number of all
possible feasible sets is exponential (in terms of |q.ψ|). Given a fea-
sible set S, the maximum sum cost function of S is dominated (or
determined) by at most three objects in S, namely the object with
the greatest distance from q and the two objects with the greatest
pairwise distance within S. We say that these three objects form the
distance owner group of S. Thus, the number of distinct costs of all
possible feasible sets is bounded by the total number of all possible
distance owner groups (which is bounded by O(|Oq |3)). Moti-
vated by this, we propose a distance-owner driven approach called
MaxSum-Exact for MaxSum-CoSK. MaxSum-Exact is a search
algorithm based on the search space containing all possible dis-
tance owner groups. Besides, it incorporates some search strategies
which can prune the search space effectively. Usually, one distance
owner group corresponds to many feasible sets. This is verified by
our experiments where MaxSum-Exact ran faster than Cao-Exact
by 1-3 orders of magnitude.

MaxSum-Appro, the proposed approximate algorithm, improves
the best-known constant approximation factor from 2 to 1.375 with-
out incurring a higher worst-case time complexity.

Furthermore, we consider Dia-CoSKQ which has not been stud-
ied in the literature. In this paper, we prove that Dia-CoSKQ is
NP-hard. We also adapt Cao-Exact, Cao-Appro1 and Cao-Appro2
for Dia-CoSKQ. However, these adapted algorithms suffer from the
same drawbacks in MaxSum-CoSKQ.

Motivated by this, we propose two algorithms, namely Dia-
Exact and Dia-Appro. Dia-Exact is an exact algorithm which is also
a search algorithm based on the search space containing all possi-
ble distance owner groups and thus it is scalable to large datasets.
Dia-Appro gives a

√
3-factor approximation for Dia-CoSKQ.

We summarize our main contributions as follows.

• Firstly, for MaxSum-CoSKQ, we design two algorithms,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is
more scalable than the best-known exact algorithm, Cao-
Exact. MaxSum-Appro improves the best-known constant
approximation factor from 2 to 1.375 without incurring a
higher worst-case time complexity.

• Secondly, for Dia-CoSKQ, which is new, we prove its NP-
hardness and develop two algorithms, Dia-Exact and Dia-
Appro. Dia-Exact significantly outperforms the adaptation of
Cao-Exact, and Dia-Appro gives a

√
3-factor approximation.

• Thirdly, we conducted extensive experiments on both real
and synthetic datasets, which verified our theoretical results
and the efficiency of our algorithms.

The rest of this paper is organized as follows. Section 2 gives
the definition of the CoSKQ problem and its existing solutions.
Section 3 and Section 4 study MaxSum-CoSKQ and Dia-CoSKQ,
respectively. Section 5 gives the empirical study and Section 6 re-
views the related work. Section 7 concludes the paper.

2. BACKGROUND

2.1 Problem Definition
Let O be a set of objects. Each object o ∈ O is associated with

a location denoted by o.λ and a set of keywords denoted by o.ψ.
Given two objects o and o′, we denote by d(o, o′) the Euclidean
distance between o.λ and o′.λ. Given a query q which consists of
a location q.λ and a set of keywords q.ψ, we denote by Oq the set
of relevant objects each of which contains at least one keyword
in q.ψ, and say that a set of objects is feasible if it covers q.ψ.
Besides, we introduce a fictitious object oq in O with oq .λ = q.λ
and oq.ψ = ∅. For simplicity, we shall also refer to object oq as q.

Problem Definition [4]. Given a query q = (q.λ, q.ψ), the Collec-
tive Spatial Keyword Query (CoSKQ) problem is to find a set S of
objects inO such that S covers q.ψ and the cost of S is minimized.

In this paper, we consider two cost functions, the maximum sum
cost and the diameter cost.

Given a set S of objects, the maximum sum cost of S, denoted
by costMaxSum(S), is equal to the linear combination of the max-
imum distance between q and an object in S and the maximum
distance between two objects in S. That is,

costMaxSum(S) = α ·max
o∈S

d(o, q) + (1− α) · max
o1,o2∈S

d(o1, o2)

(1)
where α ∈ [0, 1] is a user parameter. Same as [4], for ease of
exposition, we consider the case where α = 0.5 only. In this case,
we can safely assume that

costMaxSum(S) = max
o∈S

d(o, q) + max
o1,o2∈S

d(o1, o2) (2)

In fact, the applicability of all of our algorithms does not rely on
the setting of α. The only part that is affected is the approximation
factor of our approximate algorithm which is bounded by (2− α)
(e.g., when α = 0.5, the approximation factor of our approximate
algorithm is 1.375 which is bounded by (2 − α) = 1.5). More
discussion on the general case of α could be found in [16]. The
CoSKQ problem using this cost is called MaxSum-CoSKQ.

As could be noticed, parameter α in the maximum sum cost
function is used to balance the two max components, namely
maxo∈S d(o, q) and maxo1,o2∈S d(o1, o2). Sometimes, however,
people may not have a concrete idea of how to specify α. To ease
this situation, we define an alternative cost function called diameter
cost on a set S of objects, denoted by costDia(S), which is defined
to be the larger of these two max components. That is,

costDia(S) = max
o1,o2∈S∪{oq}

d(o1, o2) (3)

The CoSKQ problem using this cost is called Dia-CoSKQ.

Intractability. It has been proved in [4] that MaxSum-CoSKQ is
NP-hard. In this paper, we prove that Dia-CoSKQ is also NP-hard.

LEMMA 1. Dia-CoSKQ is NP-hard.

PROOF. For interest of space, our proof can be found in the full
version of this paper [16]. We can show this by transforming an
existing NP-complete problem, 3-SAT, to Dia-CoSKQ.

2.2 Existing Solutions for MaxSum-CoSKQ
Cao et el. [4] proposed one exact algorithm, Cao-Exact, and

two approximate algorithms, Cao-Appro1 and Cao-Appro2, for
MaxSum-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method using an index
called IR-tree [8]. An IR-tree is an R-tree in which each node is
augmented with an Inverted File (IF). Consider a leaf node N . For

each keyword t, we construct an inverted list which is a list of all
objects in nodeN containing t. All inverted lists in this leaf nodeN
form the IF of N . Consider a non-leaf node N ′. For each keyword
t, we construct an inverted list which is a list of all child nodes in
N ′ covering t. Given a keyword t, a node N ′′ is said to cover t if
there exists an object in the subtree rooted at N ′′ containing t. All
inverted lists in this non-leaf node N ′ form the IF of N ′.

Cao-Exact is basically an exhaustive search on the object space
with some pruning strategies in the IR-tree. The worst-case time
complexity of Cao-Exact is O(|O||q.ψ|), which corresponds to the
size of the set containing all possible feasible sets.

Cao-Appro1. Cao-Appro1 gives a 3-factor approximation for
MaxSum-CoSKQ. Specifically, Cao-Appro1 finds for each t ∈
q.ψ, q’s nearest neighbor (NN) in O containing t and returns the
set containing all these NNs as the approximate solution. Since
Cao-Appro1 issues NN queries at most |q.ψ| times and each NN
query takes O(log |O|) time [6, 10, 18], the time complexity of
Cao-Appro1 is O(|q.ψ| · log |O|).
Cao-Appro2. Cao-Appro2 gives a 2-factor approximation
for MaxSum-CoSKQ. Specifically, Cao-Appro2 enhances Cao-
Appro1 as follows. First, Cao-Appro2 invokes Cao-Appro1 and
obtains an approximate solution denoted by S1. Let of be the far-
thest object from q in S1 and tf be a keyword contained by of
but not contained by any other closer object from q in O. Then,
for each object o in O containing tf , it finds for each keyword t
in q.ψ, o’s nearest object that contains t in O and obtains a corre-
sponding approximate solution containing all these NNs. Among
all these approximate solutions as well as S1, it returns the one with
the smallest cost. Thus, the approximate solution returned by Cao-
Appro2 is no worse than that returned by Cao-Appro1. Since there
are at most |Oq | objects containing tf and the cost for each such
object is simplyO(|q.ψ| · log |O|), the worst-case time complexity
of Cao-Appro2 is O(|Oq | · |q.ψ| · log |O|).

3. ALGORITHMS FOR MAXSUM-COSKQ
In this section, we propose two algorithms, MaxSum-Exact (Sec-

tion 3.1) and MaxSum-Appro (Section 3.2), for MaxSum-CoSKQ.
For clarity, we simply write costMaxSum(·) as cost(·) if the con-
text of the cost function is clear.

Given a query q and a non-negative real number r, we denote the
circle or the disk centered at q.λ with radius r by D(q, r). Given a
disk D, we denote the radius of D by radius(D). Given a query
q, a disk centered at q.λ is called a q-disk. Given a q-disk D and
an object o in D, o is said to be the boundary object of D if there
does not exist other objects o′ in D such that d(o′, q) > d(o, q).
Note that in some cases, a boundary object of a disk is along the
boundary of a disk and in some other cases, it is inside the disk
without touching the boundary of the disk.

3.1 Finding Optimal Solution
In this section, we propose an exact algorithm called MaxSum-

Exact. The key to the efficiency of MaxSum-Exact is based on the
splitting property of the maximum sum cost function.

3.1.1 Splitting Property
Let S′ be a feasible set. The maximum sum cost of S′

can be split into two parts, namely the query distance cost
which is maxo∈S′ d(o, q) and the pairwise distance cost which
is maxo1,o2∈S′ d(o1, o2). We define the query distance owner
of S′ to be o where o = arg maxo∈S′ d(o, q). We also de-
fine the pairwise distance owners of S′ to be o1 and o2 where
(o1, o2) = arg max(o′1,o

′
2)∈S′×S′ d(o′1, o

′
2).

o1

q

o2

o4

o5

o3

o = t1 2. { }�

o = t2 1. { }�

o = t3 3. { }�

o = t4 1. { }�

o = t5 2. { }�

Disk q, d q, o(())1

Figure 1: An example

Consider Figure 1 containing a query location q and 5 ob-
jects, namely o1, o2, o3, o4 and o5. The set of keywords associ-
ated with each object can be found in the figure. Suppose that
q.ψ = {t1, t2, t3}. We know that a set S′ = {o1, o2, o3} is feasi-
ble. The query distance owner of S′ is o1 and the pairwise distance
owners of S′ are o2 and o3.

According to the above splitting property, the cost of a set S′

can be dominated (or determined) by exactly three objects in S′,
namely the query distance owner of S′ (i.e., o) and the two pairwise
distance owners of S′ (i.e., o1 and o2). In other words, we can
simply write the cost of S′ as follows.

cost(S′) = d(o, q) + d(o1, o2)

where o is the distance owner of S′, and o1 and o2 are the two
pairwise distance owners of S′. We say that o, o1 and o2 forms a
distance owner group. Any feasible set with its query distance
owner as o and its pairwise distance owners as o1 and o2 is said to
be (o, o1, o2)-owner consistent. Note that each feasible set that is
(o, o1, o2)-owner consistent has the same cost equal to d(o, q) +
d(o1, o2).

3.1.2 Distance Owner-Driven Approach
Based on the splitting property, we propose a distance owner-

driven approach as follows. This approach maintains a variable
S storing the best feasible set found so far. Initially, S is set to a
feasible set (We will describe how we find this feasible set later).
Then, it has four major steps.
• Step 1 (Query Distance Owner Finding): Select one object o

inOq to take the role of the query distance owner of a set S′

to be found.
• Step 2 (Pairwise Distance Owner Finding): Select two ob-

jects, o1 and o2, in Oq to take the roles of the pairwise dis-
tance owners of the set S′ (to be found). Note that o, o1 and
o2 form a distance owner group.
• Step 3 (Sub-Optimal Feasible Set Finding): Find the set S′

which is (o, o1, o2)-owner consistent (if any), and update S
with S′ if cost(S′) < cost(S).
• Step 4 (Iterative Step): Repeat Step 1 and Step 2 which find

another distance owner group, and continue with Step 3 until
all distance owner groups are traversed.

The above approach gives a search strategy based on the set of
all possible distance owner groups. However, a straightforward im-
plementation of this approach would enumerate all |Oq |3 distance
owner groups, which is prohibitively expensive in practice. Thus,
we need a careful design in order to prune the search space effec-
tively. In the following, we elaborate the pruning features enjoyed
by this distance owner-driven approach, which cannot be found in
the best-known algorithm, Cao-Exact.

Firstly, some objects inOq need not be considered in Step 2 after
we select an object in Step 1. To illustrate this, consider Figure 1.
Suppose that we pick o1 as the query distance owner in Step 1. We
do not need to consider o4 as objects in Step 2. This is because
d(o4, q) is larger than d(o1, q), which violates the property that

o1 takes the role of the query distance owner of the set S′ to be
found if S′ contains o1 and o4. We formalize this pruning feature
as follows.

PROPERTY 1 (PRUNING). Let S′ be a feasible set. If o is the
query distance owner of S′, then the two pairwise distance owners
of S′ are inside D(q, d(o, q)).

PROOF. Any object o′ ∈ S′ has d(o′, q) ≤ d(o, q) and thus o′

is inside D(q, d(o, q)).

Secondly, most of the objects in Oq need not be considered to
form a set S′ to be found in Step 3. To illustrate this, consider Fig-
ure 1 again. Suppose that we pick o1 as the query distance owner
in Step 1, and o2 and o3 as the pairwise distance owners in Step 2.
Similarly, we still do not need to consider o4 as one of the objects
to form the set S′ since including o4 violates the query distance
owner property. Besides, we do not need to consider o5 to form the
set S′ to be found. This is because d(o2, o5) > d(o2, o3) which
violates the property that o2 and o3 take the roles of the pairwise
distance owners. Similarly, we formalize this pruning feature as
follows.

PROPERTY 2 (PRUNING). Let S′ be a feasible set. If o is
the query distance owner of S′, and o1 and o2 are two pairwise
distance owners of S′, then all objects in S′ are inside R where
R = D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

PROOF. For each o′ ∈ S′, we have d(o′, q) ≤ d(o, q) which
implies that o′ is inside D(q, d(o, q)). For each o′ ∈ S′,
we have d(o′, o1) ≤ d(o1, o2) which implies that o′ is inside
D(o1, d(o1, o2)), and d(o′, o2) ≤ d(o1, o2) which implies that o′

is inside D(o2, d(o1, o2)).

The above pruning features look promising for improving the
efficiency of the proposed approach. Moreover, since objects near
to q usually form the optimal set, we propose to consider the objects
in Step 1 iteratively, taking the role of the query distance owner of
the set to be found, in ascending order of their distances to q in
order to further improve the efficiency of the proposed approach.

Usually, the NN of q in Oq is not the query distance owner of
the set S′ to be found. In Figure 1, consider the query q with its
keyword set to be {t1, t2, t3}. The NN of q is o2. Suppose that
o2 is the query distance owner of S′. According to Property 2, all
objects in S′ fall in D(q, d(o2, q)) and they together cover q.ψ.
But, in the figure, no object in D(q, d(o2, q)) contains t2, which
implies that we cannot find a feasible set S′ with o2 as its query
distance owner.

Based on this observation, we propose to find the closest possible
query distance owner, say o, of the set S′ to be found such that
there exists a feasible set in the q-disk D(q, d(o, q)). In addition,
we do not want to pick any object which is far away from q. Thus,
we also propose to find the farthest possible query distance owner
of S′ to be found that we need to consider.

3.1.3 Closest/Farthest Possible Query Dist. Owner
The following two lemmas show how to find the closest and far-

thest possible query distance owners.
Before we present the first lemma about the closest possible

query distance owner, we introduce some notations. Given a query
q and a keyword t, the t-keyword nearest neighbor of q, denoted
by NN(q, t), is defined to be the NN of q containing keyword t.
We have a similar definition on NN(o, t) for an object o. We de-
fine the nearest neighbor set of q, denoted by N(q), to be the set
containing q’s t-keyword nearest neighbor for each t ∈ q.ψ, i.e.,
N(q) is ∪t∈q.ψNN(q, t). Note that N(q) is a feasible set.

LEMMA 2 (CLOSEST POSS. QUERY DIST. OWNER). Let
rmin = maxo∈N(q) d(o, q). There exists a feasible set in a q-disk
D if and only if radius(D) ≥ rmin.

PROOF. The proof for the “if” part is trivial since for any q-disk
D with radius(D) ≥ rmin,N(q) is a feasible set inD. We prove
the “only if” part by contradiction. Assume radius(D) < rmin
and there exists a feasible set S in D. Let of be the farthest object
from q in N(q), i.e., rmin = d(q, of). There exists a keyword
tf ∈ of .ψ ∩ q.ψ such that tf is not contained by any object that is
closer to q than of since otherwise of /∈ N(q). Since S is feasible,
there exists an object o ∈ S that contains keyword tf . As a result,
we have d(o, q) ≤ radius(D) < rmin = d(q, of), which leads to
a contradiction.

The above lemma suggests that there is no feasible set in a q-
disk D if radius(D) < rmin. Thus, the disk with its radius equal
to rmin is the “smallest” disk we need to consider. The boundary
object of this disk is the closest possible query distance owner. Note
that this object is along the boundary of this disk.

The following lemma gives the “largest” disk we need to con-
sider. Besides, the boundary object of this disk corresponds to the
farthest possible query distance owner. Note that this object might
or might not be along the boundary of this disk.

LEMMA 3 (FARTHEST POSS. QUERY DIST. OWNER). Let
S be a feasible set and rmax = cost(S). Let D be a q-disk with
radius(D) > rmax. Then, for any feasible set S′ containing at
least one object outside D, cost(S′) > cost(S).

PROOF. cost(S′) ≥ maxo∈S′d(o, q) > radius(D) >
rmax = cost(S).

The above lemma suggests that when we have known a feasible
set S, there is no need to consider the objects outside D(q, rmax)
where rmax = cost(S).

The above two lemmas suggest the “smallest” disk and the
“largest” disk we need to consider. Specifically, the object o which
takes the role of the query distance owner of S′ to be found must
be in the ring which is roughly equal to the “largest” disk mi-
nus the “smallest” disk. Let S be a feasible set. Let rmin =
maxo∈N(q) d(o, q) and rmax = cost(S). We define the ring for
S, denoted by R(S), to be D(q, rmax) − D(q, rmin − δ), where
δ is a very small positive real number near to 0.

LEMMA 4 (RING CANDIDATE). Let S be a feasible set and
So be the optimal set for the MaxSum-CoSKQ problem. The query
distance owner of So is inside R(S).

PROOF. Let o be the query distance owner of So. First, accord-
ing to Lemma 3, o cannot be outside D(q, rmax) since otherwise
cost(So) > cost(S) which leads to a contradiction. Second, ac-
cording to Lemma 2, there exist no feasible sets inD(q, rmin− δ).
Thus, o is not inside D(q, rmin − δ) since otherwise So which is
feasible is inside D(q, rmin − δ) which also leads to a contradic-
tion. Therefore, o is inside R(S).

It is easy to verify that the region occupied by R(S) becomes
smaller when cost(S) is smaller since the radius of the outer disk
of R(S) is equal to cost(S).

3.1.4 The MaxSum-Exact Algorithm
Based on the discussion in the previous subsection, we design

MaxSum-Exact as shown in Algorithm 1. Specifically, we main-
tain S for storing the best-known solution found so far, which is

Algorithm 1 Algorithm MaxSum-Exact

Input: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 2 (Pairwise Distance Owner Finding)
6: D ← the q-disk with its radius equal to d(o, q)
7: P ← a set of all pairs (o1, o2) where o1 and o2 are inD
8: // Step 3 (Sub-optimal Feasible Set Finding)
9: for each (o1, o2) ∈ P in ascending order of d(o1, o2) do

10: if there exists a feasible set S′ in D which is (o, o1, o2)-
owner consistent then

11: if cost(S′) < cost(S) then
12: S ← S′; break
13: // Step 4 (Iterative Process)
14: mark o as “processed”
15: return S

initialized to N(q). Then, we perform an iterative process as fol-
lows. Consider an iteration. We want to check whether there exists
a relevant object in R(S) that has not been processed. If yes, we
pick the nearest relevant object o from R(S) that has not been pro-
cessed to take the role of the query distance owner of the set S′

to be found (Step 1). This object is said to be the query distance
owner for this iteration. We process it as follows. Firstly, we form
the q-disk D with its radius equal to d(o, q) and find a set P of
all pairs (o1, o2) where o1 and o2 are in D for taking the roles
of the pairwise distance owners (Step 2). Secondly, for each pair
(o1, o2) in P which is processed in ascending order of d(o1, o2),
we check whether there exists a feasible set S′ which is (o, o1, o2)-
owner consistent. Case 1: yes. We do the following. Firstly, if
cost(S′) < cost(S), then we update S by S′. Secondly, we ter-
minate to search the remaining pairs in P since the cost of a final
set whose pairwise distance owners corresponds to one of the re-
maining pairs must be at least the cost of the current set S′ whose
pairwise distance owners are (o1, o2), the current processed pair.
Case 2: no. We continue to consider the next pair in P until Case
1 is reached or all the pairs in P have been processed. We continue
the above iteration with the next relevant object fromR(S) that has
not been processed until all objects in R(S) have been processed
(Step 4).

We verify the correctness of MaxSum-Exact via Theorem 1.

THEOREM 1. MaxSum-Exact returns a feasible set with the
smallest cost for MaxSum-CoSKQ.

PROOF. Let So be one of the feasible sets with the smallest cost
for MaxSum-CoSKQ. Suppose that o is the query distance owner
of So, and o1 and o2 are two pairwise distance owners of So. Ac-
cording to Lemma 4, o is inside R(S), where S is the solution
maintained in MaxSum-Exact. Thus, o must have been processed
in MaxSum-Exact (Step 1). When o is processed, pair (o1, o2)
is included in P (Step 2) since o1 and o2 are inside D(q, d(o, q))
(Property 1). As a result, any feasible set which is (o, o1, o2)-owner
consistent is retrieved (Step 3) and used to update S (there must ex-
ist some since So is (o, o1, o2)-owner consistent). The resulting S
will not be updated anymore since it has the same cost as cost(So)
which is the smallest, and thus S is the final output.

Algorithm 1 looks straightforward but how to execute this al-
gorithm efficiently needs more careful design. We propose two
computation strategies in the algorithm, namely the self-iteration

computation strategy and the cross-iteration computation strategy,
to execute this algorithm efficiently. The self-iteration computation
strategy is to speed up the operations within an iteration and the
cross-iteration computation strategy is to speed up the operations
across different iterations.

Self-Iteration Computation Strategy. Consider an iteration in the
algorithm whose query distance owner is o. Step 1 (lines 3-4) is
straightforward. In Step 2 (lines 5-7), there is a step of finding a
set P of all pairs (o1, o2) where o1 and o2 are in D. There is no
need to keep all pairs (o1, o2) in P and some pairs can be pruned.
The following two lemmas give some hints for pruning. The first
lemma (Lemma 5) is based on the triangle inequality and the sec-
ond lemma (Lemma 6) is based on the best-known set S found so
far.

LEMMA 5 (TRIANGLE INEQUALITY). Let S′ be a feasible
solution whose query distance owner is o, and pairwise dis-
tance owners are o1 and o2. Then, d(o1, o2) ≥ d(o, q) −
min{d(o1, q), d(o2, q)}.

PROOF. Note that d(o1, o2) ≥ d(o1, o) and d(o1, o2) ≥
d(o2, o). By the triangle inequality, we know d(o1, o) ≥ d(o, q)−
d(o1, q) and d(o2, o) ≥ d(o, q) − d(o2, q). Thus, we have
d(o1, o2) ≥ d(o, q)−min{d(o1, q), d(o2, q)}.

The above lemma suggests that the pair (o1, o2) in P can be
pruned if d(o1, o2) < d(o, q) − min{d(o1, q), d(o2, q)}. Let
dmin = d(o, q) − min{d(o1, q), d(o2, q)}. Thus, dmin corre-
sponds to the smallest distance threshold for a pair (o1, o2).

LEMMA 6 (BEST KNOWN SET). Let S′ be a feasible solu-
tion whose query distance owner is o and pairwise distance own-
ers are o1 and o2. Let S be another feasible solution. cost(S′) ≤
cost(S) if and only if d(o1, o2) ≤ cost(S)− d(o, q).

PROOF. cost(S′) ≤ cost(S) deduces d(o, q) + d(o1, o2) ≤
cost(S) which is exactly d(o, q) ≤ cost(S)− d(o1, o2).

Let S be the feasible set found so far in the algorithm. The
above lemma suggests that the pair (o1, o2) in P can be pruned
if d(o1, o2) > cost(S) − d(o, q). Let dmax = cost(S)− d(o, q).
Thus, dmax is the largest distance threshold for a pair (o1, o2).

According to Lemma 5 and Lemma 6, we only need to maintain
those pairs with their distances between dmin and dmax in P .

Consider Step 3 (lines 8-12). Here, we need to process each
pair (o1, o2) in P . The most time-consuming operation is to check
whether there exists a feasible set S′ which is (o, o1, o2)-owner
consistent. Algorithm 2 presents an algorithm for this task. If it
succeeds, it outputs S′; otherwise, it outputs ∅. First, it checks
whether d(o1, o2) < max{d(o1, o), d(o2, o)}. If yes, we conclude
that there exist no feasible set that is (o, o1, o2)-owner consistent
since it violates the condition that o1 and o2 are the pairwise dis-
tance owners (i.e., d(o1, o2) ≥ max{d(o1, o), d(o2, o)}). If no,
it initializes S′ to be {o, o1, o2}. It also maintains a variable ψ,
denoting the set of keywords not covered by S′ yet, which is ini-
tialized as q.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ). If ψ = ∅, it returns S′ im-
mediately. Otherwise, it proceeds to augment S′ with some other
objects. According to Property 2, we can safely focus on the re-
gion R = D(o, d(o, q)) ∩ D(o1, d(o1, o2)) ∩ D(o2, d(o1, o2)).
Therefore, it retrieves the set O′ of all relevant objects inR. If O′

does not cover ψ, it returns ∅. Otherwise, it enumerates each pos-
sible subset S′′ of O′ that covers ψ (by utilizing the inverted lists
maintained for each keyword in ψ), augment S′ by S′′ (thus S′

becomes feasible) and checks whether S′ is (o, o1, o2)-owner con-
sistent which is equivalent to checking whether o1 and o2 are still

Algorithm 2 Algorithm for checking whether there exists a feasible
set S′ which is (o, o1, o2)-owner consistent

Input: three objects o, o1 and o2
Output: a feasible set which is (o, o1, o2)-owner consistent if any

and ∅ otherwise
1: if d(o1, o2) < max{d(o1, o), d(o2, o)} then return ∅
2: S′ ← {o, o1, o2}
3: ψ ← q.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ)
4: if ψ = ∅ then return S′

5: R ← D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2))
6: O′ ← a set of all relevant objects inR
7: if O′ does not cover ψ then return ∅
8: for each subset S′′ of O′ that covers ψ do
9: S′ ← S′ ∪ S′′

10: if S′ is (o, o1, o2)-owner consistent then return S′

11: S′ ← S′ − S′′

12: return ∅

the pairwise distance owners of S′. If yes, it outputs S′. Otherwise,
it restores S′ and checks the next subset of O′. When all subsets
of O′ that cover ψ have been traversed and still no feasible set S′

which is (o, o1, o2)-owner consistent has been found, it returns ∅.
Cross-Iteration Computation Strategy. We reuse the information
computed in the previous iterations for the current iteration.

Consider an iteration where the query distance owner for this
iteration is o. With respect to o, we create a q-disk D and also
construct set P (line 7 in Algorithm 1). Consider the next iteration
where the query distance owner for this iteration is o′. Although
we can construct set P ′ with respect to o′ from scratch by applying
the procedure of generating set P , a much better approach is to
construct set P ′ by using the current content of P because P ⊆ P ′.
Specifically, when we consider the next iteration, we first construct
another set Q to be the set of additional pairs in P ′ compared with
P (i.e., Q = {(o′′, o′)|o′′ ∈ D(q, d(q, o))}) and then set P ′ to be
P ∪Q. Note that P ∩Q = ∅.

The pruning in P mentioned in the self-iteration computation
strategy is still valid even when we construct P ′ in the above
way. Specifically, the pairs pruned previously in P still do not
need to be considered in P ′ at the next iteration. This is be-
cause dmin is monotonically increasing and dmax is monotoni-
cally decreasing with more iterations. To illustrate, consider a
pair (o1, o2) in P at the previous iteration. Note that dmin =
d(o, q)−min{d(o1, q), d(o2, q)} and dmax = cost(S)− d(o, q).
At the next iteration, o will become o′, which is at least as far as o
from q (i.e., d(o′, q) ≥ d(o, q)). Thus, at the next iteration, dmin
will remain the same or will increase. In addition, the cost of the
solution S maintained at the next iteration is at most the cost of
that maintained at the previous iteration. Thus, at the next iteration,
dmax will remain the same or will decrease.

3.1.5 Implementation and Time Complexity
We adopt the IR-tree built on O to support both the NN query

(line 1 of Algorithm 1) and the range query (line 7 of Algorithm 1
and line 6 of Algorithm 2). For the NN query, we adopt the best-
first search method [12] and for the range query, we perform a sim-
ple breadth-first traversal with the constraint of the range. Besides,
given a query q, since we only focus on the set of relevant objects,
when performing NN queries and range queries, we can utilize the
IF information maintained in the IR-tree for pruning.

Since the pairs in P are processed in ascending order of their
distances and P is maintained dynamically (because of the Cross-

Iteration Computation Strategy), we adopt a binary search tree for
maintaining P , which allows efficient sorting and update.

Let n1 be the number of iterations (lines 2-14) in MaxSum-Exact
(Algorithm 1). Note that n1 << |Oq| since n1 corresponds to
the number of relevant objects we process in R(S) and the area
occupied by R(S) is typically small. Let |P | be the size of the set
P we use in the algorithm. Similarly, we know that |P | << |Oq |2.
Let β be the cost of Algorithm 2. It is easy to verify that the time
complexity of MaxSum-Exact is O(n1 · |P | · β).

Next, we analyze β. The cost of lines 1-4 (Algorithm 2) is
dominated by those of other parts in the algorithm. The cost of
lines 5-6 is simply O(log |O| + |Oq |) since we can issue three
range queries and then perform an intersection on the query re-
sults. The cost of line 7 is O(|ψ| · |Oq |). The cost of lines 8-11
is O(|O′||ψ| · |ψ|2) since it enumerates at most O(|O′||ψ|) sub-
sets S′′ that cover ψ and each subset incurs a checking operation
(line 10) whose cost is O(|ψ|2) (since |S′′| = O(|ψ|) and we can
try all pairwise distances within S′′ to do the checking). Thus,
β is O(log |O| + |Oq | + |ψ| · |Oq | + |O′||ψ| · |ψ|2). Note that
|O′| << |Oq | (since O′ corresponds to a set of relevant objects in
a small region), |Oq| < |O| and |ψ| ≤ |q.ψ| − 1.

In conclusion, the time complexity of MaxSum-Exact is O(n1 ·
|P | · (log |O|+ |Oq |+ |ψ| · |Oq |+ |O′||ψ| · |ψ|2)).
3.2 Finding Approximate Solution

In this section, we propose a 1.375-factor approximate algorithm
called MaxSum-Appro which is better than the best-known 2-factor
approximate algorithm, Cao-Appro2.

Before we present MaxSum-Appro, we introduce the concept
of “o-neighborhood feasible set”. Given a query q and an object
o ∈ O, the o-neighborhood feasible set is defined to be the set
containing o and all other objects each of which is the t-keyword
nearest neighbor of o in D(q, d(o, q)) for each t ∈ q.ψ − o.ψ.
For example, consider Figure 1. Suppose that the query q.ψ is
{t1, t2, t3}. Then, the o1-neighborhood feasible set is {o1, o2, o3}
since q.ψ − o1.ψ = {t1, t3}, o1’s t1-keyword nearest neigh-
bor in D(q, d(o1, q)) is o2 and o1’s t3-keyword nearest neighbor
in D(q, d(o1, q)) is o3. It could be easily verified that the o-
neighborhood feasible set exists iff o is outside D(q, rmin − δ)
since an o-neighborhood feasible set is a feasible set.

In MaxSum-Appro, we only consider the o-neighborhood fea-
sible sets for those objects o that are inside R(S) where S is a
feasible set, and thus they always exist.

We present MaxSum-Appro in Algorithm 3. MaxSum-Appro is
exactly Algorithm 1 by replacing Step 2 and Step 3 which are rel-
atively expensive with the new efficient operation of finding the
o-neighborhood feasible set which could be finished by issuing
|q.ψ − o.ψ| NN queries.

Theoretical Analysis. Although the set S returned by the
MaxSum-Appro algorithm might have a larger cost than the op-
timal set So, the difference is bounded.

THEOREM 2. MaxSum-Appro gives a 1.375-factor approxima-
tion for the MaxSum-CoSKQ problem.

PROOF. Let So be the optimal solution and S be the solution
returned by MaxSum-Appro. Let o be the query distance owner
of So. By Lemma 4, we know that o is in R(S). Besides, we
can safely assume that o is a relevant object. Thus, there exists an
iteration in MaxSum-Appro such that we process o (line 3) and thus
we find its o-neighborhood feasible set denoted by S′.

Since S is the final solution returned by MaxSum-Appro, we
know that cost(S) ≤ cost(S′). The remaining part of the proof
shows that cost(S′) ≤ 1.375 · cost(So).

Algorithm 3 Algorithm MaxSum-Appro

Input: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 2 (o-Neighborhood Feasible Set Finding)
6: S′ ← the o-neighborhood feasible set
7: if cost(S′) < cost(S) then
8: S ← S′

9: // Step 3 (Iterative Process)
10: mark o as “processed”
11: return S

a b

q

r2
of

o

c
y

x

D(o, r1)

D(q, r2)

r1

D(o, r1)

D(q, r2)

r1

of

a b

o

r2q

(a) r1 ≤
√

2r2 (b) r1 >
√

2r2

Figure 2: Illustration of the proof of Theorem 2

Let of be the object in S′ that is the farthest from o and r1 =
d(of , o). Then, all objects in S′ fall inD(o, r1). Let r2 = d(o, q).
Since o is the query distance owner of S′, we know that all ob-
jects in S′ fall in D(q, r2). In summary, all objects in S′ fall in
D(o, r1) ∩D(q, r2).

Consider cost(So). It could be verified by using a simi-
lar method for proving Lemma 2 that maxo1,o2∈So d(o1, o2) ≥
d(o, of). Thus, we have cost(So) ≥ r2 + r1.

In the following, we consider two cases on r1 according to
whether there exists a line segment linking two points at the bound-
ary of D(q, r2) such that it has its length equal to 2r2 (i.e., the di-
ameter ofD(q, r2)) and falls inD(o, r1)∩D(q, r2). Note that the
boundary case happens when r1 =

√
2r2 and there exists exactly

one such segment.
Case 1: r1 ≤

√
2r2. We denote the intersection points be-

tween the boundaries of D(o, r1) and D(q, r2) by a and b, as
shown in Figure 2(a). Let c be the intersection point between seg-
ment qo and segment ab. Let x = d(a, c) = d(b, c) and y =
d(c, q). Since �ocb and �qcb are right-angled triangles, we know
x2 +(r2− y)2 = r21 and y2 + x2 = r22 by the hypothesis theorem.
By solving these two equations, we obtain x =

p
r21 − r41/4r22

and thus d(a, b) = 2x = 2
p
r21 − r41/4r22 . In this case, it can be

verified that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) (since all objects in
S′ are inD(o, r1) ∩D(q, r2), as shown in the shaded area of Fig-
ure 2(a)) and hence cost(S′) ≤ r2 + 2

p
r21 − r41/4r22 . Therefore,

cost(S′)
cost(So)

≤ r2 + 2
p
r21 − r41/4r22

r2 + r1
= 1 +

2
p

1− r21/4r22 − 1

r2/r1 + 1

Let z = r1/r2. Thus, cost(S
′)

cost(So)
≤ 1 +

2
√

1−z2/4−1

1/z+1
. Since r1 ≤

√
2r2, we have z ∈ (0,

√
2] 1. We define f(z) = 1+

2
√

1−z2/4−1

1/z+1

on {z|z ∈ (0,
√

2]}. It could be verified that f(z) is monotoni-
cally increasing on (0, 0.875) and is monotonically decreasing on

1The interval (0,
√

2] does not include the boundary case where
z = 0 (i.e., r1 = 0). In this case, we have cost(S′)/cost(So) = 1.

(0.875,
√

2]. Thus, f(z) ≤ f(0.875) < 1.375. Therefore,

cost(S′)
cost(So)

≤ f(z) ≤ 1.375

Case 2: r1 >
√

2r2. Let ab be any segment linking two points
at the boundary of D(q, r2) which has its length equal to 2r2 and
falls inD(o, r1) ∩D(q, r2). For illustration, consider Figure 2(b).
That is, d(a, b) = 2r2. Similar to Case 1, it could be verified
that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Thus, cost(S′) ≤
r2 + 2r2. Therefore,

cost(S′)
cost(So)

≤ r2 + 2r2
r2 + r1

=
1 + 2

1 + r1/r2
≤ 1 + 2

1 +
√

2
< 1.25

Thus, by combining Case 1 and Case 2, we have cost(S′) ≤
1.375 · cost(So), which completes the proof.

Implementation and Time Complexity. We also adopt the IR-tree
built on O to support the NN query and the range query.

Let n1 be the number of iterations in MaxSum-Appro (lines 2-10
in Algorithm 3) and γ be the cost of executing an iteration. Then,
the time complexity of MaxSum-Appro is O(n1 · γ). Note that
γ is dominated by the step of finding the o-neighborhood feasible
set (line 6) whose cost is bounded byO(|q.ψ| · log |O|) (it issues at
most |q.ψ−o.ψ|NN queries each of which takesO(log |O|) time).
Thus, γ = O(|q.ψ| · log |O|). Therefore, the time complexity of
MaxSum-Appro isO(n1 ·|q.ψ|·log |O|) where n1 << |Oq |. Note
that the worst-case time complexity of MaxSum-Appro isO(|Oq | ·
|q.ψ| · log |O|), which is the same as that of Cao-Appro2.

4. ALGORITHMS FOR DIA-COSKQ
In this section, we propose two algorithms, Dia-Exact and Dia-

Appro, for Dia-CoSKQ. Similarly, in this section, for clarity, we
simply write costDia(·) as cost(·) if the context of the cost func-
tion is clear.

4.1 Finding Optimal Solution
Interestingly, we can adopt the same MaxSum-Exact algorithm

(Algorithm 1) by replacing the cost measurement from the maxi-
mum sum cost to the diameter cost. We call this algorithm Dia-
Exact. The reason is that we can still use the query distance owner
and the pairwise distance owners of a set S′ to be found to find the
optimal solution for Dia-CoSKQ. Next, we explain the reason in
detail.

Consider the diameter cost. Given a set S′ of objects in O, we
have cost(S′) = maxo′,o′′∈S′∪{oq} d(o

′, o′′). Clearly, the (di-
ameter) cost of a set S′ can be dominated (or determined) by two
pairwise distance owners of S′∪{oq} (not S′ used in the maximum
sum cost), which form a distance owner group (for Dia-CoSKQ).
It is similar to the maximum sum cost of a set S′ which is domi-
nated by the query distance owner of S′ and two pairwise distance
owners of S′. But, there are two differences. The first difference is
that the diameter cost is dominated by the pairwise distance own-
ers only (without the query distance owner). The second difference
is that the pairwise distance owners used for the diameter cost are
based on the set S′ ∪ {oq} instead of S′.

Based on the above observations, we directly adapt the distance
owner-driven approach as follows. This approach maintains a vari-
able S storing the best feasible set found so far. Initially, S is set to
a feasible set. This involves three major steps.
• Step 1 (Pairwise Distance Owner Finding): Select two ob-

jects, o′ and o′′, inOq∪{oq} to take the roles of the pairwise
distance owners of the set S′∪{oq} where S′ is to be found.
Note that o′ and o′′ form a distance owner group.

• Step 2 (Sub-Optimal Feasible Set Finding): Find a set S′

of objects in Oq such that the pairwise distance owners of
S′ ∪ {oq} are o′ and o′′ (if any), and update S with S′ if
cost(S′) < cost(S).
• Step 3 (Iterative Step): Repeat Step 1 which finds another

distance group, and continue with Step 2 until all distance
owner groups have been traversed.

Interestingly, Step 1 which originally finds two objects to take
the roles of the two pairwise distance owners based on S′ ∪ {oq}
can be refined to a number of sub-steps of finding two objects to
take the roles of the two pairwise distance owners based on S′ sim-
ply (not S′∪{oq}) and finding an object to take the role of the query
distance owner based on S′. This refinement can be explained by
the following observation.

OBSERVATION 1. Let S′ be the feasible set. The pairwise dis-
tance owners of S′ ∪ {oq} are either (1) oq and the query distance
owner of S′ or (2) the pairwise distance owners of S′.

Suppose that o takes the role of the query distance owner of S′ to
be found, and o1 and o2 take the roles of the two pairwise distance
owners of S′.

Observation 1 involves two cases. In Case (1) of Observation 1,
we know that the pairwise distance owners of S′ ∪ {oq} are oq
and the query distance owner o of S′. In this case, we deduce that
d(o1, o2) ≤ d(o, q)(= d(o, oq)).

In Case (2) of Observation 1, we know that the pairwise distance
owners of S′ ∪ {oq} are the pairwise distance owners of S′, say o1
and o2. In this case, d(o, q) ≤ d(o1, o2).

In conclusion, if we know that d(o1, o2) ≤ d(o, q), then oq and
o are the pairwise distance owners of S′ ∪{oq}. Otherwise, o1 and
o2 are the pairwise distance owners of S′ ∪ {oq}.

Thus, Step 1 can be refined with the following three sub-steps.

• Step 1(a) (Query Distance Owner Finding): Select an object
o in Oq to take the role of the query distance owner of a set
S′ to be found.
• Step 1(b) (Pairwise Distance Owner Finding): Select two

objects o1 and o2 in D(q, d(o, q)) to take the roles of the
pairwise distance owners of the set S′ to be found.
• Step 1(c) (Pairwise Distance Owner Determination): If
d(o, q) ≥ d(o1, o2), assign to o and oq the roles of pairwise
distance owners of S′ ∪ {oq}; otherwise, assign the roles to
o1 and o2.

With this refinement, the distance owner-driven approach still
has its similar pruning features under the diameter cost. Specifi-
cally, Property 1 and Property 2 used for MaxSum-CoSKQ have
their counterparts used for Dia-CoSKQ as Property 3 and Prop-
erty 4, respectively.

PROPERTY 3 (PRUNING). Let S′ be a feasible set. If o is the
query distance owner of S′, then the two pairwise distance owners
of S′ ∪ {oq} are inside D(q, d(o, q)).

PROPERTY 4 (PRUNING). Let S′ be a feasible set, o be the
query distance owner of S′, and o1 and o2 be the two pairwise
distance owners of S′ ∪ {oq}. Then all objects in S′ fall in
D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

Similar to the maximum sum cost, when the diameter cost is
used, the object to be found in Step 1(a) is fetched based on the
proximity to the query point q. The proximity is also related to the
closest possible query distance owner (Lemma 2) and the farthest

Algorithm 4 Algorithm Dia-Exact

Input: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1(a) (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 1(b) (Pairwise Distance Owner Finding)
6: D ← the q-disk with its radius equal to d(o, q)
7: P ← a set of all pairs (o1, o2) where o1 and o2 are inD
8: for each (o1, o2) ∈ P in ascending order of d(o1, o2) do
9: // Step 1(c) (Pairwise Distance Owner Determination)

10: if d(o, q) ≥ d(o1, o2) then o′ ← o; o′′ ← oq
11: else o′ ← o1; o

′′ ← o2
12: // Step 2 (Sub-Optimal Feasible Set Finding)
13: if there exists a feasible set S′ in D which is (o, o′, o′′)-

owner consistent then
14: if cost(S′) < cost(S) then
15: S ← S′; break
16: // Step 3 (Iterative Process)
17: mark o as “processed”
18: return S

possible query distance owner (Lemma 3). It is easy to verify that
Lemma 2 and Lemma 3 still hold when the cost measurement is
changed from the maximum sum cost to the diameter cost. Thus,
Lemma 4, which states that the ring is the region containing the
query distance owners to be considered, still holds.

In summary, we present the algorithm for finding the optimal
solution of Dia-CoSKQ in Algorithm 4 (which is quite similar to
Algorithm 1) except that we need to determine the pairwise dis-
tance owner of S′ ∪ {oq} (in Step 1(c)) which cannot be found in
MaxSum-CoSKQ.

THEOREM 3. Dia-Exact returns a feasible set with the smallest
cost for the Dia-CoSKQ problem.

PROOF. Let So be one of the feasible set with the smallest cost.
Let o be the query distance owner of So, and let o1 and o2 be
the two pairwise distance owners of So. First, o is inside R(S)
(Lemma 4). Thus, there exists an iteration where o is processed.
When o is processed, pair (o1, o2) must be included in P (Prop-
erty 3). There are two cases. Case 1: d(o, q) ≥ d(o1, o2). In
this case, any feasible set S′ that is (o, o, oq)-owner consistent is
retrieved and used to update S (there must exist some since So
is (o, o, oq)-owner consistent). Thus, the resulting S has its cost
equal to d(o, q) = cost(So). Case 2: d(o, q) < d(o1, o2). In
this case, any feasible set S′ that is (o, o1, o2)-owner consistent
is retrieved and used to update S (there must exist some since So
is (o, o1, o2)-owner consistent). Thus, the resulting S has its cost
equal to d(o1, o2) = cost(So). In either case, S will not be up-
dated anymore since it has the smallest cost (i.e., cost(So)) and
thus it is the final output.

Same as Section 3.1.4, in Dia-Exact, we have the self-iteration
computation strategy and the cross-iteration computation strategy.

Self-Iteration Computation Strategy: Consider an iteration
where the query distance owner for this iteration is o. We can
use the same mechanism described in Section 3.1.4 after dmin
and dmax are updated from d(o, q)−min{d(o1, q), d(o2, q)} and
cost(S)−d(o, q) to d(o, q) and cost(S), respectively. All pruning
properties still hold.

Note that dmin (which is originally set to d(o, q) −
min{d(o1, q), d(o2, q)} in MaxSum-CoSKQ) is based on the tri-
angle inequality (Lemma 5), which means that it can be used for

pruning in both MaxSum-CoSKQ and Dia-CoSKQ. However, in
Dia-CoSKQ, dmin can be updated to a tighter value as d(o, q) since
all pairs with their pairwise distances smaller than d(o, q) cannot
take the roles of the pairwise distance owners of S′ ∪ {oq}.
Cross-Iteration Computation Strategy: We use the same infor-
mation reuse techniques as in Section 3.1.4 for Dia-Exact since the
updated dmin (i.e., d(o, q)) is monotonically increasing and the up-
dated dmax (i.e., cost(S)) is monotonically decreasing with more
iterations. Thus, the pairs pruned in P at the previous iterations
need not be considered in the later iterations.

Time Complexity. It could be verified that the time complexity of
Dia-Exact is the same as that of MaxSum-Exact.

4.2 Finding Approximate Solution
In this section, we propose a

√
3-factor approximate algorithm

which is exactly the same as Algorithm 3 but the cost measurement
used is the diameter cost. This algorithm is called Dia-Appro.

Theoretical Analysis. Although the set S returned by Dia-Appro
may have a larger cost than the optimal set So, it has an approxi-
mate factor of

√
3.

THEOREM 4. Dia-Appro gives a
√

3-factor approximation for
the Dia-CoSKQ problem.

PROOF. We use the same notations as defined in the proof of
Theorem 2.

Consider cost(So). Similar to the proof of Theorem 2, we
have maxo′1,o′2∈So

d(o′1, o
′
2) ≥ d(o, of) = r1. Recall that

maxo′∈So d(o
′, q) = d(o, q) = r2. As a result, we have

cost(So) = max{maxo′∈So d(o
′, q),maxo′1,o′2∈So

d(o′1, o
′
2)} ≥

max{r2, r1}.
According to the Dia-Appro algorithm, we have cost(S) ≤

cost(S′). The remaining part of the proof shows that cost(S′) ≤√
3 · cost(So) which further implies cost(S) ≤ √3 · cost(So).
Same as the proof of Theorem 2, we consider two cases of r1.
Case 1: r1 ≤

√
2r2. This case corresponds to Figure 2(a).

It can be verified that maxo′1,o′2∈S′ d(o′1, o
′
2) ≤ d(a, b) =

2
p
r21 − r41/4r22 (since all objects in S′ fall inD(o, r1)∩D(q, r2)

as shown by the shaded area). Recall maxo′∈S′ d(o, q) = r2. As a
result, we have cost(S′) ≤ max{r2, 2

p
r21 − r41/4r22}.

We further consider three sub-cases under Case 1 based on the
relationship among r1, r2 and 2

p
r21 − r41/4r22 .

Case 1(a): r1 ≤
p

2−√3r2. In this case, we have r2 > r1 and
r2 ≥ 2

p
r21 − r41/4r22 . Thus, cost(So) ≥ max{r2, r1} = r2 and

cost(S′) ≤ max{r2, 2
p
r21 − r41/4r22} = r2 Therefore,

cost(S′)
cost(So)

≤ r2
r2

= 1

Case 1(b):
p

2−√3r2 < r1 ≤ r2. In this case, we have
r2 ≥ r1 and 2

p
r21 − r41/4r22 > r2. Thus, cost(So) ≥ r2 and

cost(S′) ≤ 2
p
r21 − r41/4r22 . Therefore,

cost(S′)
cost(So)

≤ 2
p
r21 − r41/4r22
r2

=

r
4(
r1
r2

)2 − (
r1
r2

)4 (4)

Note that function f(z) =
√

4z2 − z4 is monotonically increasing

on (
p

2−√3, 1]. Since r1
r2
∈ (

p
2−√3, 1], Thus, we have

cost(S′)
cost(So)

≤
p

4(1)2 − (1)4 =
√

3

Case 1(c): r2 < r1 ≤
√

2r2. In this case, we have r2 < r1
and 2

p
r21 − r41/4r22 > r2. Thus, cost(So) ≥ r1 and cost(S′) ≤

2
p
r21 − r41/4r22 . Therefore,

cost(S′)
cost(So)

≤ 2
p
r21 − r41/4r22
r1

=
p

4− (r1/r2)2 <
√

3

Case 2: r1 >
√

2r2. This case corresponds to Figure 2
(b). In this case, d(a, b) = 2r2. Similar to Case 1, we have
maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Therefore,

cost(S′)
cost(So)

≤ max{r2, 2r2}
max{r1, r2} =

2r2
r1

<
2r2√
2r2

=
√

2

In view of above discussion, we know that cost(S′)/cost(So) ≤√
3, which completes the proof.

Time Complexity. Since Dia-Appro is identical to MaxSum-
Appro except that Dia-Appro adopts a different cost measurement,
Dia-Appro has the same complexity as MaxSum-Appro.

4.3 Adaptions of Existing Solutions
In this section, we adapt the existing solutions in [4], which are

originally designed for MaxSum-CoSKQ, for Dia-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method based on the
object space and thus its applicability is independent of the cost
measurement used in the CoSKQ problem. Therefore, Cao-Exact
can be directly applied to Dia-CoSKQ by replacing the cost mea-
surement with the diameter cost. However, due to its prohibitively
huge search space, Cao-Exact is not scalable to large datasets.

Cao-Appro1 & Cao-Appro2. We can directly adopt Cao-Appro1
and Cao-Appro2 for Dia-CoSKQ by replacing the maximum sum
cost with the diameter cost.

According to [4], the approximation factors of Cao-Appro1 and
Cao-Appro2 are 3 and 2, respectively, for MaxSum-CoSKQ. In the
following, we prove that both Cao-Appro1 and Cao-Appro2 give
2-factor approximations for Dia-CoSKQ.

LEMMA 7. Cao-Appro1 and Cao-Appro2 give 2-factor approx-
imations for Dia-CoSKQ.

PROOF. First, we prove that the approximation ratio of Cao-
Appro1 is 2.

Let S be the set returned by Cao-Appro1 and So be the opti-
mal set. Let of be the object in S that is the farthest from q, i.e.,
d(of , q) = maxo∈S d(o, q). First, we have cost(So) ≥ d(of , q).
Second, for any two objects o1 and o2 in S, we have d(o1, o2) ≤
d(o1, q)+d(o2, q) ≤ 2 ·d(of , q) by the triangle inequality. There-
fore, cost(S) ≤ max{d(of , q), 2 · d(of , q)} = 2 · d(of , q). As a
result, we know cost(S)/cost(So) ≤ 2.

Since the solution returned by Cao-Appro2 is no worse than that
returned by Cao-Appro1, the approximation ratio of Cao-Appro2
is also bounded by 2.

Furthermore, we show that Cao-Appro2 cannot provide better
error guarantees by constructing a problem instance where the ap-
proximation ratio of Cao-Appro2 is infinitely close to 2. Due to
page limit, we refer the reader to [16] for the problem instance.

Thus, among all known approximate algorithms for Dia-CoSKQ,
our Dia-Appro provides the best constant-factor approximation.

5. EMPIRICAL STUDIES

5.1 Experimental Set-up
Datasets. We used the real datasets adopted in [4], namely Ho-
tel, Web and GN. Dataset Hotel corresponds to a set of hotels in

Statistics GN Web Hotel

Number of objects 1,868,821 579,727 20,790
Number of unique words 222,409 2,899,175 602

Number of words 18,374,228 249,132,883 80,845

Table 1: Real datasets

the U.S. (www.allstays.com), each of which is associated with its
location and a set of words that describe the hotel (e.g., restau-
rant and pool). Dataset Web was created from two real datasets.
The first one, named WEBSPAMUK20072, corresponds to a set
of web documents. The second one is a set of spatial objects,
named TigerCensusBlock3, which corresponds to a set of census
blocks in Iowa, Kansas, Missouri and Nebraska. Specifically, Web
consists of the spatial objects in TigerCensusBlock, each of which
is associated with a document randomly selected from WEBSPA-
MUK2007. Dataset GN was collected from the U.S. Board on Ge-
ographic Names (geonames.usgs.gov). Each object in GN is a 2D
location which is associated with a set of keywords describing it
(e.g., a geographic name like valley).

Query Generation. Given a datasetO and a positive integer k, we
generated a query q with the size of its keyword set equal to k as
in [4]. For the q.λ part, we randomly picked a location from the
data space of O. For the q.ψ part, we first sorted all the keywords
that are associated with the objects inO in descending order of their
frequencies and then randomly picked k keywords among all key-
words each of which has its percentile rank within range [10, 40]
by default. Note that in this way, each of the keywords in q.ψ has
a relatively high frequency.

Algorithms. For MaxSum-CoSKQ, we consider 2 exact algo-
rithms, namely MaxSum-Exact and Cao-Exact, and 3 approxi-
mate algorithms, namely MaxSum-Appro, Cao-Appro1 and Cao-
Appro2. For Dia-CoSKQ, we consider 2 exact algorithms, namely
Dia-Exact and Cao-Exact (the adaption), and 3 approximate algo-
rithms, namely Dia-Appro, Cao-Appro1 and Cao-Appro2. All al-
gorithms were implemented in C/C++.

Our experiments were conducted on a Linux platform with a
2.66GHz machine and 4GB RAM.

5.2 Experimental Results
We consider 2 measurements, the running time and the approx-

imation ratio (for approximate algorithms only). For each set of
settings, we generated 50 queries, ran the algorithms with each of
these 50 queries, and averaged the experimental measurements.

5.2.1 Experiments for MaxSum-CoSKQ
Effect of |q.ψ|. We generated 5 types of queries with different
values of |q.ψ|. The values we used are 3, 6, 9, 12 and 15.
The results on the dataset GN are shown in Figure 3. Accord-
ing to Figure 3(a), our MaxSum-Exact is faster than Cao-Exact
by 1-3 orders of magnitude. When |q.ψ| increases, the running
time gap between MaxSum-Exact and Cao-Exact increases. Be-
sides, MaxSum-Appro and Cao-Appro2 have comparable running
time, which verified our theoretical analysis that MaxSum-Appro
and Cao-Appro2 have the same worst-case time complexity. Cao-
Appro1 runs the fastest due to its simplicity. According to Fig-
ure 3(b), the approximation ratio of our MaxSum-Appro algorithm
is near to 1, which shows that the accuracy of MaxSum-Appro is
extremely high in practical. We note here that the approximation ra-
tio in the figure corresponds to the average over 50 queries, among
which, the approximation ratio of MaxSum-Appro is exactly 1 for

2http://barcelona.research.yahoo.net/webspam/datasets/uk2007
3http://www.rtreeportal.org

most queries (e.g., more than 45). As a result, the approximation ra-
tio of MaxSum-Appro in the figures is always near to 1. Consistent
to our theoretical results, the approximation ratios of Cao-Appro1
and Cao-Appro2 are larger than that of MaxSum-Appro.

We have similar results on Web (Figure 4) and Hotel (Figure 5).

MaxSum-Exact MaxSum-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

3 6 9 12 15

A
pp

ro
xi

m
at

io
n

ra
tio

No. of keywords

0.01

1

100

10000

3 6 9 12 15

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

No. of keywords

(a) Running time (b) Appro. ratio

Figure 3: Effect of |q.ψ| (GN, MaxSum-CoSKQ)

MaxSum-Exact MaxSum-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2

3 6 9 12 15

A
pp

ro
xi

m
at

io
n

ra
tio

No. of keywords

0.01

1

100

10000

1e+06

3 6 9 12 15

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

No. of keywords

(a) Running time (b) Appro. ratio

Figure 4: Effect of |q.ψ| (Web, MaxSum-CoSKQ)

MaxSum-Exact MaxSum-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.01

1.02

1.03

1.04

1.05

3 6 9 12 15

A
pp

ro
xi

m
at

io
n

ra
tio

No. of keywords

0.01

1

100

10000

3 6 9 12 15

R
un

ni
ng

 ti
m

e
(m

ill
is

ec
on

ds
)

No. of keywords

(a) Running time (b) Appro. ratio

Figure 5: Effect of |q.ψ| (Hotel, MaxSum-CoSKQ)

Effect of average |o.ψ|. Our experiments were based on dataset
Hotel whose average size of a keyword set of an object (|o.ψ|)
is nearly 4 (i.e., 80,845/20,790). We generated a set of several
datasets based on dataset Hotel such that the average sizes (i.e.,
average |o.ψ|’s) are equal to 4 · i for some integers i. To gener-
ate a dataset with its average |o.ψ| equal to 4 · i, we proceed with
i− 1 rounds. At each round, for each object o in dataset Hotel, we
randomly pick another object o′ and update o.ψ to be o.ψ ∪ o′.ψ.
It could be verified that the average |o.ψ| of the resulting dataset
is nearly 4 · i. In our experiments, we vary i by choosing one of
the values in {1, 2, 4, 6, 8, 10}. Note that i = 1 means that the
resulting dataset is exactly dataset Hotel.

The results are shown in Figure 6. According to Figure 6(a), the
running times of all algorithms increase when the average |o.ψ| in-
creases. The reason is that when the average |o.ψ| increases, the
number of relevant objects (|Oq|) in the dataset would probably in-
crease, which further affects the running times of the algorihtms.
Since all algorithms except for Cao-Appro1 have their time com-
plexities involving |Oq |. Cao-Appro1, though has its time com-
plexity independent of |Oq |, has its NN queries affected by |Oq |:
the larger |Oq | is, the more expensive the NN query would prob-
ably be. Besides, it is worth mentioning that when the average
|o.ψ| increases, the increase rate of the running time of Cao-Exact
is significantly larger than those of the other algorithms including
MaxSum-Exact. This is because Cao-Exact is based on the search

space of the set of all possible feasible sets whose size increases
rapidly with |Oq| (|Oq ||q.ψ|). Thus, Cao-Exact is not scalable on
datasets with a large average |o.ψ|. According to Figure 6(b), the
average |o.ψ| has no obvious trend on the approximation ratios of
the approximate algorithms. Besides, MaxSum-Appro with its ap-
proximation ratio near to 1 always keeps its accuracy superiority
over other approximate algorithms.

MaxSum-Exact MaxSum-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

4 8 16 24 32 40

A
pp

ro
xi

m
at

io
n

ra
tio

No. of words per object

0.001

1

1000

1e+06

4 8 16 24 32 40

R
un

ni
ng

 ti
m

e
(m

ill
is

ec
on

ds
)

No. of words per object

(a) Running time (b) Appro. ratio

Figure 6: Effect of average |o.ψ| (MaxSum-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms
with 5 synthetic datasets with their sizes varying from 2M to 10M.
The synthetic datasets were generated from a smaller dataset GN.
To generate a dataset O with its size equal to n, we first inserted
all the objects from dataset GN into O and then repeatedly created
objects inO such thatO has a similar spatial distribution as dataset
GN until |O| = n. For each newly created object o in O, we
randomly pick a document from WEBSPAMUK2007 and use it as
o.ψ.

The results are shown in Figure 7(a), where we do not show
the running time of the algorithm if it runs more than 10 days or
out of memory. According to these results, both our exact algo-
rithm (MaxSum-Exact) and our approximate algorithm (MaxSum-
Appro) are scalable to large datasets with millions of objects. For
example, in a dataset with size equal to 10M, MaxSum-Exact ran
less than 100s and MaxSum-Appro ran in real-time. In contrast,
Cao-Exact is not scalable. In particular, in our experiments, Cao-
Exact took more than 1 day on a dataset with size equal to 6M and
it took more than 10 days on a dataset with size equal to 8M.

MaxSum-Exact (Dia-Exact)
MaxSum-Appro (Dia-Appro)

Cao-Exact
Cao-Appro1

Cao-Appro2

 0.01

 1

 100

 10000

2M 4M 6M 8M 10M

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

No. of objects

 0.01

 1

 100

 10000

2M 4M 6M 8M 10M

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

No. of objects

(a) MaxSum-CoSKQ (b) Dia-CoSKQ

Figure 7: Scalability Test

5.2.2 Experiments for Dia-CoSKQ
Effect of |q.ψ|. The results on dataset GN is shown in Figure 8.
According to Figure 8(a), our Dia-Exact is faster than Cao-Exact
by 1-4 orders of magnitude. When |q.ψ| increases, the running
time gap between Dia-Exact and Cao-Exact increases. Besides,
Dia-Appro and Cao-Appro2 have comparable running times. Ac-
cording to Figure 8(b), similar to MaxSum-Appro (for MaxSum-
CoSkQ), the approximation ratio of Dia-Appro is near to 1 (for
Dia-CoSKQ), which is better than those of Cao-Appro1 and Cao-
Appro2.

The results on datasets Web and Hotel are similar and thus they
are omitted here due to the page limit.

Effect of Average |o.ψ|. Similar to the experiments for MaxSum-
CoSKQ, we generated a set of datasets by varying their average

Dia-Exact Dia-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.001

1.002

1.003

1.004

1.005

1.006

3 6 9 12 15

A
pp

ro
xi

m
at

io
n

ra
tio

No. of keywords

0.01

1

100

10000

3 6 9 12 15

R
un

ni
ng

 ti
m

e
(m

ill
is

ec
on

ds
)

No. of keywords

(a) Running time (b) Appro. ratio

Figure 8: Effect of |q.ψ| (GN, Dia-CoSKQ)

|o.ψ| values. The results are shown in Figure 9. According to
Figure 9(a), when the average |o.ψ| increases, the running time of
Cao-Exact increases significantly while the running times of other
algorithms are only slightly affected. This is similar to the case
for MaxSum-CoSKQ and the explanation for MaxSum-CoSKQ as
we discussed previously could be applied here for Dia-CoSKQ. Ac-
cording to Figure 9(b), the average |o.ψ| value has no obvious trend
on the accuracy of the approximate algorithms.

Dia-Exact Dia-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.01

1.02

1.03

1.04

1.05

4 8 16 24 32 40

A
pp

ro
xi

m
at

io
n

ra
tio

No. of words per object

0.001

1

1000

1e+06

1e+09

4 8 16 24 32 40
R

un
ni

ng
 ti

m
e

(m
ill

is
ec

on
ds

)

No. of words per object

(a) Running time (b) Appro. ratio

Figure 9: Effect of average |o.ψ| (Dia-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms
for Dia-CosKQ with the same synthetic datasets used in the scala-
bility test for MaxSum-CoSKQ.

The results are shown in Figure 7(b), where we do not show the
running time of the algorithm if it runs more than 10 days or out of
memory. According to these results, both our exact algorithm (Dia-
Exact) and our approximate algorithm (Dia-Appro) are scalable to
large datasets with millions of objects. In contrast, Cao-Exact is
not scalable to large datasets.

Conclusion: MaxSum-Exact (Dia-Exact) runs faster than Cao-
Exact by several orders of magnitude for MaxSum-CoSKQ (Dia-
CoSKQ). Besides, MaxSum-Exact (Dia-Exact) is scalable in terms
of |O| as well as the average |o.ψ| but Cao-Exact is not. Our
MaxSum-Appro (Dia-Appro) has a better accuracy while having
comparable running time as those existing approximate algorithms.

6. RELATED WORK
Many types of spatial keyword query have been proposed in the

literature. Most of them are different from CoSKQ studied in this
paper since they use a single object to cover all keywords specified
in the query but CoSKQ uses multiple objects collectively for the
same purpose. We review these spatial keyword queries as follows.

A spatial keyword top-k query [8] finds top-k objects where the
ranking function takes both the spatial proximity and the textual
relevance of the objects into consideration. This branch includes
[8, 19, 14] (Euclidean space), [20] (road networks), [21, 9] (trajec-
tory databases), and [24] (moving objects). A common technique
shared by these studies is to design a hybrid indexing structure,
which captures both the spatial proximity and the textual informa-
tion of the objects. The IR-tree adopted by us for NN queries and
range queries was proposed in [8].

A spatial keyword k-NN query [11] finds the k-NNs from the
query location, each of which contains the set of keywords speci-

fied in the query. That is, unlike the keywords in the spatial key-
word top-k queries, which are used as a soft constraint, the key-
words in the spatial keyword k-NN queries are used as a hard con-
straint. This branch includes [11, 5, 23].

A spatial keyword range query [22, 28, 7] takes a region and a
set of keywords as input and finds the objects each of which falls
in the region and contains the set of keywords. Same as the spatial
keyword k-NN queries, the keywords are used as a hard constraint.
Usually, they combine a spatial index (e.g., R-tree and Space Fill-
ing Curve (SFC)) and a textual index (e.g., inverted file) for query
processing.

A spatial keyword reverse top-k query [17] finds the set of ob-
jects whose spatial keyword top-k query results include the query.
Note that in this case, an object which consists of a location and a
set of keywords could be regarded as a query which also consists
of a location and a set of keywords and vice versa.

An mCK query [25, 26] is a spatial keyword query that is very
similar to CoSKQ. An mCK query takes m keywords as input and
finds m objects with the smallest diameter that cover the m key-
words specified in the query. Though both the mCK query and
CoSKQ use a set of objects for covering a set of keywords col-
lectively, they are different. In the context of an mCK query, it is
assumed that each object is associated with a single keyword while
in the context of CoSKQ, each object is associated with a set of
multiple keywords. Besides, an mCK query only takes a set of
keywords as input while our CoSKQ query takes not only a set of
keywords but also a query location as an input.

CoSKQ was first studied in [4]. Under the maximum sum cost
function, as we described, [4] proposed an exact algorithm and two
approximate algorithms. However, the exact algorithm is not scal-
able to large datasets and the two approximate algorithms cannot
guarantee near-to-optimal solutions. In this paper, we propose an
efficient exact algorithm and an approximate algorithm with better
approximate factor for MaxSum-CoSKQ. Besides, in this paper,
we also propose another cost function called the diameter function
which is new and has not been studied in [4].

7. CONCLUSION
In this paper, we studied two types of the CoSKQ problem,

namely MaxSum-CoSKQ and Dia-CoSKQ. MaxSum-CoSKQ is
a CoSKQ problem using the existing maximum sum cost, which
is NP-hard. We designed two algorithms for MaxSum-CoSKQ,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is an exact
algorithm which significantly outperforms its existing competitor
in terms of both efficiency and scalability and MaxSum-Appro is
an approximate algorithm which improves the best-known constant
approximation factor from 2 to 1.375. We also proposed a new
cost function and the CoSKQ problem using this function is Dia-
CoSKQ. We designed two algorithms for Dia-CoSKQ, Dia-Exact
and Dia-Appro. Dia-Exact is an exact algorithm while Dia-Appro
is a
√

3-factor approximate algorithm. Extensive experiments were
conducted which verified our theoretical findings and algorithms.

There are several interesting future research directions. One di-
rection is to find the feasible set with the smallest cost per object.
Another direction is to define the cost function based on the short-
est route that traverse all objects in the set. It is also interesting to
to study CoSKQ when the query point is moving.

Acknowledgements: We appreciate the help from Cao et al. for
passing us their real datasets [4]. We are grateful to the anony-
mous reviewers for their valuable comments on this paper. The re-
search of Cheng Long and Raymond Chi-Wing Wong is supported
by grants DAG12EG077 and FSGRF13EG27.

8. REFERENCES
[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with

minimum diameter and related problems. Journal of Algorithms,
12(1):38–56, 1991.

[2] E. M. Arkiny and R. Hassinz. Minimum diameter covering problems.
Networks, 36(3), 2000.

[3] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. VLDB, 3(1-2):373–384, 2010.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD, pages 373–384. ACM, 2011.

[5] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for
processing top-k spatial boolean queries. In Scientific and Statistical
Database Management, pages 87–95. Springer, 2010.

[6] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d
nearest neighbor queries. In SODA, 2006.

[7] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel.
Text vs. space: efficient geo-search query processing. In CIKM,
pages 423–432. ACM, 2011.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. VLDB, 2(1):337–348, 2009.

[9] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient spatial
keyword search in trajectory databases. Arxiv preprint
arXiv:1205.2880, 2012.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational geometry: Algorithms and applications. In Springer,
2000.

[11] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pages 656–665. IEEE, 2008.

[12] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

[13] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In SIGKDD, pages 467–476. ACM, 2009.

[14] Z. Li, K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang. Ir-tree: An
efficient index for geographic document search. TKDE, 2011.

[15] W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen. Circle of
friend query in geo-social networks. In Database Systems for
Advanced Applications, pages 126–137. Springer, 2012.

[16] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective
spatial keyword queries:a distance owner-driven approach (technical
report). In
http://www.cse.ust.hk/~raywong/paper/coskq-technical.pdf, 2013.

[17] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pages 349–360. ACM, 2011.

[18] K. Mulmuley. Computational geometry: An introduction through
randomized algorithms. In Prentice Hall, 1993.

[19] J. Rocha, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient
processing of top-k spatial keyword queries. Advances in Spatial and
Temporal Databases, pages 205–222, 2011.

[20] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on
road networks. In EDBT, pages 168–179. ACM, 2012.

[21] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In EDBT, 2012.

[22] S. Vaid, C. Jones, H. Joho, and M. Sanderson. Spatio-textual
indexing for geographical search on the web. Advances in Spatial
and Temporal Databases, pages 923–923, 2005.

[23] D. Wu, M. Yiu, G. Cong, and C. Jensen. Joint top-k spatial keyword
query processing. TKDE, 2011.

[24] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, pages
541–552. IEEE, 2011.

[25] D. Zhang, Y. M. Chee, A. Mondal, A. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by
document. In ICDE, pages 688–699. IEEE, 2009.

[26] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pages 521–532. IEEE, 2010.

[27] J. Zhang, X. Meng, X. Zhou, and D. Liu. Co-spatial searcher:
Efficient tag-based collaborative spatial search on geo-social
network. In DASFAA, pages 560–575, 2012.

[28] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Y. Ma. Hybrid index
structures for location-based web search. In CIKM, pages 155–162.
ACM, 2005.

