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Summary

Objective: This paper studies a problem of efficiently discovering risk patterns in
medical data. Risk patterns are defined by a statistical metric, relative risk, which has
been widely used in epidemiological research.
Methods: To avoid fruitless search in the complete exploration of risk patterns, we
define optimal risk pattern set to exclude superfluous patterns, i.e. complicated
patterns with lower relative risk than their corresponding simpler form patterns. We
prove that mining optimal risk pattern sets conforms an anti-monotone property that
supports an efficient mining algorithm. We propose an efficient algorithm for mining
optimal risk pattern sets based on this property. We also propose a hierarchical
structure to present discovered patterns for the easy perusal by domain experts.
Results: The proposed approach is compared with two well-known rule discovery
methods, decision tree and association rule mining approaches on benchmark data
sets and applied to a real world application. The proposed method discovers more and
better quality risk patterns than a decision tree approach. The decision treemethod is
not designed for such applications and is inadequate for pattern exploring. The
proposed method does not discover a large number of uninteresting superfluous
patterns as an association mining approach does. The proposed method is more
efficient than an association rule mining method. A real world case study shows that
the method reveals some interesting risk patterns to medical practitioners.
Conclusion: The proposed method is an efficient approach to explore risk patterns. It
quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large
data set. The proposedmethod is useful for exploratory study on largemedical data to
generate and refine hypotheses. The method is also useful for designing medical
surveillance systems.
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1. Introduction

1.1. Background and aims

Hospitals and clinics accumulate a huge amount of
patient data over the years. These data provide a
basis for the analysis of risk factors for many dis-
eases. For example, we can compare cancer
patients with non-cancer patients to find patterns
associated with cancer. This method has been com-
mon practice in evidence-based medicine, which is
an approach to the practice of medicine in which a
clinician is aware of the evidence in support of
clinical practice, and the strength of that evidence.

The analysis of the data from comparative studies
has usually been done by using statistical software
tools, such as SPSS. This is a labor-intensive process.
It is inefficient to run an exhaustive analysis of
interactions of three or more exposure variables.
Therefore, an automatic data-mining tool is
required to perform such tedious and time-consum-
ing tasks.

The interpretability of results is a requirement
for designing a data mining method for medical
applications. In general, medical practitioners and
researchers do not care how sophisticated a data
mining method is, but they do care how understand-
able its results are.

Rules are a type of the most human-understand-
able knowledge, and therefore they are suitable for
medical applications. There following are two
widely used approaches to extract rules from data.
Decision trees, typified by C4.5 [1], can be extended
to rules. Decision trees are usually used for building
diagnosis models for medical applications [2—4].
The main objective is to minimise the overall errors
in classification. Rules from a decision tree are
usually accurate but some are not statistically sig-
nificant. Furthermore, a decision tree only repre-
sents one model among a number of possible
models. Rules from a decision tree may fail to
present relationships that are of interest to users.

Association rule mining [5] is a general purpose
rule discovery scheme. It has been widely used for
discovering rules in medical applications [6—8].
Three challenges of association rule mining
approaches in these applications are (1) most widely
used interestingness criteria, such as confidence and
lift, do not make sense to medical practitioners, (2)
too many trivial rules discovered overwhelm truly
interesting rules, and (3) an association rule mining
approach is inefficient when the frequency require-
ment, the minimum support, is set low.

To tackle the above problems, we use a widely
used epidemiological term, relative risk, to define
risk patterns. We propose optimal risk pattern sets

to exclude superfluous patterns that are of no inter-
est to medical practitioners. We present an efficient
algorithm to discover optimal risk pattern sets. We
also study a way to present structured risk patterns
to medical practitioners. The proposed method has
been applied to a real world application and pro-
duced some interesting results. This paper extends
our previous work [9].

1.2. Related work

Decision trees are a popular logical method for
classification. A decision tree is a hierarchical struc-
ture that partitions data into some disjoint groups
based on their different attribute values. Leafs of a
decision tree contain records of one or nearly one
class, and so it has been used for classification. An
advantage of decision tree methods is that decision
trees can be converted into understandable rules. A
most widely used decision tree system is C4.5 [1], its
ancestor ID3 [10], and a commercial version C5.0.

Decision trees have been mainly used to build
diagnosis models for medical data [2—4]. When it is
used for exploring patterns in medical data, work in
[11] shows that it is inadequate for such exploration.
One reason is that the objective of decision trees is
not to explore data but to build a simple classifica-
tion model on the data. Another reason is that the
heuristic search of decision tree prevents its finding
many quality rules. Decision trees only follow one
path in tree construction, and hence may miss
better rules along alternative paths. Recently, a
variant decision tree algorithm, high-yield-partition
tree method, has been proposed to discover hi-
utility patterns for business intelligence [12]. Its
application to medical data is to be explored.

Association rule mining is a major data mining
technique, and is a most commonly used pattern
discovery method. It retrieves all frequent patterns
in a data set and forms interesting rules among
frequent patterns. Most frequently used association
rule mining methods are Apriori [13] and FP-growth
[14].

Association rule mining has been widely used in
medical data analysis. Brossette et al. [6] uncovered
association rules in hospital infection control and
public surveillance data. Paetz and Brause [8] dis-
covered association rules in septic shock patient
data. Sequential patterns have been found in
chronic hepatitis data by Ohsaki et al. [7], and in
adverse drug reaction data by Chen et al. [15].
Ordonez et al. used association rules to predict
heart disease [16]. However, the discovery of too
many rules is a major problem in all applications.
Too many trivial and repetitive rules hide truly
interesting rules. Association rule mining is ineffi-
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cient when the frequency requirement, i.e. the
minimum support, is set low. Furthermore, the lack
of the right interestingness measurements for med-
ical application is another problem.

Some efficient variants of association rule mining
have been presented in the last few years, for
example, mining non-redundant association rules
[17], mining constraint association rules [18],
mining most interesting rules [19], mining top N-
association rules [20], and mining k-optimal rules
[21] or patterns [22]. The rules are defined by
confidence, lift or leverage, and hence their results
are not directly understandable to medical practi-
tioners. Apart from the first two methods, they have
a data coverage problem. For example, the top k
rules may come from the same section of data, and
this leaves some records in a data set uncovered. As
a result, some records in data are not represented in
the results.

To our best knowledge, there is only one paper
in data mining literature discussing finding pat-
terns defined by relative risk. Li et al. [23] studied
a number of algorithms to discover the most gen-
eral and the most specific patterns defined by
relative risk using the convex property of plateaus
of support. The most efficient algorithm in [23] is
comparable to that of mining minimal generators.
We will show theoretically that our approach is
more efficient than mining minimal generators in
Section 2.2.

2. Methods

2.1. Problem definitions

2.1.1. Risk patterns
Let us assume that there is a collection of patient
records. Each record is described by a number of
discrete attributes, one of which is the target attri-
bute. The target attribute takes two values: abnor-
mal and non-abnormal. Records for patients with a
disease or risk under study are labelled as abnormal,
otherwise records are labelled as non-abnormal. An
example of such a data set is listed as Table 1.

In the following we refer to the abnormal class as
a and the non-abnormal class as n.

A pattern is defined as a set of attribute-value
pairs. For example, {Gender = M, Age in [40,50]} is a
pattern with two attribute-value pairs. The support
of pattern P is the ratio of the number of records
containing P to the number of all records in the data
set, denoted by suppðPÞ. When the data set is large,
we have suppðPÞ� probðPÞ.

A pattern is usually called frequent if its support
is greater than a given threshold. However, in a
medical data set, a pattern in the abnormal group
would hardly be frequent when the abnormal cases
are themselves rare. Therefore, we define the local
support of P as the support of P in the abnormal
group, represented as

lsuppðP! aÞ ¼ suppðPaÞ
suppðaÞ

where Pa is an abbreviation for P ^ a. Others have
called this the recall of the rule ðP! aÞ [24]. We
prefer to call it local support since it observes the
anti-monotone property of support: the support of a
super pattern is less than or equal to the support of
its any subpattern. In this paper, a pattern is fre-
quent if its local support is greater than a given
threshold.

A risk pattern in this paper refers to the ante-
cedent of a rule with the consequence of abnormal.
For the convenience of our discussions, we intro-
duce another important concept for association
rules, confidence, in the following

confðP! aÞ ¼ suppðPaÞ
suppðPÞ

A pattern separates all records into two groups, a
group with the pattern and the other without the
pattern, e.g., males between 40 and 50 and the
rest. Cohorts separated by a pattern and two classes
form a contingency table, see Table 2.

Relative risk is a metric often used in epidemio-
logical studies. It is often used to compare the risk of
developing a disease of a group people with a
certain characteristic to the other group without
the characteristic. The relative risk (RR) for the
cohort with pattern P being abnormal is defined
as follows:
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Table 1 An example of medical data set

Gender Age Smoking Blood pressure . . . Class

M 40—50 Y High . . . Abnormal
M 20—40 N Normal . . . Non-abnormal
F 20—40 N Normal . . . Non-abnormal

..

. ..
. ..

. ..
. . . . ..

.
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RRðP! aÞ ¼ probðajPÞ
probðaj : PÞ ¼

probðP; aÞ=probðPÞ
probð : P; aÞ=probð : PÞ

¼ suppðPaÞ=suppðPÞ
suppð : PaÞ=suppð : PÞ

¼ suppðPaÞsuppð : PÞ
suppð : PaÞsuppðPÞ

: P means that P does not occur. Pa is an abbrevia-
tion of P^ a. suppð : PÞ is the fraction of all records
that do not contain P, and :Pa refers to the records
containing a but not P.

For example, if P ¼ ‘‘smoking’’, a ¼ ‘‘lung can-
cer’’, and RR ¼ 3:0, then this means that people
who smoke are three times more likely to get lung
cancer than those who do not.

A relative risk of less than 1 means the group
described by the pattern is less likely to be abnor-
mal. A relative risk of grater than 1 means the group
described by the pattern is more likely to be abnor-
mal. Confidence interval of relative risk is deter-
mined by the numbers in four cells of the
contingency table [25]

We give a formal definition of risk patterns using
relative risk in the following.

Definition 1. Risk patterns are patterns whose local
support and relative risk are higher than the user
specified minimum local support and relative risk
thresholds, respectively.

A primitive goal is to find all risk patterns. How-
ever, mining all risk patterns suffers two similar
problems as association rule mining: too many dis-
covered patterns and low efficiency for low support.
Mining optimal risk pattern sets alleviates the pro-
blems.

2.1.2. Optimal risk pattern set
Many risk patterns are of no interest to users. For
example, we have two patterns, {SEX = M and
HRTFAIL = T and LIVER = T} with relative risk 2.3,
and {HRTFAIL = Tand LIVER = T} with relative risk 2.4.
SEX = M in the first pattern does not increase relative
risk and hence we say that the first pattern is super-
fluous. Thus we introduce the optimal risk pattern
set to exclude these superfluous patterns.

Definition 2. A risk pattern set is optimal if it
includes all risk patterns except those whose rela-
tive risks are less than or equal to that of one of their
subpatterns.

In the above example, the first pattern will not be
in the optimal risk pattern set because it is a super
set of the second pattern but has lower relative risk.

Optimal pattern set will exclude many superflu-
ous and uninteresting risk patterns, for example, if
pattern ‘‘symptom = x’’ is a risk pattern, many
patterns, like ‘‘gender = m, symptom = x’’, ‘‘gender
= f, symptom = x’’, ‘‘gender = m, age = middle age,
symptom = x’’ with the same or a lower relative risk
will be excluded from the optimal risk pattern set.
Practically, a pattern with a slight improvement in
relative risk over its subpatterns is uninteresting. A
minimum improvement requirement can be defined
by users. The optimal pattern set makes use of the
zero minimum improvement. Mining a pattern set
with a non-zero minimum improvement can be
extended by post-pruning the optimal pattern set.

In the optimal risk pattern set, the relative risk of
a pattern has to be greater than the relative risk of
its every subpattern. Note that the set of records
covered by a pattern is a subset or at most an equal
set of the set of records covered by a subpattern.
Therefore, every record in a data set will be covered
by a pattern with the highest relative risk. In other
words, the optimal pattern set does not include all
patterns, but does include patterns with the highest
relative risk for all records.

Another important reason for defining the opti-
mal risk pattern set is that it supports a property for
efficient pattern discovery. We will present the
property in the following section.

2.2. Anti-monotone property of optimal
risk pattern sets

In this section, we will prove that optimal risk
pattern set satisfies an anti-monotone property,
which supports efficient optimal pattern discovery.

We first introduce notation used in the following
lemma and corollary. Px is a proper super pattern of
P with one additional attribute-value pair x. We use
a to stand for class a, and : a to stand for a class that
is not a. We can use n instead of : a for a two-class
problem. We use : a because conclusions in this
section are true for the multiple class problem too.
We have suppð : aÞ ¼ 1� suppðaÞ and suppðP : aÞ ¼
suppðPÞ � suppðPaÞ. Furthermore, we have supp
ð : ðPxÞÞ¼1� suppðPxÞ¼½suppð : PxÞ þ
suppð : P : xÞ þ suppðP: xÞ þ suppðPxÞ� � suppðPxÞ
¼ suppð : PxÞ þ suppð : P : xÞ þ suppðP : xÞ.

80 J. Li et al.

Table 2 A contingency table of a pattern and out-
comes

Abnormal (a) Non-abnormal (n) Total

P probðP; aÞ probðP; nÞ probðPÞ
: P probð : P; aÞ probð : P; nÞ probð : PÞ
Total probðaÞ probðnÞ 1
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Lemma 1 (Anti-monotone property for optimal risk
pattern sets). If (suppðPx : aÞ ¼ suppðP : aÞ) then
pattern Px and all its super patterns do not occur in
the optimal risk pattern set.

Proof. We first present a proof scheme.
Let PQx be a proper super pattern of PQ. PQx ¼

Px and PQ ¼ P when Q ¼ ?. To prove the Lemma,
we need to show that RRðPQx! aÞ � RRðPQ! aÞ

RRðPQ!aÞ ¼ suppðPQaÞsuppð: ðPQ ÞÞ
suppð: ðPQÞaÞsuppðPQ Þ

¼ confðPQ!aÞ
confð: ðPQ Þ!aÞ �

confðPQx!aÞ
confð: ðPQÞ!aÞ

(1)

RRðPQ! aÞ� confðPQx! aÞ
confð : ðPQxÞ! aÞ ¼ RRðPQx! aÞ (2)

We can deduce that suppðPQ : aÞ ¼
suppðPQx : aÞ for any Q from suppðP : aÞ ¼
suppðPx : aÞ.

Next we prove Step (1). Consider fðyÞ ¼ ðy=y þ
aÞ monotonically increases with y when constant
a> 0 and suppðPQÞ� suppðPQxÞ> 0

confðPQ! aÞ

¼ suppðPQaÞ
suppðPQ Þ ¼

suppðPQaÞ
suppðPQaÞ þ suppðPQ : aÞ

¼ suppðPQaÞ
suppðPQaÞ þ suppðPQx : aÞ

� suppðPQxaÞ
suppðPQxaÞ þ suppðPQx : aÞ ¼ confðPQx! aÞ

We then prove Step (2). Note that from
suppðPQ : aÞ ¼ suppðPQx : aÞ, we can deduce that
suppððPQ Þ : x: aÞ ¼ 0. Another property we shall
make use of is that fðyÞ ¼ ðy � aÞ=y monotonically
increases with y when constant a> 0 and
suppð : ðPQxÞÞ� suppð : ðPQÞÞ> 0

confð:ðPQxÞ!aÞ

¼ suppð:ðPQxÞaÞ
suppð:ðPQxÞÞ ¼

suppð:ðPQxÞÞ�suppð:ðPQxÞ:aÞ
suppð:ðPQxÞÞ

¼

suppð:ðPQxÞÞ� ðsuppð:ðPQ Þx:aÞ
þ suppð:ðPQÞ:x:aÞÞ

suppð:ðPQxÞÞ
ðsincesuppððPQ Þ:x:aÞ ¼ 0:Þ

¼ suppð:ðPQxÞÞ� suppð:ðPQ Þ:aÞ
suppð:ðPQxÞÞ

� suppð:ðPQ ÞÞ� suppð:ðPQÞ:aÞ
suppð:ðPQÞÞ

¼ suppð:ðPQÞaÞ
suppð:ðPQ ÞÞ ¼ confð:ðPQ Þ!aÞ

The Lemma has been proved. &

From the above lemma, we can adopt a pruning
technique as follows: once we observe that any
pattern, e.g., Px, satisfying suppðPx : aÞ ¼
suppðP : aÞ, we do not need to search for its super
patterns, e.g., PQx, since they do not occur in an
optimal risk pattern set.

Corollary 1 (Closure property). if (suppðPxÞ ¼
suppðPÞ) then pattern Px and all its super patterns
do not occur in the optimal risk pattern set.

Proof. If suppðPxÞ ¼ suppðPÞ, then suppðPx : aÞ ¼
suppðP : aÞ. Therefore, all its super patterns do not
occur in the optimal risk pattern set according to
Lemma 1. &

From the above corollary, we can adopt a pruning
technique as follows: once suppðPxÞ ¼ suppðPÞ is
observed, we do not need to search for its super
patterns, e.g., PxQ since they will not be in the
optimal risk set.

This corollary is closely associated with mining
minimal generators [26]. P is a proper generator of
Px when suppðPxÞ ¼ suppðPÞ. P is called a minimal
generator if there is no P0 � P such that
suppðP0Þ ¼ suppðPÞ. According to Corollary 1, a pat-
tern in an optimal risk pattern set has to be aminimal
generator. Corollary 1 is a special case of Lemma 1.
Lemma 1 disqualifies many minimal generators from
being considered tobe in the optimal risk pattern set.
As a result, mining optimal risk pattern sets does not
search all minimal generators, and therefore is more
efficient than mining minimal generators.

2.3. Risk pattern mining and presenting

We now discuss how to discover optimal pattern sets
efficiently, and how to present risk patterns in a easy
to peruse structure. The algorithm makes use of the
anti-monotone property to find optimal risk pattern
sets efficiently.

2.3.1. MORE algorithm
A näive method to find an optimal risk pattern set
undergoes the following three steps. Firstly, disco-
vering all frequent patterns in the abnormal group.
Secondly, forming rules using relative risk to replace
confidence. Thirdly, post-pruning a large number of
uninteresting rules. This procedure is normally inef-
ficient when the minimum support is low.

Our optimal risk pattern mining algorithm makes
use of the anti-monotone property to efficiently
prune the search space, and this distinguishes it
from an association rule mining algorithm.

Efficient discovery of risk patterns in medical data 81
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The efficiency of an association rule mining algo-
rithm lies in its efficient forward pruning of infre-
quent itemsets. An itemset is frequent if its support
is greater than the minimum support. An itemset is
potentially frequent only if all its subsets are fre-
quent, and this property is used to limit the number
of itemsets to be searched. This anti-monotone
property of frequent itemsets makes forward prun-
ing possible.

Lemma 1 and Corollary 1 are used to forwardly
prune risk patterns that do not occur in the optimal
risk pattern set. When a pattern satisfies the con-
dition of Lemma 1 or Corollary 1, all its super
patterns are pruned. Pseudo-code for mining opti-
mal risk pattern sets is presented in the following.

Algorithm 1 (MORE: Mining Optimal Risk pattErn
sets).

Input: data set D, the minimum support s in
abnormal class a, and the minimum relative risk
threshold u.

Output: optimal risk pattern set R

Global data structure: l-pattern sets for 1 � l (An
l-pattern contains l attribute-value pairs.)

(1) Set R ¼ ?

(2) Count support of 1-patterns in the abnormal
class

(3) Generate(1-pattern set)
(4) Select risk patterns and add them to R
(5) new pattern set  Generate(2-pattern set)
(6) While new pattern set is not empty
(7) Count supports of candidates in new pattern set
(8) Prune(new pattern set)
(9) Add patterns with relative risk greater than u

to R
(10) Prune remaining superfluous patterns in R
(11) new pattern set  Generate(next level pat-

tern set)
(12) Return R

The above algorithm is self-explanatory. We list
two important functions as follows.

Function 1 Generate (ðlþ 1Þ-pattern set)
//Combining

(1) Let ðlþ 1Þ-pattern set be empty set
(2) For each pair of patterns Sl�1 p and Sl�1q in l-

pattern set
(3) Insert candidate Sl�1 pq inðlþ 1Þ- pattern set

//Pruning

(4) For all Sl� Sl�1 pq

(5) If Sl does not exist in l-pattern set
(6) Then remove candidate Sl�1 pq
(7) Return ðlþ 1Þ-pattern set

Line (5) is implemented by anti-monotone prop-
erties of frequent patterns and optimal risk pat-
terns. A non-existing pattern in a l-pattern set is an
infrequent pattern or a pattern satisfying Lemma 1
or Corollary 1. They are pruned in the following
function.

Function 2 Prune ((lþ 1)-pattern set)
(1) For each pattern S in ðlþ 1Þ-pattern set
(2) If suppðSaÞ=suppðaÞ � s then remove pattern S
(3) Else if there is a subpattern S0 in l-pattern set

such that suppðS0Þ ¼ suppðSÞ or suppðS0 : aÞ ¼
suppðS: aÞ

(4) Then remove pattern S
(5) Return

Lines (3) and (4) are implemented according to
Lemma 1 and Corollary 1. Not only an infrequent
pattern but also a pattern satisfying Lemma 1 or
Corollary 1 is removed. Both Lemma 1 and Corollary
1 are very effective and the resultant algorithm is
more efficient than an association rule mining algo-
rithm.

In the following, we use an example to show how
the algorithm works.

Example 1. Consider the data set D in Table 3, and
assume s ¼ 0:4 and u ¼ 2:0.

After line (5) in MORE, the 1-pattern set contains
fb; c; d; eg and the 2-pattern set comprises
fbc; bd; be; cd; ce; deg. Line (8) in MORE calls func-
tion Prune(2-candidate set). Pattern bc is pruned
because suppðbc: aÞ ¼ suppðc: aÞ, and pattern de
is pruned because suppðde: aÞ ¼ suppðd : aÞ. After
the pruning, the 2-pattern set becomes
fbd;be; cd; ceg. Line (10) in the MORE calls Function
Generate (3-pattern set). Candidate bde is gener-
ated in line (3) of Function Generator, and then
pruned in line (6) of Function Generator because
pattern de does not exist in the 2-pattern set.
The same procedure repeats on pattern cde.
No 3-pattern is generated and hence the program
terminated. The output optimal risk pattern
set contains fcðRR ¼ 2:4Þ; dðRR ¼ 2:4Þ; bdðRR ¼
2:5Þ; cdðRR ¼ 2:5Þ; ceðRR ¼ 2:5Þg. An illustration of
the searched patterns and output risk patterns by
MORE is shown in Fig. 1.

As a comparison, we show how to use an associa-
tion rule mining method to achieve the same goal.
We may generate all frequent patterns in class a and
form association rules targeting a with the relative
risk as the strength. An association rule mining

82 J. Li et al.
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algorithm will examine candidate patterns
fb; c; d; e; bc; bd; be; cd; ce; de; bcd; bce; cdeg and
return a set of all risk patterns, fcðRR ¼ 2:4Þ; dðRR ¼
2:4Þ; bdðRR ¼ 2:5Þ; cdðRR ¼ 2:5Þ; ceðRR ¼ 2:5Þ;
bcdðRR ¼ 2:0Þ; bceðRR ¼ 2:0Þ; cdeðRR ¼ 2:0Þg. An
illustration of the searched patterns and the output
risk patterns by an association mining algorithm is
shown in Fig. 2.

We see that the proposed algorithm, MORE,
searches a smaller space, and returns a smaller risk
pattern set than an association rule mining algo-
rithm. This is a small data set including only a few
items. For a large real world data set, differences of
the searched spaces and output pattern sets
between the two methods are significant.

2.3.2. Pattern presentation
An optimal risk pattern set is smaller than an
association rule set, but is still big for medical
practitioners to review them. We may only return
the top k patterns with the highest relative risk
but they may all come from the same section of
the data set and lack representatives for all
abnormal cases.

In order to account for all known abnormal cases,
we aim to retain a risk pattern with the highest
relative risk for each case. We use the following
method to select a small set of representative
patterns to present to users.

Algorithm 2 (Selecting representative risk pat-
terns).

Input: data set D, and optimal risk pattern set R.
Output: representative risk pattern set R0

(1) Set R0 ¼ ?

(2) For each record r in D belonging to class a
(3) Find all patterns in R that are subsets of r
(4) Add the pattern with the highest relative risk to

R0

(5) Sort all patterns in R0 in the RR decreasing order
(6) Return R0

As a result, each abnormal record in D has its own
representative risk pattern in R0. Through the above
selection, the number of patterns becomes manage-
able.

We organise the remaining risk patterns into a
tree structure and hide them behind each represen-
tative pattern by using a hyper link. An example is
shown in Fig. 3.

As a result, medical practitioners can easily
examine the representative patterns and find their
related patterns. This is very useful for finding the
evolution of relative risks.

3. Experiments and discussion

3.1. Experimental results

Purposes of experiments are to compare MORE to a
rule-based classification system C5.0, a commercial
version of C4.5 [1], and an association rule mining-
based approach. We used two benchmark medical
data sets from UCML repository [27], which are
described in Table 4.

3.1.1. Comparison with C5.0
For C5.0, we first used the default setting and then
set differential misclassification costs as 20 and 15
for data sets Hypothyroid and Sick, respectively.

Efficient discovery of risk patterns in medical data 83

Table 3 The data set of Example 1

B C D E A

b1 c d e a
b c d1 e a
b c d e1 a
b c d e a
b c1 d e2 a
b c d2 e3 : a
b c2 d3 e : a
b2 c3 d e : a

Figure 1 An illustration of the searched patterns and
output risk patterns by MORE in Example 1. Patterns
crossed are pruned. Patterns in bold are output risk
patterns.

Figure 2 An illustration of the searched patterns and
output risk patterns by an association rule mining-based
approach in Example 1. Only frequent patterns within
class a are considered. Patterns crossed are pruned.
Patterns in bold are output risk patterns.
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The purpose of differential misclassification costs is
to penalise misclassifications in some groups. If we
do not set differential misclassification costs (DMC)
in Hypothyroid data set, it only results in 4.8%
overall error rate that all cases in the hypothyroid
group are classified as negative. This small overall
error rate reduces the chance of forming rules in
hypothyroid group. When we set the differential

misclassification costs as 20 in Hypothyroid data
set, 1 error in the abnormal group is equivalent
to 20 errors in the non-abnormal group. As a result,
both types of cases have an equal chance for form-
ing rules.

We set the minimum local support as 5%, and the
minimum relative risk as 1.5 for MORE. To compare
with C5.0 fairly, we set the maximum number of
attribute-value pairs in a pattern as four since most
patterns from C5.0 have four or less attribute-value
pairs. Rules discovered by C5.0 with the relative risk
less than 1.5 and/or with the local support less than
5% are filtered. We use this setting since the number
of representative patterns of MORE is comparable to
the number of C5.0 rules. If we set the minimum
local support low, the number of risk patterns of
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Table 4 A brief description of data sets used in
experiments

Name #Records #Attributes Distributions

Hypothyroid 3163 25 4.8% and 95.2%
Sick 2800 29 6.1% and 93.9%

Figure 3 A representative pattern and its subpatterns in a tree structure. Users are presented with a small list of
representative patterns. All subpatterns are hidden from users initially, and are brought out when the user clicks the
representative pattern in order to know the evolution of the relative risks. There are some repetitions in the tree tomake
it easy to follow.

Table 5 Comparison with C5.0 by the number of patterns discovered

Data set C5.0 MORE

Default (number) With DMC (number) Optimal (number) Representative (number)

Hypothyroid 3 5 462 4
Sick 3 7 304 3
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MORE will be larger. This setting is identical to that
in our real world case study in the following section,
where setting has been advised by domain experts.

Table 5 reports the summary of patterns discov-
ered (rules targeting abnormal) of C5.0 and MORE on
both data sets. Table 6 lists the average local sup-
port and relative risk of discovered patterns by both
methods.

Firstly, C5.0 produces fewer patterns than MORE.
The total number patterns discovered by MORE is up
to 150 times larger than that of C5.0. Setting differ-
ential misclassification costs (DMC) does not result
in more rules. The exploratory power C5.0 is limited
since it discovers few rules. C5.0 is designed for
building classification models rather than discover-
ing patterns. In contrast, MORE algorithm is
designed for exploring the data to generate hypoth-
eses for further studying. It is not designed for
classification.

Secondly, C5.0 fails to find patterns with the
highest relative risks. The objective of classifica-
tion is different from identifying risk patterns.
Further, rules discovered by C5.0 tend to be specific
and are not supported in data. In contrast, MORE
can find patterns with highest relative risk and
highest support. This has been demonstrated in
Table 6 that both the average local support and
the average relative risk of representative patterns
are higher than those from C5.0. A fine-tuned deci-
sion tree can uncover some interesting patterns in a
data set. However, a decision tree does not guar-
antee the discovery of the patterns with the highest
relative risk nor all patterns with the relative risk
above a threshold because of its heuristic search
trait. The way of search dictates the difference of
two methods.

3.1.2. Comparison with variant association
rule mining-based approaches
Another approach to discover risk pattern sets is
based on association rule mining. Firstly, find all
frequent patterns in the abnormal group. Secondly,
form association rules targeting the abnormal by
replacing the confidence with the relative risk. We
will show that this approach generates too many
patterns and is inefficient in comparison with MORE.

For both MORE and the association rule mining-
based approach, we set the minimum local support

as 5%, the minimum relative risk as 1.5, and the
maximum length of patterns as 4. We implemented
the association rule mining-based approach by
Apriori [13]. However, results reported in this sec-
tion are independent from the implementation
since the number of discovered rules and frequent
patterns are identical among association rule mining
methods. The summary of discovered patterns are
listed in Table 7.

The association rule mining approach produces
too many patterns and many provide superfluous
information. For example, (T3 � 1:15) is a risk
pattern because T3 is an indicator for sick. The
association rule mining-based approach discovers
37 patterns with additional conditions, like (T3
� 1:15, TBGmeasured = f) and (T3 � 1:15, TBGmea-
sured = f, pregnant= f), which have exactly the same
relative risk as pattern (T3 � 1:15). There are
another 4742 patterns containing (T3 � 1:15) which
have lower relative risk in the association rule set.
All these patterns are not included in the optimal
risk pattern set. An optimal risk patterns set is
smaller than its corresponding risk pattern set dis-
covered by association rule mining, but includes
highest relative risk patterns for all records.

Non-redundant association rule mining [17]
makes use of candidates of minimal generators
instead of frequent patterns. It avoids generating
a lot of superfluous rules and is more efficient than
association rule mining. However, non-redundant
association rule mining searches all minimal gen-
erators that are a superset of candidates searched
by MORE. Therefore, non-redundant association
rule mining is also less efficient than MORE for
mining risk patterns.

To demonstrate the efficiency improvement
obtained by MORE over the association rule mining
and non-redundant association rule mining
approaches, we conducted more experiments using
different support settings and high interactions. We
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Table 7 Comparison with an association rule mining
approach

Data set Association
(pattern number)

MORE
(pattern number)

Hypothyroid 21807 462
Sick 24833 304

Table 6 Comparison with C5.0 by the quality of discovered patterns using the average local support and relative risk

Data set C5.0 default C5.0 with DMC MORE representative

ave(lsupp) ave(RR) ave(lsupp) ave(RR) ave(lsupp) ave(RR)

Hypothyroid 0.31 29.4 0.43 23.1 0.78 33.3
Sick 0.40 27.0 0.29 18.6 0.95 43.1
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searched for risk patterns containing up to ten
attribute-value pairs. To make the comparison inde-
pendent of implementation and computers, we
show the number of searched candidates (frequent
patterns and minimal generators) instead of the
execution time. As a result, the conclusion is gen-
eral because theoretically the reduction of the
searched candidates is the reduction of computa-
tional cost. Fig. 4 shows that MORE searches fewer
candidates than both frequent patterns andminimal
generators, and hence is more efficient than the
association rule mining and non-redundant associa-
tion rule mining-based approaches. This is more
evident when the support is lower.

In sum, C5.0 is not designed for exploring risk
patterns. Association rule mining is not efficient for
exploring risk patterns, and produces too many risk
patterns. MORE is efficient, and produces a manage-
able number of risk patterns.

3.2. A case study

This method has been applied to a real world appli-
cations for analysing emergency department admin-
istration data.

The hospital in this case study is a regional hos-
pital in Australia. Its emergency department has a
10-bed ultra short stay unit for a short period
observation. A patient may stay at the ultra short
stay unit for up to 20 hours. Patients staying in the
ultra short stay unit may be admitted to the hospital
for further treatment, or may be discharged after a
brief observation. In some occasions, the beds are
not enough to cope with a large demand, and doc-
tors need to transfer some patients to the ward. A
significant reduction in administrative work can be
achieved if patients who eventually end up at the
hospital are admitted to the ward without staying in
ultra short stay units after the initial assessment.

The emergency department under study has col-
lected 4321 records of patients who have stayed in
the ultra short stay unit over 2 years. 808 records are
for patients who were eventually admitted to the
hospital and 3513 records are for patients who were
discharged after a short stay at the ultra short stay
unit. Doctors are interested in knowing patterns of
patients who are admitted. We have done a pilot
study on this data set.

Patients are described by 16 attributes. A triage
attribute classify patients into five groups. Some
disease related attributes indicating whether
patients have the following problems: renal, cardio,
diabetes, and asthma. Some attributes describe
personal related information, such as gender, age
(categorised into four age groups), marital status,
and indigenous status. An attribute indicates loca-
tion information, in town or off town. Some tem-
poral related attributes show season, month, and
week date. An attribute shows whether the patient
has visited the hospital within a week. All values are
binary or categorical.

We have used C4.5 to analyse the data set firstly.
C4.5 builds a model with an accuracy of 82% on this
data set. We have not conducted cross-validation to
evaluate the model since it is not our objective to
build a predictive model. Instead, we are interested
in the rules discovered by C4.5 targeting admitted
class. 20 rules are discovered by C4.5. After we filter
rules with 5% local support and 1.5 relative risk
thresholds, only two rules are left. Two rules are
not enough for doctors to understand the data set.
Furthermore, the two rules do not include the
pattern with the highest relative risk.

Many rules discovered by C4.5 are of no interest
to doctors since the rules do not have sufficient
support from data. For example, the first two rules
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Figure 4 Comparison of the number of patterns searched
byMOREwith the number of frequent patterns andminimal
generators searched by other approaches. MORE searches
fewer candidates and hence more efficient.
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from C4.5 have local supports (in number) of 11 and
3, respectively. They are good classification rules
since their confidence are 100%. However, they are
of no interest to doctors since they only explain few
cases although their relative risk are high. If we
consider risk patterns at such low minimum support
level, there are thousands of them, i.e. 4105 risk
patterns when theminimumnumber of local support
is 9.

Furthermore high accurate rules discovered by
C4.5 may not be high relative risk patterns. We show
this by the following experiment.We ranked 20 rules
discovered by C4.5 first by accuracy and then by
relative risk. We calculated the Spearman’s rank
correlation between the two ranks. The results
are shown in Fig. 5. We can see that two ranks
are loosely correlated. Therefore, discovering accu-
rate classification rules is not suitable for the dis-
covery of risk patterns.

When we applied MORE algorithm to the data set
with a support threshold of 5% and relative risk
threshold of 1.5, we discovered 131 risk patterns
toward admitting to the hospital where 75 patterns
are representatives.

Discovered patterns reconfirm many known fac-
tors by doctors. For example, patients with cardi-
ovascular or renal related disease are more than two
times more likely to be admitted to the hospital
than other patients. Patients with skin/subcuta-
neous/joint infections are nearly three times more
likely to be admitted to the hospital.

Discovered patterns show some common prac-
tices used by doctors. Patients who live off town
are more likely to be admitted to the hospital
even though their situations are not urgent (rela-
tive risk of 1.7). This is due to the extra caution of
doctors.

Discovered patterns reveal some interesting phe-
nomena. Male patients with limb injuries are nearly
two times more likely admitted to the hospital
(relative risk of 1.83). Note that neither male
patients nor limb injuries alone are risky. This
may be attribute to serious injuries in sports or a
bias against female limb injury admissions. Patients
presented to the department on Mondays in business
hours are 1.57 times more likely to be admitted to
the hospital than other patients. This shows that the
lack of medical service on weekend causes some
delayed admissions. Old male patients are very risky
(relative risk of 2.23) to be admitted to the hospital.
This may be due too the fact that male patients are
reluctant to see doctors until there is a pressing
urgency.

Since many combinations have been tested in the
risk pattern mining process, some patterns becomes
significant just by chance. Validation is important to
accept or reject them. MORE presents a small set of
well structured representative hypotheses quickly
from a data set. They can be either validated by
domain experts or by further statistical studies.
MORE is an efficient data exploratory tool for initial
data analysis.
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Figure 5 Correlation between the rank by accuracy and the rank by relative risk. Two ranks are loosely correlated. This
explains why C4.5 does not find the pattern with the highest relative risk.
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4. Conclusions

This paper has discussed a problem of finding risk
patterns in medical data. Risk patterns are defined
by an epidemiological metric, relative risk, and
hence are understandable to medical practitioners.
We define optimal risk pattern set to exclude super-
fluous patterns that are of no interesting to users.
The definition of optimal risk patterns leads to an
anti-monotone property for efficient discovery, and
we proposed an efficient algorithm for mining opti-
mal risk pattern sets. We have also proposed a way
to organise and present discovered patterns to
users in an easy to explore structure. The proposed
method has been compared with two well known
rule discovery methods. The method has also been
applied to a real world medical data set and
has revealed a number of interesting patterns to
medical practitioners. We have the following con-
clusions from the work: a decision tree approach
is unsuitable for discovering risk patterns; an asso-
ciation rule mining approach is inefficient in
discovering risk patterns and produces too many
uninteresting superfluous patterns; and the pro-
posed algorithm discovers a small set of risk patterns
efficiently, which includes the highest relative risk
patterns for all records.

The method is useful for exploratory study on
large medical data sets. It quickly discovers some
‘‘risk spots’’ in a large medical data set. The results
are understandable to medical practitioners. It can
be used to generate and refine hypotheses for
further time consuming statistical studies.
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