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Abstract—Maximal cliques are elementary substructures in a graph and instrumental in graph analysis such as the structural analysis

of many complex networks, graph clustering and community detection, network hierarchy detection, emerging pattern mining, vertex

importance measures, etc. However, the number of maximal cliques is also notoriously large even for many small real world graphs.

This size problem gives rise to challenges in both computing and managing the set of maximal cliques. Many algorithms for computing

maximal cliques have been proposed in the literature; however, most of them are sequential algorithms that cannot scale due to the

high complexity of the problem, while existing parallel algorithms for computing maximal cliques are mostly immature and especially

suffer from skewed workload. As for managing the set of maximal cliques, which is essential due to its large size, there is barely any

efficient method for querying or updating the set of maximal cliques. In this paper, we first propose a distributed algorithm built on a

share-nothing architecture for computing the set of maximal cliques. We effectively address the problem of skewed workload

distribution due to high-degree vertices, which also leads to drastically reduced worst-case time complexity for computing maximal

cliques in common real-world graphs. Then, we propose a set of fundamental query operations and efficient algorithms to process the

queries, to aid more efficient and effective analysis of the set of maximal cliques. Finally, we also devise algorithms to support efficient

update maintenance of the set of maximal cliques when the underlying graph is updated. We verify the efficiency of our algorithms for

computing, querying, and updating the set of maximal cliques with a range of real-world graphs from different application domains.

Index Terms—Distributed maximal clique enumeration, updating maximal cliques, querying maximal cliques

Ç

1 INTRODUCTION

LET G ¼ ðV;EÞ be a simple undirected graph. A subset of
vertices, C � V , is called a clique if every vertex in C is

connected to every other vertex in C by an edge in G, and C
is called a maximal clique if any proper superset of C is not a
clique. The problem of maximal clique enumeration (MCE) is
to compute the set of maximal cliques in G.

Maximal cliques are elementary substructures of a graph
that play a vital role in graph and network analysis, and have
numerous applications. MCE is a fundamental problem in
graph theory and closely related to many other important
graph problems, such as maximal independent sets (or
minimal vertex covers), graph coloring, maximal common
induced subgraphs, etc. Apart from graph theory, maximal
cliques are used in a broad range of applications such as social
network analysis [1], financial network analysis [2], dynamic
network clustering [3], email network hierarchy detection [4],
emergent pattern detection in terrorist networks [5], structural
study in behavioral and cognitive networks [6], and various
analytical tasks in computational biology [7].

The problem of MCE has been extensively studied. There
are three main types of algorithms. The first type is sequen-
tial in-memory algorithms [3], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], which
often do not scale well for processing large graphs, mainly
because of the high complexity of MCE. The second type is

sequential I/O-efficient algorithms [23], [24], [25], which
focus on reducing the high cost of random disk I/Os for
processing graphs that cannot fit in main memory. How-
ever, addressing the I/O problem does not solve the main
computational issue as MCE is a CPU-intensive task. The
third type is parallel and distributed algorithms [24], [26],
[27], [28], [29], which aim at reducing the elapsed running
time by parallelizing the task of MCE. However, the parallel
algorithms [26], [28] require a copy of the entire input graph
to be resident in main memory and cannot handle unbal-
anced workload. The distributed algorithms [27], [29] parti-
tion a graph and distribute the subgraphs to the worker
machines where MCE is processed locally on the subgraphs.
However, these algorithms do not deal with unbalanced
workload due to skewed degree distribution, and may also
have high communication cost since many unwanted edges
may be distributed. Moreover, the cliques generated may not
be maximal and hence expensive postprocessing is required
to remove non-maximal cliques [27]. Recently, another algo-
rithm was proposed to recursively split a graph into smaller
subgraphs and distribute the subgraphs to worker machines
for MCE [24]. Their algorithm is also not work-efficient and
may also have skewedworkload due to high-degree vertices,
while the subgraph splitting process can be expensive.

Apart from the computational challenges, the number of
maximal cliques is notoriously known to be large even for
some small graphs. The sheer number of maximal cliques
severely thwarts the applications of maximal cliques since
managing and analyzing such a large set is often impracti-
cal. In addition, the underlying graph may be updated from
time to time and any small update (e.g., an edge insertion/
deletion) to the graph can cause a considerable amount of
updates to the set of maximal cliques. Such updates are not
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only costly but also difficult without any efficient methods
to store and search the maximal cliques.

In this paper, we study two main problems: computing the
set of maximal cliques and managing the set of maximal cliques.
We highlight the main ideas of our algorithms and the main
contributions of our work as follows.

For computing the set of maximal cliques, we examine
the computational bottlenecks that hinder the performance
of computing the set of maximal cliques as well as parallel-
izing MCE, and propose a new parallel algorithm based on
the share-nothing architecture to overcome these bottle-
necks. Specifically, we significantly reduce the cost of a fre-
quent and most costly operation in the process of MCE, as
well as use specific vertex orderings that can achieve

OðPd
i¼1 nii3

i=3Þ worst-case time complexity for processing
most common real-world graphs (e.g., d-degenerate graphs,
power-law graphs, and sparse graphs), where d is the maxi-
mum core number of a graph (which is generally small for
real-world graphs, see Table 1) and ni is the number of ver-

tices with core number i [30]. Note that
Pd

i¼1 ni ¼ jV j. This
is tremendously smaller the optimal worst-case time com-
plexity of MCE for processing general graphs, which is

Oð3jV j=3Þ [20]. We give detailed analysis of our algorithm
and also show that our algorithm achieves balanced work-
load and the total amount of work performed by paralleliz-
ing the MCE task is asymptotically the same as that by
sequentially executing the task.

For managing the set of maximal cliques, we focus on the
following two main issues, query processing and update
maintenance, neither of which has been well studied in the
past (we are only aware of a method that updates a data
structure that can generate only a partial set of maximal cli-
ques [23]). First, we propose a set of fundamental query
operations, and efficient algorithms to process the queries,
to allow users more efficiently and effectively analyze the
set of maximal cliques. Second, we propose efficient algo-
rithms to incrementally update the set of maximal cliques
when the underlying graph is updated.

We evaluate the performance of our algorithms on a set of
real world graphs from different domains. Our results show
that our parallel MCE algorithm is significantly more efficient
than an existing MapReduce algorithm for MCE [29]. The
experimental results also show that our algorithms for proc-
essing all the queries are efficient under various settings. In
addition, we also demonstrate the high efficiency of our algo-
rithms for updatemaintenance of the set ofmaximal cliques.

The remainder of the paper is organized as follows.
Section 2 gives the basic notations and defines the problem.
Sections 3, 4, and 5 present the algorithms for computing,

querying, and updating the set of maximal cliques, respec-
tively. Section 6 reports the experimental results. Section 7
discusses the related work and Section 8 gives our conclud-
ing remarks.

2 NOTATIONS AND NOTIONS

We study the problem of computing andmanaging maximal
cliques in a simple undirected graph, G ¼ ðV;EÞ, where V is
the set of vertices andE is the set of edges ofG. We keepG in
its adjacency list representation. Each vertex v 2 V is
assigned a unique vertex ID, denoted by IDðvÞ, where the
vertex ID ranges from 1 to jV j. Given any two vertices u and
v, we use IDðuÞ < IDðvÞ or equivalently IDðvÞ > IDðuÞ to
denote that u is ordered before v according to the order of
their IDs. In the adjacency list representation of a graph, ver-
tices are ordered in ascending order of their IDs.

We define the set of adjacent vertices of a vertex v 2 V as
adjðvÞ ¼ fu : ðu; vÞ 2 Eg. We further define adjð< vÞ ¼ fu :
u 2 adjðvÞ; IDðuÞ < IDðvÞg and adjð> vÞ ¼ fu : u 2 adjðvÞ;
IDðuÞ > IDðvÞg.

A set of vertices, C, where C � V , is a clique in G if every
v 2 C is adjacent to all other vertices in C, i.e., v 2 adjðuÞ for
all u 2 ðC n fvgÞ. If @C0 � C such that C0 is a clique in G,
then C is a maximal clique.

We useMðGÞ to denote the set of maximal cliques in G.
We also useMv to denote the set of maximal cliques starting
with v, i.e., Mv ¼ fC : C 2 MðGÞ; v ¼ argminu2CIDðuÞg,
where “v ¼ argminu2CIDðuÞ” means “v 2 C such that
IDðvÞ ¼ minfIDðuÞ : u 2 Cg”.

The following example illustrates the concepts.

Example 1. Fig. 1 shows a graph G with eight vertices. If we
assign the vertex ID in ascending order of the vertex
degree, where ties are broken arbitrarily, then we have
IDðhÞ ¼ 1, IDðcÞ ¼ 2, IDðfÞ ¼ 3, IDðaÞ ¼ 4, IDðdÞ ¼ 5,
IDðgÞ ¼ 6, IDðbÞ ¼ 7, and IDðeÞ ¼ 8. According to this
ID assignment and ID ordering, we have adjð< hÞ ¼ ;,
adjð> hÞ ¼ fg; eg, adjð< gÞ ¼ fh; a; dg and adjð> gÞ ¼
fb; eg. There are three maximal cliques in G, i.e.,
MðGÞ ¼ ffa; b; d; e; gg; fb; c; e; fg; fe; g; hgg. Hence, we
haveMh ¼ fe; g; hg,Mc ¼ fb; c; e; fg,Ma ¼ fa; b; d; e; gg,
andMv ¼ ; for v 2 fb; d; e; f; gg.
Problem definition. Given a graph G ¼ ðV;EÞ, this paper

proposes efficient algorithms for:

� Computing the set of maximal cliques, i.e., computing
MðGÞ;

� Managing the set of maximal cliques, which include
- proposing a set of fundamental query operations on
MðGÞ, and

- update maintenance ofMðGÞ when G is updated.

TABLE 1
Dataset Statistics

Youtube Patents Google Skitter Wi-ki

jV j 1,134,890 37,74,767 875,713 1,696,415 2,394,385
jEj 2,987,624 16,518,948 4,322,051 11,059,298 4,659,562
degmax 28,754 793 6,332 35,455 1,00,029
d 51 58 43 111 131
a 17 11 44 67 26
jMðGÞj 3,265,953 14,787,028 1,417,580 37,322,351 86,333,297

Fig. 1. A graphG.
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3 COMPUTING MAXIMAL CLIQUES

We first present a parallel algorithm for computing the set
of maximal cliques on a shared-nothing architecture. The
algorithm consists of two phases: data distribution and maxi-
mal clique enumeration, which can be easily implemented in
one round of Map and Reduce [31]. We first discuss these
two phases, and then we also show how different orderings
of vertices can reduce the complexity of MCE in common
real-world graphs.

3.1 Phase I: Data Distribution

The data distribution phase is shown in Lines 1-6 of
Algorithm 1. Given a simple undirected graph G ¼ ðV;EÞ,
the algorithm divides the task of MCE into many sub-tasks
to be computed in parallel. The data necessary for MCE at
each worker machine is to be distributed according to the
following lemma.

Algorithm 1. Parallel MCE

1 Data distribution:
Input: hv; adjðvÞi for each v 2 V

2 begin
3 foreach vertex v 2 V do
4 output hIDðvÞ; ðv; adjðvÞÞi;
5 foreach vertex u 2 adjð< vÞ do
6 output hIDðuÞ; ðv; adjðvÞÞi;
7 Maximal clique enumeration (MCE):
Input: hIDðvÞ; ðv; adjðvÞ; fðu; adjðuÞÞ : u 2 adjð> vÞgi

for each v 2 V
8 begin
9 foreach u 2 adjð> vÞ do
10 ADJ>v½u�  adjðuÞ \ adjð> vÞ;
11 ADJv½u�  adjðuÞ \ adjðvÞ;
12 LocalMCEðfvg; adjð> vÞ; adjð< vÞ; ADJ>v;ADJvÞ;

Lemma 1. Computing Mv requires ADJ ¼ fðu; adjðuÞÞ : u 2
adjð> vÞg [ fðv; adjðvÞg.

Proof. For each C 2 Mv and each u 2 C n fvg, we have
u 2 adjð> vÞ. To compute C, we need to know whether
ðu;wÞ 2 E for all u;w 2 C, i.e., whether w 2 adjðuÞ. Thus,
we need adjðuÞ for each u 2 adjð> vÞ. Note that there
may be some w 2 adjðuÞ and w 2 adjðvÞ, IDðwÞ < IDðvÞ,
but we still require w (i.e., the whole adjðuÞ and adjðvÞ)
because w is used to check maximality (e.g., if the only
superset of fv; ug that is a clique is fw; v; ug, then without
w the algorithm will report fv; ug as a maximal clique). tu
Lemma 1 implies that for each v 2 V , ðv; adjðvÞÞ is only

needed to computeMu for each u 2 ðadjð< vÞ [ fvgÞ. Thus,
we only need to output the key-value pair hIDðuÞ; ðv;
adjðvÞÞi for each u 2 ðadjð< vÞ [ fvgÞ instead of u 2
ðadjðvÞ [ fvgÞ, which will prove to achieve a tremendous
reduction in the complexity of MCE for processing common
real-world graphs (to be analyzed in Section 3.3).

3.2 Phase II: Maximal Clique Enumeration

The second phase, i.e., MCE, is shown in Lines 7-12 of
Algorithm 1. The data for computing Mv is distributed to
an active worker. Note that for each C 2 Mv, ðC n fvgÞ

� adjð> vÞ. Thus, to enumerate the maximal cliques inMv,
we only need adjðuÞ \ adjð> vÞ, denoted by ADJ>v½u�, for
each u 2 adjð> vÞ. However, to check maximality of the cli-
ques, we also need adjðuÞ \ adjðvÞ, denoted by ADJv½u�, for
each u 2 adjð> vÞ. Then, the algorithm invokes the proce-
dure “LocalMCE” to computeMv locally at the worker, as
shown in Algorithm 2.

Algorithm 2. LocalMCEðC; cand; prev;ADJ >v; ADJvÞ
1 if cand ¼ ; and prev ¼ ; then
2 output C as a maximal clique;
3 else if cand 6¼ ; then
4 let up be the vertex in cand that maximizes
jcand \ADJ >v½up�j;

5 U  cand n ADJ >v½up�;
6 sort U in descending order of jADJ >v½u�j for all u 2 U ;
7 foreach u 2 U do
8 cand cand n fug;
9 cand0  cand \ADJ >v½u�;
10 foreach w 2 cand0 do
11 ADJ 0>v½w�  ADJ >v½w� \ cand0;
12 ADJ 0v½w�  ADJv½w� \ prev;
13 LocalMCEðC [ fug; cand0; prev \ADJv½u�; ADJ 0>v;ADJ 0vÞ;
14 prev prev [ fug;

We first explain some notations used in Algorithms 2. We
use C to denote the clique currently being enumerated, cand
to denote the set of candidate vertices that can be used to
expand or form a clique, and prev to denote a set of vertices
that are in some other maximal cliques (either enumerated
previously by the same worker or enumerated by another
worker) so that C is maximal only if prev ¼ ;. We also use
ADJ >v and ADJv to denote the sets fADJ>v½u� : u 2 adjð>
vÞg and fADJv½u� : u 2 adjð> vÞg, respectively.

The LocalMCE algorithm starts from a set C initially con-
sisting of a single vertex, and repeats the process “find a
candidate vertex u 2 cand that is a common neighbor of all
vertices in the current C and then add u to C” until there
exists no common neighbor of the current C, in which case
cand ¼ ;, and C is returned as a maximal clique if prev ¼ ;.
When we grow the current clique C to C0 ¼ ðC [ fugÞ, we
refine cand by intersecting it withADJ >v½u� because any can-
didate vertex that can grow C0 must be inADJ >v½u�. We also
refine prev by intersecting it with ADJv½u� because if another
maximal clique C00 exists such that C0 cannot be grown into a
maximal clique in the end, then ðC00 n C0Þmust be a subset of
ADJv½u�. For the same reasons, we also refine ADJ>v½w� and
ADJv½w� for each new candidate vertex w 2 cand0, by inter-
secting them with cand0 and prev, respectively. Then, Local-
MCE is invoked recursively to further growC0.

The following lemma shows that computingMv for each
v 2 V gives the complete set of maximal cliques,M, and no
redundant maximal clique is generated.

Lemma 2. MðGÞ ¼ S
v2VMv, and Mu \Mv ¼ ; for all

u; v 2 V and u 6¼ v.

Proof. For any C 2 MðGÞ, let v ¼ argminu2CIDðuÞ, then C 2
Mv by the definition ofMv. Thus,MðGÞ ¼

S
v2VMv.

For anyCu 2 Mu andCv 2 Mv, we have u ¼ argminw2Cu

IDðwÞ and v ¼ argminw2CvIDðwÞ. If u 6¼ v, then Cu 6¼ Cv,
and thusMu \Mv ¼ ; for all u; v 2 V and u 6¼ v. tu
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A comparison between LocalMCE and classic MCE algo-
rithms. The LocalMCE algorithm is similar to the classic
MCE algorithms that apply pruning by pivot vertex (i.e., up
in Line 4 of Algorithm 2) [9], [10], [20]. Compared with the
classic algorithm, our algorithm makes the following
improvement.

When growing the current clique C to a new clique
ðC [ fugÞ, the classic algorithm refines cand and prev by
intersecting each of themwith adjðuÞ. During the processing
of MCE, these set intersections are the most costly opera-
tions to be processed, especially because adjðuÞ can be very
large for those high-degree vertices in a power-law graph.
Since the number of cliques enumerated (i.e., those ‘C’s in
the intermediate steps of MCE) can be significantly larger
than the number of maximal cliques and high-degree verti-
ces are contained in many cliques, we can tremendously
reduce the running time of MCE if we can reduce the cost of
the set intersections.

Cheng et al. [24] proposed to reduce the cost of set inter-
section by extracting subgraphs and then performing MCE
in the subgraphs. Apparently, the smaller the subgraphs,
the smaller are the sizes of the sets (i.e., the adjacency lists
of the vertices within the subgraphs). But they also show
that the overall search space will be increased when smaller
subgraphs are used, in addition to the cost of subgraph
extraction. Thus, they use a cost model to find a balance
point. However, computing the optimal point by the cost
model is NP-hard.

We propose a much simpler but effective mechanism,
which is also more suitable for parallel MCE. We observe
that by ordering the vertices we only need ADJ>v½u� for
growing the current clique and ADJv½u� for checking maxi-
mality. Thus, we always refine cand by intersecting it with
ADJ>v½u� instead of with the whole set adjðuÞ, and we will
show in Section 3.3 that ADJ>v½u� is small even for high-
degree vertices in common real-world graphs. Furthermore,
whenever we add a new candidate vertex u to C, we refine
ADJ>v½w� and ADJv½w� for each new candidate vertex w, so
that in the subsequent recursive steps we can intersect with
the smaller ADJ>v½w� and ADJv½w� instead of with adjðwÞ.

3.3 Ordered MCE and Complexity

The time complexity of the classic algorithm for MCE [9],
[10], [20] is Oð3jV j=3Þ, which is proved to be optimal for proc-
essing general graphs [20]. However, we show how
different orderings of vertices can reduce the complexity of
MCE in many graphs such as power-law graphs and
d-degenerate graphs, which are prevalent in real world [13],
[32], [33]. We consider the following types of ordering: (1)
ordering by vertex degree, (2) ordering by degeneracy num-
ber [13], and (3) ordering by the core number of the vertices.

Degeneracy ordering. An undirected graph G is k-degener-
ate if for every subgraph G0 of G, there exists some vertex in
G0 that has k or fewer neighbors within G0. The degeneracy
of G is the smallest value of k for which G is k-degenerate. If
the degeneracy of G is d, then G has a degeneracy ordering
such that if we assign IDðvÞ according to the degeneracy
ordering (i.e., IDðvÞ ¼ i if v is at the ith position by the
degeneracy ordering), then jadjð> vÞj � d for all v 2 V .

Eppstein et al. [13] prove the following complexity of
MCE for a d-degenerate graph.

Theorem 1. LetG ¼ ðV;EÞ be a graph where the degeneracy of G
is d. When the vertices in G are ordered by degeneracy order-
ing, applying Algorithm 2 to computeMv for all v 2 V uses

OðjV jd3d=3Þ time.

Note that the above complexity is proved in [13] based on
the classic MCE algorithms [9], [10], [20], but applying
Algorithm 2 can only be more efficient as discussed in
Section 3.2. The analysis [13] is also for sequential algo-
rithms, while in our case for parallel computation, each
worker uses Oðd3d=3Þ time for computingMv.

Since the degeneracy d is quite small for most real-world
graphs, especially for sparse graphs and power-law graphs,
the above complexity is a significant reduction to the

Oð3jV j=3Þ complexity for processing general graphs.
Degree ordering. For each v 2 V , we assign IDðvÞ ¼ i if v is

at the ith position when the vertices in V are ordered in
ascending order of their degree, where ties are broken arbi-
trarily. Let h be the maximum value of h such that there are
h vertices with degree at least h. We give the following com-
plexity analysis.

Theorem 2. Given a graph G ¼ ðV;EÞ, when the vertices are
ordered by their degree, applying Algorithm 2 to computeMv

for all v 2 V uses OðjV jh3h=3Þ time.

Proof. We first show that jadjð> vÞj � h for all v 2 V . Sup-
pose on the contrary that there exists a vertex v 2 V such
that jadjð> vÞj > h. Since jadjð> vÞj > h, there are at
least ðhþ 1Þ vertices that are ordered after v, i.e., they
have degree at least as large as v. Since jadjðvÞj �
jadjð> vÞj > h, v has degree at least ðhþ 1Þ and hence
each u 2 adjð> vÞ has degree at least ðhþ 1Þ. This means
that there are at least ðhþ 1Þ vertices that have degree at
least ðhþ 1Þ, which contradicts to the fact that h is the
maximum value of h such that there are h vertices with
degree at least h. Thus, jadjð> vÞj � h for any v 2 V .

If jadjð> vÞj � h, then following a similar analysis to
Theorem 2 of [13] we can show that computing Mv by

Algorithm 2 uses at most Oðh3h=3Þ time. tu
For a typical power-law graph, h � jV j0:4 [23]. Thus, for

processing large power-law graphs, our algorithm is a signif-
icant improvement over the classic algorithms [9], [10], [20].

Core number ordering. Another interesting vertex ordering
we can use is based on k-core [30]. The k-core of a graph G is
the largest subgraph Ck ¼ ðVCk

; ECk
Þ ofG such that 8v 2 VCk

,

the degree of v in Ck is at least k. The core number of a vertex
v 2 V , denoted by cðvÞ, is defined as the largest k such that v
is inCk.

Let d be the maximum core number of a vertex inG. Note
that the degeneracy ofG is equal to d. However, we can give
an ordering of the vertices by their core number and show
that this ordering achieves better time complexity than that
by degeneracy ordering given in Theorem 1. We present the
details in Lemma 3, Theorems 3 and 4, which are due to
Fu [34].

Lemma 3. There exists an ordering of the vertices in G such that
(1) for all v 2 V , IDðvÞ ¼ i if v is at the ith position by the
ordering, (2) for all u; v 2 V , if IDðuÞ < IDðvÞ, then
cðuÞ � cðvÞ, and (3) for all v 2 Vi, jadjð> vÞj � i.
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Proof. We obtain such an ordering as follows. We repeat-
edly delete fromG a vertex v that has the smallest degree,
where tires are broken arbitrarily, and assign IDðvÞ ¼ i if
v is the ith vertex to be deleted. Note that when we delete
v, we also delete all edges incident to v and this changes
the degree of other vertices (e.g., deleting ðu; vÞ decreases
the degree of u by 1).

For all u; v 2 V , if IDðuÞ < IDðvÞ, then at the time u is
deleted from G, the degree of u is not larger than that of
v, which implies that cðuÞ � cðvÞ.

For all v 2 Vi, at the time when v is deleted from G, the
degree of v is at most i, which implies that there are at
most i neighbors of v that are deleted later than v, and
thus jadjð> vÞj � i. tu
By the ordering given in the proof of Lemma 3, we have

the following new complexity.
Let Vi be the set of vertices with core number i and

ni ¼ jVij. Note that ni ¼ jVCi
n VCiþ1 j for 1 � i < d and

nd ¼ jVCd
j.

Theorem 3. Given a graph G ¼ ðV;EÞ, when the vertices are
ordered by core number ordering as given in Lemma 3, apply-
ing Algorithm 2 to compute Mv for all v 2 V uses

OðPd
i¼1 nii3

i=3Þ time.

Proof. The proof is similar to that of Theorem 2 except that
we partition the vertex set into fV1; V2; . . . ; Vdg according
to the core number of the vertices. For all v 2 Vi, since
jadjð> vÞj � i according to Lemma 3, computingMv for

all v 2 Vi uses Oðnii3
i=3Þ time. tu

Since in most real-world graphs, the number of vertices
with core number i decreases rapidly when i increases, the
complexity using core number ordering can be much
smaller than that using degeneracy ordering. The following
theorem further shows that the complexity of MCE given in
Theorem 3 is close to the lower bound.

Theorem 4. The maximum possible number of maximal cliques
in a graph G, where the degeneracy of G is d, is given by
Pd�1

i¼1 ni3
i=3 þ ðnd � dÞ3d=3, and such a graph exists.

Proof. It is shown that the maximum possible number of
maximal cliques in a graph with n vertices is bounded by

3n=3 [35]. For all v 2 Vi, jadjð> vÞj � i according to
Lemma 3, which means that the subgraph of G induced

by adjð> vÞ gives at most 3i=3 maximal cliques. Since
any maximal clique in Mv is a subset of ðfvg [ adj

ð> vÞÞ, v forms at most 3i=3 maximal cliques with vertices

in adjð> vÞ and hence jMvj � 3i=3. Thus,
P

v2Vi
jMvj � ni3

i=3.
When i ¼ d, the subgraph induced by Vd, i.e., Cd, has

degeneracy d. By Theorem 3 of [13], the maximum possi-
ble number of maximal cliques in a graph with degener-

acy d is given by ðnd � dÞ3d=3.
Next we show that there exists a graph G that has

Pd�1
i¼1 ni3

i=3 þ ðnd � dÞ3d=3 maximal cliques. The graph G

is formed by d=3 components (for simplicity, we assume
that d is a multiple of 3) and a main component. The
main component is a Turan’s graph T ðd; d=3Þ, forming
d=3 independent sets (each of size 3), and with edges

from each vertex in each independent set connected to
all vertices in the other independent sets. The other d=3
components are L1; . . . ; Ld=3, where Li contains mi verti-

ces and there is no edge among vertices in Li, i.e., Li is an
independent set in G (for simplicity, we assume that
mi � 3). Each vertex in Li is connected to all vertices in i
independent sets in T ðd; d=3Þ. Obviously, vertices in Li

have core number 3i, and hence mi ¼ n3i for i < d=3,
and nd ¼ md=3 þ d since the d vertices in T ðd; d=3Þ are
also in the d-core. For 1 � i � d, if i%d 6¼ 0, then ni ¼ 0
(note that no maximal clique is formed by vertices with
core number i in this case). Now consider the number of
maximal cliques that can be formed by vertices in Li for
1 � i < d=3. Note that each vertex in Li is linked to i sets
of independent sets fI1; . . . ; Iig in T ðd; d=3Þ. A maximal
clique can be formed by picking one vertex from Li, and
one vertex from each of I1; . . . ; Ii. Hence the number of
maximal cliques that can be formed by vertices in Li is

given by mi3
i ¼ n3i3

i. Since nd ¼ md=3 þ d, the number of

maximal cliques that can be formed by vertices in Ld=3 is

given by md=33
d=3 ¼ ðnd � dÞ3d=3. Combining all compo-

nents we have a graph with
Pd�1

i¼1 ðniÞ3i=3 þ ðnd � dÞ3d=3
maximal cliques. tu
Theorem 4 implies that the worst-case time complexity of

MCE in a graph with degeneracy d is at least

OðPd�1
i¼1 ni3

i=3 þ ðnd � dÞ3d=3Þ since there are so many maxi-
mal cliques in the worst case. Thus, the worst-case time
complexity of our algorithm for computingMv for all v 2 Vi

is only a factor of i greater than the lower bound time com-
plexity. Importantly, i is small when ni is large, and nd is
usually small for most real-world graphs. We further verify
the efficiency of MCE by each ordering by experiments.

3.4 Work Efficiency and Workload Balancing

The vertex ordering not only gives a tremendously reduced
worst-case time complexity for MCE in processing many
common real-world graphs especially power-law graphs
and d-degenerate graphs, but it also effectively solves the
problem of skewed workload distribution due to high-
degree vertices.

The following theorem shows that the total amount of
work performed by all the machines is asymptotically the
same as that by sequentially executing Algorithm 2 to com-
puteMv for all v 2 V , which achieves the best known time
complexity (as given in Theorem 3) for computing maximal
cliques in a graph with degeneracy d (the previous best com-
plexity is given by [13] as shown in Theorem 1). In addition,
it also shows that the workload at each worker machine is
bounded by d instead of jV j or the degree of the vertices.
Theorem 5. The total amount of work performed by all the

machines for computing the set of maximal cliques by core
number ordering, as well as the total amount of data being
communicated, is OðPd

i¼1 nii3
i=3Þ. The amount of work done

by any worker machine is OððjV j=fÞndd3
d=3Þ, where f is the

number of worker machines.

Proof. The total amount of data distributed to all the worker
machines is bounded by the total amount of data proc-
essed in the worker machines. SinceMv, for each v 2 V ,
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is computed only in one machine, and no machine per-
forms any other extra work, the total amount of work

performed at all the worker machines is OðPd
i¼1 nii3

i=3Þ.
Each worker machine may compute Mv for ðjV j=fÞ

vertices. Computing eachMv uses Oðnii3
i=3Þ time, where

v 2 Vi. In the worst case, v 2 Vd and Oðnii3
i=3Þ ¼

Oðndd3
d=3Þ. Here, we assume OðdndÞ ¼ Oð3d=3Þ, otherwise

d must be small and nd � ni � jV j, which implies that

both Oðnii3
i=3Þ ¼ OðjV jÞ and Oðndd3

d=3Þ ¼ OðjV jÞ (which
is a better bound for a task like MCE). tu
Note that the same analysis can be applied if the vertices

are ordered by degeneracy ordering or degree ordering, by
substituting the complexity given in Theorems 1 and 2 into
the analysis, respectively.

4 QUERYING MAXIMAL CLIQUES

The set of maximal cliques is often too large to manage and
be used directly for analysis. Thus, we propose a set of fun-
damental queries onMðGÞ to help users find targeted maxi-
mal cliques for more effective and efficient analysis.

4.1 Data Structure

Before we discuss the queries, we first present the data
structure that we use to store the maximal cliques. When
we apply Algorithm 2 to computeMv, for each v 2 V , the
process naturally constructs a prefix tree, denoted by Tv,
such that the root of Tv is v and each root-to-leaf path repre-
sents a maximal clique inMv. We use the prefix tree struc-
ture because it can effectively save storage space by sharing
the common subsets among maximal cliques.

The prefix trees Tv for each v 2 V are stored in distrib-
uted file system. To support efficient querying of the maxi-
mal cliques, we also record the following information for
each Tv:

� levelðxÞ: for each node x in Tv, we record the level of
x in Tv, where the level of the root is 1 and
levelðxÞ ¼ levelðparentðxÞÞ þ 1 (parentðxÞ is the par-
ent of x in Tv).

� labelðxÞ: a vertex u 2 adjð> vÞmay occur in multiple
maximal cliques in Mv and hence may be repre-
sented by multiple nodes in Tv; if u is represented by
node x in Tv, then labelðxÞ ¼ u.

� nodeListvðuÞ: since a vertex u 2 adjð> vÞ may be
represented by multiple nodes in Tv, nodeListvðuÞ
gives the list of nodes in Tv that represent u, i.e., for
each nodeðuÞ 2 nodeListvðuÞ, labelðnodeðuÞÞ ¼ u,
where we use nodeðuÞ to indicate an occurrence of u
in Tv.

� leafListw: this gives the list of leaf nodes (in the
order from left to right) in Tv.

4.2 Query(v)

The first type of queries we want to consider is to find all
maximal cliques containing a given vertex, denoted by
queryðvÞ: given a query vertex v, queryðvÞ returns
MðvÞ ¼ fC : C 2 MðGÞ; v 2 Cg. Note thatMðvÞ 	 Mv.

The following observation shows how queryðvÞ can be
processed efficiently.

Observation 1. For any maximal clique C 2 MðvÞ, C can be
found in Tu for some u 2 ðadjð< vÞ [ fvgÞ.

Proof. Let u0 ¼ argminw2CIDðwÞ. Then, either u0 ¼ v in
which case C is in Tv, or u

0 2 adjð< vÞ in which case C is
in Tu0 . tu
We give our algorithm for processing queryðvÞ in

Algorithm 3, which follows Observation 1 to search Tu for
all u 2 ðadjð< vÞ [ fvgÞ to find all maximal cliques inMðvÞ.

Algorithm 3. QueryðvÞ
Input: A query vertex v,

and Tu for all u 2 ðadjð< vÞ [ fvgÞ
Output:MðvÞ

1 output all maximal cliques in Tv;
2 foreach u 2 adjð< vÞ do
3 foreach nodeðvÞ 2 nodeListuðvÞ do
4 initialize an empty array C;
5 C½levelðnodeðvÞÞ�  v;
6 search-upðC; nodeðvÞ; TuÞ;
7 search-downðC; nodeðvÞ; TuÞ;

First, we can simply perform a depth-first search in Tv,
and output the maximal clique represented by each root-to-
leaf path. Then, we search Tu for each u 2 adjð< vÞ as
follows. We follow the node list of v in Tu. For each
nodeðvÞ 2 nodeListuðvÞ, we first search up from nodeðvÞ to
the root (by the “search-up” procedure, i.e., Algorithm 4),
and then search down from nodeðvÞ to each leaf f in the sub-
tree rooted at nodeðvÞ (by the “search-down” procedure, i.e.,
Algorithm 5). Each root-to-f path via nodeðvÞ represents a
maximal clique inMu that contains v, and is thus reported
as a query answer.

Algorithm 4. Search-UpðC; x; T Þ
1 while x is not the root of T do
2 x parentðxÞ;
3 C½levelðxÞ�  labelðxÞ;

Algorithm 5. Search-DownðC; x; T Þ
1 if x is a leaf in T then
2 output C0 ¼ fC½i� : 1 � i � levelðxÞg as a maximal clique;
3 else
4 foreach child y of x in T do
5 C½levelðyÞ�  labelðyÞ;
6 search-downðC; y; T Þ;

4.3 Query(�s)
The set MðGÞ is large; however, most of the maximal cli-
ques in MðGÞ are small in size. According to [19], large
maximal cliques are more useful and interesting than small
maximal cliques, and the set of large maximal cliques is
much smaller and hence more manageable. Thus, the sec-
ond type of queries we ask is to find all large maximal cli-
ques, denoted by queryð� sÞ: given a size threshold s,
queryð� sÞ returnsM�sðGÞ ¼ fC : C 2 MðGÞ; jCj � sg. The
term “large” depends on applications and hence we allow
users the flexibility to specify a size threshold s.
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We give the algorithm for processing queryð� sÞ in
Algorithm 6, which searches Tv for all v 2 V if the depth of
Tv is at least s. Note that the query is executed in parallel
and the worker machines retrieve Tv from distributed file
system where Tv is stored, and then the partial query
answers from each worker machine are sent to the machine
where the query is issued.

Algorithm 6. Queryð� sÞ
Input: A size threshold s, and Tv for all v 2 V
Output:M�sðGÞ

1 foreach v 2 V do
2 if depthðTvÞ � s then
3 initialize an empty array C;
4 foreach f 2 leafListv, where levelðfÞ � s, do
5 C½levelðfÞ�  labelðfÞ;
6 search-upðC; f; TvÞ;
7 output C0 ¼ fC½i� : 1 � i � levelðfÞg as a

maximal clique;

To process queryð� sÞ, we follow the leaf list of each Tv.
For each leaf node f in leafListv, if the level of f is at least s,
we simply output the maximal clique represented by the
root-to-f path. Since there may be many leaf nodes that
share the same prefix subpath, we can perform an optimiza-
tion as follows. During the search-up process, when we
reach the internal node x at level s, we first obtain the root-
to-x prefix subpath by the “search-up” procedure (i.e.,
Algorithm 4). Then, we invoke the “search-down” proce-
dure (i.e., Algorithm 5) starting at x to every leaf f 0 in the
subtree rooted at x, and output the maximal clique repre-
sented by each root-to-f 0 path via x. Then, we start the pro-
cess again from the next leaf node in leafListv that is not in
the subtree rooted at x.

4.4 Query(U)

The query queryðvÞ finds all maximal cliques containing a
single vertex. We now consider another type of queries that
return all maximal cliques containing a set of vertices,
denoted by queryð	 UÞ: given a query vertex set U ,
queryð	 UÞ returns Mð	 UÞ ¼ fC : C 2MðGÞ; C 	 Ug.
Note that U must be a clique for this query, otherwise
Mð	 UÞ ¼ ;.

We also consider the type of queries that return all maxi-
mal cliques that are subsets of a given query vertex set,
denoted by queryð� UÞ: given U , queryð� UÞ returns
Mð� UÞ ¼ fC : C 2MðGÞ; C � Ug.

We first discuss how we process queryð	 UÞ. The fol-
lowing observation gives the search space of processing
the query.

Observation 2. Let v ¼ argminu2UIDðuÞ. For any maximal
clique C 2 Mð	 UÞ, C can be found in Tw for some
w 2 ðadjð< vÞ [ fvgÞ.

Proof. Since U itself is a clique but may not be maximal, any
maximal clique containing U as a subset must be either
inMv or inMw for some w 2 adjð< vÞ. tu
We give the algorithm for processing queryð	 UÞ in

Algorithm 7. We first prune the search space by discarding
any w 2 fadjð< vÞ [ fvgg if U~adjð> wÞ [ fwg, because in

this case U cannot be contained in any maximal clique in
Mw. Then, for each Tw, we follow the leaf list of Tw. For each
leaf node f in leafListw, if the level of f is smaller than jU j,
we can safely skip f . Otherwise, we invoke the “search-up”
procedure to obtain the root-to-f path in Tw. During the
search process, we count the number of nodes that are not
in U , and denote this number by c. If levelðfÞ � c < jU j,
then U cannot be contained in the maximal clique repre-
sented by this root-to-f path and hence we terminate the
process and continue with next f 2 leafListw. Otherwise, if
the search reaches the root and levelðfÞ � c � jU j, then the
maximal clique C represented by the root-to-f path must
contain U as a subset, and we output C.

Algorithm 7. Queryð	 UÞ
Input: A query vertex set U , and Tw for all w 2

ðadjð< vÞ [ fvgÞ, where v ¼ argminu2UIDðuÞ
Output:Mð	 UÞ

1 foreach w 2 fadjð< vÞ [ fvgg do
2 if U � adjð> wÞ [ fwg then
3 foreach f 2 leafListw, where levelðfÞ � jU j, do
4 output the maximal clique C represented by the root-

to-f path in Tw, if C 	 U ;

Next, we discuss how we process queryð� UÞ. The fol-
lowing observation gives the search space of processing
the query.

Observation 3. For any maximal clique C 2 Mð� UÞ, C can
be found in Tu for some u 2 U .

Proof. Let u ¼ argminw2CIDðwÞ. First, C 2 Mu and C can be
found in Tu. Since C must be a subset of U , we have
u 2 U . tu
We give the algorithm for processing queryð� UÞ in

Algorithm 8. We search Tu for each u 2 U according to
Observation 3. Since each maximal clique represented in Tu

must be a subset of ðadjð> uÞ [ fugÞ and also of U , we first
obtain cand ¼ adjð> uÞ \ U . Then, we invoke the “search-
down” procedure starting from the root of Tu. During the
process, if any internal node x is not in cand, we can prune
the whole subtree rooted at x, because the maximal clique
represented by any root-to-leaf path via x cannot be a subset
of U since x is not in U . If the search reaches a leaf node f ,
then the maximal clique C represented by any root-to-f
must be a subset of U , and we output C.

Algorithm 8. Queryð� UÞ
Input: A query vertex set U , and Tu for all u 2 U
Output:Mð� UÞ

1 foreach u 2 U do
2 cand adjð> uÞ \ U ;
3 output the maximal clique C represented by each root-to-

leaf path in Tu, if C � ðcand [ fugÞ;

4.5 Top-k Query

A top-k query finds the k maximal cliques that have the
largest size (ties are broken arbitrarily), i.e., the query
returns MðkÞ where MðkÞ � MðGÞ, jMðkÞj ¼ k, and for
any C 2 MðkÞ and C0 2 ðMðGÞ nMðkÞÞ, jCj � jC0j. A
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special case is the top-1 query, which returns the maximum
clique in G.

We discuss how a top-k query can be processed as follows.
Let a be the size of the maximum clique in G and Ni be the
number of maximal cliques with size i (note that the distribu-
tion of the sizes of the maximal cliques can be easily obtained
as a by-product of the MCE process). Then, we approximate
the size of the kth largest maximal clique as b, such thatPa

i¼bþ1 Ni � k �Pa
i¼b Ni. Based on this approximation, a

top-k query can be transformed into queryð� bÞ and return
the top-k largestmaximal cliques in the query answer.

5 UPDATING MAXIMAL CLIQUES

To manage the set of maximal cliques, we also need to con-
sider update maintenance of the set when the underlying
graph is updated. Clearly it is not practical to re-compute
MðGÞ every time when G is updated. Thus, we propose
efficient algorithms to support incremental update of
MðGÞ. We consider two update operations: edge insertion
and edge deletion. Note that vertex deletion can be consid-
ered as a series of edge deletion followed by the deletion of
an isolated vertex, while the deletion (and insertion) of an
isolated vertex (i.e., a maximal clique of size 1) is trivial.

In the following discussion, we process the insertion and
deletion of an edge ðu; vÞ, and without loss of generality
we assume IDðuÞ < IDðvÞ. Note that after the insertion
and deletion of ðu; vÞ, the vertex ordering discussed in
Section 3.3 may change; however, we do not change the ID
of the vertices during the update and hence the update
result does not affect the correctness of query processing
discussed in Section 4.

5.1 Edge Insertion

When an edge ðu; vÞ is inserted into G, we have two cases to
handle: (1) some existing maximal cliques become non-max-
imal, which need to be deleted; and (2) newmaximal cliques
appear in G, which need to be inserted. We process the two
cases as shown in Algorithm 9.

Algorithm 9. Insertðu; vÞ
1 cand ðadjðuÞ \ adjðvÞÞ [ fu; vg;
2 foreach w 2 ððadjð> uÞ \ adjð< vÞÞ [ fvgÞ do
3 DeleteNodeðv; Tw; candÞ;
4 foreach w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ do
5 DeleteNodeðv; Tw; candÞ;
6 DeleteNodeðu; Tw; candÞ;
7 newcand ðadjð> wÞ \ candÞ n fu; vg;
8 newprev adjð< wÞ \ cand;
9 foreach w0 2 newcand do
10 ADJ>w½w0�  adjðw0Þ \ adjð> wÞ;
11 ADJw½w0�  adjðw0Þ \ adjðwÞ;
12 invoke LocalMCEðfu; v; wg; newcand; newprev; ADJ>w;

ADJwÞ to generate new maximal cliques containing
fu; vg and fwg and insert them into Tw;

For Case (1), an existing maximal clique C becomes
non-maximal only if C contains either u or v, and
C 
 ðadjðuÞ \ adjðvÞÞ [ fu; vg, since now C [ fvg or
C [ fug is a new maximal clique containing C. The fol-
lowing observation shows where C can be found.

Observation 4. Let C be a maximal clique before inserting
ðu; vÞ, where C 
 ðadjðuÞ \ adjðvÞÞ [ fu; vg and either
u 2 C or v 2 C. Then, C is represented by a root-to-leaf
path in Tw, where w 2 ððadjð> uÞ \ adjð< vÞÞ [ fvgÞ or
w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ.

Proof. Let w ¼ argminw02CIDðw0Þ. Then, C 2Mw and hence
C is represented by a root-to-leaf path in Tw. Regarding
w we have two cases: (1) IDðuÞ < IDðwÞ < IDðvÞ or
w ¼ v, which implies w 2 ððadjð> uÞ \ adjð< vÞÞ [ fvgÞ;
or (2) IDðwÞ < IDðuÞ or w ¼ u, which implies
w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ. tu
Following Observation 4, first Lines 3, 5 and 6 of

Algorithm 9 call the “DeleteNode” procedure (i.e.,
Algorithm 10) to delete an existing maximal clique C from
Tw, if C will become non-maximal after inserting ðu; vÞ, i.e.,
C 
 cand ¼ ðadjðuÞ \ adjðvÞÞ [ fu; vg (checked in Line 3 of
Algorithm 10). Since C is represented by a root-to-leaf path
in Tw but a prefix subpath of C may be shared by some other
maximal cliques inMw, we only remove the part of the path
that is not shared by any other maximal cliques (Line 5.1 of
Algorithm 10).

Algorithm 10. DeleteNodeðx; Tw; candÞ
1 foreach nodeðxÞ 2 nodeListwðxÞ do
2 foreach maximal clique C represented by each root-to-leaf path

via nodeðxÞ in Tw do
3 if C 
 cand then
4 starting from the leaf node and moving along the path

up to the root, recursively delete from Tw any node
that has no child (note that initially only the leaf node
has no child);

Now we process Case (2). The following observation
shows where a new maximal clique C should be inserted.

Observation 5. Let C be a new maximal clique after insert-
ing ðu; vÞ into G. Then, C should be inserted into Tw,
where w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ.

Proof. Let w ¼ argminw02CIDðw0Þ. Then, C should be inMw

and hence inserted into Tw. Since u; v 2 C and
IDðuÞ < IDðvÞ, we have IDðwÞ < IDðuÞ or w ¼ u,
which implies w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ. tu

Following Observation 5, we first generate all new
maximal cliques that contain fu; v; wg, for each w 2
ððadjð< uÞ \ adjð< vÞÞ [ fugÞ, which is processed by the
algorithm “LocalMCE” (i.e., Algorithm 2), and we
also insert the new maximal cliques into Tw (Lines 7-12 of
Algorithm 9).

5.2 Edge Deletion

The deletion of an edge ðu; vÞ is processed in essentially the
reverse way of how we process the edge insertion. As
shown in Algorithm 11, we first delete all the existing maxi-
mal cliques that contain both u and v, where such maximal
cliques appear in Tw, where w is defined in Observation 5.
Then, we general all new maximal cliques that contain
only u or v, and insert them into Tw, where w is defined in
Observation 4.

XU ET AL.: DISTRIBUTED MAXIMAL CLIQUE COMPUTATION AND MANAGEMENT 117



Algorithm 11. Deleteðu; vÞ
1 cand ðadjðuÞ \ adjðvÞÞ [ fu; vg;
2 foreach w 2 ððadjð< uÞ \ adjð< vÞÞ [ fugÞ do
3 delete unshared nodes along any path in Tw that represents

a maximal clique containing both u and v by a procedure
similar to Algorithm 10;

4 compute all new maximal cliques that contain C ¼ fw; ug
and insert them into Tw by a procedure similar to Lines 7-
12 of Algorithm 9; and similarly for C ¼ fw; vg;

5 foreach w 2 ððadjð> uÞ \ adjð< vÞÞ [ fvgÞ do
6 compute all new maximal cliques that contain C ¼ fw; vg

and insert them into Tw by a procedure similar to Lines 7-
12 of Algorithm 9;

6 EXPERIMENTAL EVALUATION

We evaluate the performance of our algorithms for comput-
ing, querying, and updating the set of maximal cliques. We
tested our algorithms on a cluster of 64 computing nodes,
each with a 2.0 GHz, 4 GB RAM, and a 300 GB SATA disk
(SAS 6 Gb/s, 10,000 rpm, 64 MB buffer). The communication
speed between the computing nodes in the cluster is 1 Gbps.

We select five datasets from five different domains in the
Stanford Large Network Dataset Collection (http://
snap.stanford.edu/data/). The Youtube dataset
comes from the community networks with ground-truth
communities, where users form friendship each other. The
Patents dataset is from the citation networks. The Google
dataset is a Web graph from Google and it is selected from
the category of Web graphs. The Skitter dataset is an Inter-
net topology graph and it is selected from the category of
Systems graphs. The Wi-ki dataset is a Wikipedia talk (com-
munication) network from the Wikipedia networks. Some
of the graphs are directed and we ignore the edge direction
to study maximal cliques in these graphs. Table 1 gives
some statistical information about the datasets, including
the number of vertices (jV j), the number of edges (jEj), the
maximum vertex degree (degmax), the maximum core num-
ber or degeneracy of the graph (d), the size of the maximum
clique (a), and the number of maximal cliques (jMðGÞj).

6.1 Results of Computing Maximal Cliques

We evaluate the performance of computing the set of maxi-
mal cliques, compared with an existing MapReduce MCE
algorithm [29], denoted by Wu et al. in Table 3. Wu et al.’s
algorithm was implemented using Hadoop 1.2.1, and we
set the number of reducers to the total number of cores in
the cluster. We also used the Hadoop distributed file
system to store the graph data and the prefix trees that rep-
resent the set of maximal cliques, but implemented our own

version of Map and Reduce phases for both data
distribution (see Section 3.1) and MCE computation (see
Section 3.2). We ran the algorithms on 4, 8, 16, 32, and 64
machines, respectively, and recorded the elapsed running
time (in seconds).

Effect of vertex orderings. We first report the elapsed run-
ning time of our algorithm for MCE using different vertex
orderings by core number, degree, and degeneracy, respec-
tively, as shown in Fig. 2. Note that the running time
includes the time to compute the orderings. The results
show that for all the datasets, when more machines are
used, there is a significant decrease in the elapsed run-
ning time. On average, we record 1.60 times reduction in
the elapsed running time when the number of machines
is doubled for both core number ordering and degener-
acy order, while for degree ordering the reduction is 1.54
times. Among the three vertex orderings, core number
ordering achieves the best performance consistently in
most of the cases. The result thus verifies our analysis
that core number ordering gives the lowest time com-
plexity for MCE in Section 3.3. The performance of
degree ordering is comparable with that of degeneracy
ordering in most cases, except for processing the Skitter
dataset its performance is considerably worse when 4 to
16 machines are used.

We also measured the data distribution time of our algo-
rithm, and found that the data distribution time is almost
the same regardless of which vertex ordering is used. We
thus report the data distribution time of core number order-
ing when different number of machines are used in Table 2.
The result shows that the data distribution time does not
decrease significantly when more than 16 machines are
used, which may be due to the fact that the communication
time also increases when more machines are used, and the
amount of data to be distributed is not large. Compared
with the running time shown in Fig. 2, we can see that the
overall data distribution time is only a small portion of the
elapsed running time, especially for the Skitter and Wi-ki
datasets. Thus, it is important to have an efficient algorithm
for the main MCE process.

Fig. 2. Running time (in seconds) of MCE with different vertex orderings.

TABLE 2
Data Distribution Time (in Seconds) for

4, 8, 16, 32, and 64 Machines

Youtube Patents Google Skitter Wi-ki

4 4.8286 4.3470 4.4218 4.1530 4.3232
8 3.7168 3.5472 3.6615 3.5509 3.6869
16 2.8447 2.6010 2.6174 2.9907 2.7394
32 2.4480 2.6241 2.5171 2.3189 2.4165
64 2.5729 2.3870 2.4692 2.4641 2.5176
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Comparison with Wu et al. [29].We now compare the per-
formance of our algorithm (by core number ordering)
with that of Wu et al.’s algorithm. We also report the
performance of our algorithm without the ordering strat-
egy proposed in Section 3.3. We report the running time
for 16 machines, as the running time of Wu et al.’s algo-
rithm is orders of magnitude larger than ours in all cases
while our algorithm also shows a better scalability in
terms of number of machines used. As shown in Table 3,
Wu et al.’s algorithm is up to orders of magnitude
slower than both versions of our algorithms, which
clearly demonstrates the efficiency of our algorithms.
The result also shows that our new algorithm with order-
ing is significantly faster than the version without apply-
ing the ordering strategy (please refer to Section 3.3
for the theoretical analysis that explains the improve-
ment made).

6.2 Results of Querying Maximal Cliques

We now evaluate the performance of our algorithms for
querying the set of maximal cliques. We are not aware of
any existing work on querying maximal cliques and hence
we only report the results of our algorithms for different
types of queries under different settings. We processed each
query using 4, 8, 16, 32, and 64 machines, respectively, and
recorded the elapsed running time (in seconds).

Performance of queryðvÞ. We randomly select 1,000 vertices
from each graph and process queryðvÞ on each of the verti-
ces. Table 4 reports the average running time. The result
shows that this type of queries is fast to process. We also
notice that the querying time is not significantly reduced (as
compared with the time trend of MCE as shown in Fig. 2)
when more machines are used, especially when the number
increases to 32 and 64. This can be explained as the process-
ing of queryðvÞ is concentrated on Tv, which is processed by
a single worker machine, and thus using more machines
does not reduce the querying time a lot due to the curse of the
last worker, i.e., when measuring the running time, the time
taken by the last worker that completes the last querying
task determines the elapsed time.

Performance of queryð� sÞ. Since the size of the maximal
cliques is a relative measure for different datasets, we set s
to be relative to the size of the maximum clique, denoted by
a in Table 1. We set s from 0:5a to 0:9a, and report the
elapsed running time in Fig. 3. The result shows that a
smaller s has a longer running time, as more maximal cli-
ques are returned as query answers. From Fig. 3, we also
see that, unlike queryðvÞ, the running time of queryð� sÞ
decreases significantly in many instances when more
machines are used, especially for s ¼ 0:5a. This is because
processing queryð� sÞ searches Tv for all v 2 V and hence
the search time is balanced and shared by all machines.
Overall, the result shows that the efficiency of processing
queryð� sÞ depends on the number of query answers
returned, and processing queryð� sÞ is fast when s � 0:8a.

Performance of queryð	 UÞ. For queryð	 UÞ, since U
should be a clique for this query, we test smaller sets of
query vertices from jU j ¼ 2 to jUj ¼ 44. We randomly gener-
ate 1,000 query sets for each jU j and report the average run-
ning time in Tables 5, 6, 7, 8, 9. For some datasets, when
there is no answer returned for the query, we indicate it by
“�” in the tables. The running time of processing
queryð	 UÞ decreases when more machines are used in
most cases. However, when jU j increases, the running time
may not increase. This is because the running time also
depends on the number of maximal cliques that are super-
sets of U , which is generally smaller for a larger jU j. In fact,
the running time of processing queries on the Google and
Skitter datasets decreases significantly when jUj increases to
44, because the answer sets are much smaller.

Performance of queryð� UÞ. For queryð� UÞ, since query
answers are maximal cliques that are subsets of U , we set
jUj to be larger. In fact, randomly selecting vertices for U
does not lead to a meaningful query. Thus, we use the
top-5 cores of each graph, i.e., ðd� iÞ-core for 0 � i � 4 (d
is given in Table 1). The d-core is considered as the heart
of a graph and the top-k cores for a small k are generally
dense subgraphs with concentrated occurrences of large
maximal cliques in the graph. We report the elapsed run-
ning time in Tables 10, 11, 12, 13, 14. In most cases, the
running time of processing queryð� UÞ is longer for the

TABLE 3
Running Time (in Seconds) of our Algorithm, our Algorithm

without Ordering, and Wu et al.’s Algorithm

Ours Ours w/o ordering Wu et al.

Youtube 7.0162 19.1142 982
Patents 8.4981 15.1322 2,868
Google 5.8394 6.5572 1,178
Skitter 140.3460 3,852.7610 > 10,000
Wi-ki 219.2920 550.0324 > 10,000

TABLE 4
Running Time (in Seconds) for queryðvÞ

Youtube Patents Google Skitter Wi-ki

4 0.0596 0.1810 0.0755 0.0862 0.1205
8 0.0384 0.1015 0.0474 0.0554 0.0648
16 0.0264 0.0600 0.0343 0.0387 0.0479
32 0.0251 0.0578 0.0231 0.0403 0.0433
64 0.0284 0.0671 0.0319 0.0296 0.0509

Fig. 3. Running time (in seconds) for processing queryð� sÞ:
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ðd� iÞ-core than for the ðd� i� 1Þ-core, since the
ðd� iÞ-core is larger in size, and the time also decreases
when more machines are used.

Overall, processing queryð	 UÞ and queryð� UÞ is consid-
erably more costly than processing queryðvÞ, but is still quite
efficient considering that we store and search the data in
distributed file system and the query answers need to be
sent to the machine where the query is issued.

6.3 Results of Updating Maximal Cliques

We now evaluate the performance of updating the set of
maximal cliques, MðGÞ. For edge insertion, we randomly
generated 1,000 edges that are not in G, and insert them into
G. For edge deletion, we randomly selected 1,000 existing
edges inG to be deleted. Tables 15 and 16 report the average
elapsed running time for each update operation, running on
4, 8, 16, 32, and 64 machines, respectively.

TABLE 5
Running Time (in Seconds) for Processing

queryð	 UÞ in Youtube

jU j ¼ 2 jU j ¼ 4 jU j ¼ 8 jU j ¼ 16 jU j ¼ 32 jU j ¼ 44

4 0.4040 0.5898 0.0640 � � �
8 0.2399 0.3221 0.0373 � � �
16 0.1339 0.1721 0.0239 � � �
32 0.0762 0.0961 0.1437 � � �
64 0.0689 0.0892 0.0982 � � �

TABLE 6
Running Time (in Seconds) for Processing

queryð	 UÞ in Patents

jU j ¼ 2 jU j ¼ 4 jU j ¼ 8 jU j ¼ 16 jU j ¼ 32 jU j ¼ 44

4 0.1827 0.1889 0.1626 � � �
8 0.1168 0.1132 0.1099 � � �
16 0.0730 0.0731 0.0690 � � �
32 0.0704 0.0721 0.0657 � � �
64 0.0615 0.0622 0.0605 � � �

TABLE 7
Running Time (in Seconds) for Processing

queryð	 UÞ in Google

jU j ¼ 2 jU j ¼ 4 jU j ¼ 8 jU j ¼ 16 jU j ¼ 32 jU j ¼ 44

4 0.8969 0.1068 0.1169 0.1267 0.1415 0.0073
8 0.5956 0.0717 0.0728 0.0793 0.0963 0.0084
16 0.4856 0.0561 0.0698 0.0743 0.0461 0.0088
32 0.0536 0.0539 0.0532 0.0527 0.0490 0.0073
64 0.0461 0.0329 0.03409 0.0338 0.0737 0.0120

TABLE 8
Running Time (in Seconds) for Processing queryð	 UÞ in Skitter

jU j ¼ 2 jU j ¼ 4 jU j ¼ 8 jU j ¼ 16 jU j ¼ 32 jU j ¼ 44

4 0.0784 0.1138 0.1139 0.1135 0.1138 0.0095
8 0.2563 0.0782 0.0778 0.0779 0.0776 0.0115
16 0.1218 0.0526 0.0532 0.0535 0.0526 0.0110
32 0.0947 0.0492 0.0490 0.0493 0.0494 0.0101
64 0.0811 0.0421 0.0421 0.0420 0.0428 0.0140

TABLE 9
Running Time (in Seconds) for Processing queryð	 UÞ in Wi-ki

jU j ¼ 2 jU j ¼ 4 jU j ¼ 8 jU j ¼ 16 jU j ¼ 32 jU j ¼ 44

4 0.1411 0.9583 0.7626 1.2850 � �
8 0.1269 0.8204 0.6932 1.3464 � �
16 0.0891 0.5984 0.7338 0.9074 � �
32 0.0837 0.5777 0.5722 0.6455 � �
64 0.0743 0.3172 0.3144 0.3162 � �

TABLE 10
Running Time (in Seconds) for Processing

queryð� UÞ in Youtube

d-core ðd� 1Þ-core ðd� 2Þ-core ðd� 3Þ-core ðd� 4Þ-core
4 0.0697 0.8444 0.1715 0.4195 0.5148
8 0.0485 0.4845 0.1144 0.2757 0.2764
16 0.0393 0.2390 0.0804 0.1555 0.1553
32 0.0378 0.0945 0.0711 0.0920 0.0857
64 0.0412 0.0909 0.0573 0.0805 0.0744

TABLE 11
Running Time (in Seconds) for Processing

queryð� UÞ in Patents

d-core ðd� 1Þ-core ðd� 2Þ-core ðd� 3Þ-core ðd� 4Þ-core
4 0.1838 0.1826 0.1996 0.1948 0.3370
8 0.1142 0.1109 0.1105 0.1270 0.1211
16 0.0742 0.0733 0.0732 0.0726 0.0717
32 0.0714 0.0705 0.0698 0.0700 0.0702
64 0.0899 0.0835 0.0827 0.0820 0.0690

TABLE 12
Running Time (in Seconds) for Processing

queryð� UÞ in Google

d-core ðd� 1Þ-core ðd� 2Þ-core ðd� 3Þ-core ðd� 4Þ-core
4 0.3370 0.3361 0.1786 0.2484 0.0672
8 0.3544 0.0326 0.1196 0.1765 0.0380
16 0.0359 0.3591 0.0888 0.1472 0.0288
32 0.0366 0.2905 0.0759 0.1171 0.0244
64 0.0749 0.7163 0.1247 0.1483 0.7354

TABLE 13
Running Time (in Seconds) for Processing queryð� UÞ in Skitter

d-core ðd� 1Þ-core ðd� 2Þ-core ðd� 3Þ-core ðd� 4Þ-core
4 1.2994 1.4566 1.5215 2.0322 2.3524
8 0.0681 0.9186 0.8719 1.1336 1.2886
16 0.0480 0.4170 0.5307 0.5303 0.7615
32 0.0473 0.3305 0.2924 0.3263 0.4626
64 0.0686 0.4632 0.2833 0.3048 0.3483

TABLE 14
Running Time (in Seconds) for Processing queryð� UÞ in Wi-ki

d-core ðd� 1Þ-core ðd� 2Þ-core ðd� 3Þ-core ðd� 4Þ-core
4 2.5353 2.7972 3.2721 3.4666 4.0481
8 1.4458 1.7369 2.3970 2.6223 2.6401
16 0.8564 1.0326 1.5980 1.7243 1.8993
32 0.4838 0.6255 0.8171 0.8207 0.9370
64 0.2524 0.2752 0.7225 0.7652 0.7755
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The results show that updating MðGÞ for both edge
insertion and deletion is fast for all the datasets, but it is not
easy to see a trend when more machines are used. In gen-
eral, when more machines are used, the running time
decreases but the time reduction is not significant. We
examined the details and found that when an edge ðu; vÞ
is inserted or deleted, most updates are operated on Tu

and/or Tv. Since the updates on Tu and/or Tv take much
longer time, the time taken by the worker that processes
Tu and/or Tv is longer than that by other workers. Since
we measure the elapsed time, the finishing time of the
last worker determines the running time, and thus using
more machines does not help much in this situation.
However, we emphasize that the use of vertex ordering

has significantly limited the size of any Tv to Oð3d=3Þ.
Without the ordering, the size of Tv is bounded by Oð3n=3Þ
or Oð3jadjðvÞj=3Þ in practice, where Oð3jadjðvÞj=3Þ is still drasti-

cally larger than Oð3d=3Þ for high-degree vertices (see
Table 1). Thus, our method has already achieved a good
bounded balanced workload.

7 RELATED WORK

The classic algorithms for MCE are the backtrackingmethods
[8], [9], [10], [16], [20], which employ effective pruning by
selecting good pivots to reduce the search space, and give an
optimal worst-case time complexity of Oð3jV j=3Þ for process-
ing general graphs [20]. For processing d-degenerate
graphs, an extension of the algorithm that uses degeneracy

ordering achieves a time complexity of OðdjV j3d=3Þ [13],
[14]. Various output-sensitive MCE algorithms whose proc-
essing time is proportional to the number of maximal cli-
ques were also studied [18], [21]. Other algorithms, such as
computing a k-clique by joining two ðk� 1Þ-cliques [17], by
utilizing triangles [22], and enumerating maximal cliques of
size larger than a threshold [19], were also studied. All these
algorithms are sequential in-memory algorithms, which
do not scale well due to the high complexity of MCE. To
process graphs that are too large to fit in main memory,
I/O-efficient algorithms that recursively extract a core
part of the input graph for local MCE computation were
proposed [23], [24], and a theoretical analysis on the I/O
complexity of transforming the algorithm of [13], [14] into
an I/O-efficient version was given in [25]. Recently, sev-
eral parallel or distributed algorithms were proposed
[24], [26], [27], [28], [29], which we have discussed in Sec-
tion 1. Apart from algorithms for computing the maximal
cliques, a recent work proposed a concise summary of the
set of maximal cliques, which ensures that for every

maximal clique C, there is a good portion of C that is rep-
resented by some maximal clique in the summary [36].
This summary, however, is not a lossless representation
of the set of maximal cliques.

Note that computing maximal cliques is different from
finding the maximum clique, which is to find the largest max-
imal clique. We refer readers to a comprehensive survey in
[37] and a recent work on parallel maximum clique finding
by MapReduce [38] (and the references therein).

Finally, we note that a preliminary version of this paper
was presented in [39]. The preliminary version mainly
focuses on computing maximal cliques, while this submis-
sion focuses on both computing and querying the set of max-
imal cliques. Among the two problems, querying maximal
cliques is totally new, for which we introduce a new set of
queries on maximal cliques, discuss algorithms for efficient
query processing, and conduct extensive experiments to ver-
ify the efficiency of the querying algorithms. In addition, the
current submission also adds significantly more technical
details in the discussion of maximal clique computation.

8 CONCLUSIONS

We studied efficient algorithms for computing, querying,
updating the set of maximal cliques. Existing parallel algo-
rithms for computing maximal cliques are still immature
and we showed that our parallel algorithm is orders of mag-
nitude faster than the existing MapReduce algorithm for
MCE [29]. Both querying and updating the set of maximal
cliques have not been well studied in the past, and we
proposed efficient algorithms that achieve high efficiency
under various settings for a range of real-world datasets
from different domains.
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