
Load Balancing between Computing Clusters

Siu-Cheung Chau∗

Dept. of Physics and Computing, Wilfrid Laurier University,
Waterloo, Ontario, Canada, N2L 3C5

e-mail: schau@wlu.ca

Ada Wai-Chee Fu
Dept. of Computer Science and Engineering,

Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: adafucse.cuhk.edu.hk

Abstract

Increasing number of organizations have computing
clusters located in different places. The distance between
the computing clusters can be quite far apart. The load in
one cluster may be very high while the other clusters may
have nothing running on the system. A higher throughput
can be achieved if load balancing is added between the
clusters. In this paper, we proposed a simple and efficient
load balancing method to balance loads between comput-
ing clusters that are far part from each other.

Keywords: Load balancing, Computing Clusters, Hy-
percube.

1 Introduction
In a computing cluster, time critical tasks can be exe-

cuted quickly by splitting a task into sub-tasks. The sub-
tasks are then executed in parallel in different processing
nodes of a computing cluster. To maximize the benefit of
computing cluster, the tasks assigned to each processing
node should be roughly the same. Hence, load balancing is
necessary to balance loads between the processing nodes
within a computing cluster. However, if an organization
has more than one computing cluster and they are located
in different places, we also need to balance the load be-
tween the computing clusters to improve throughput.

An example of such organization is Sharcnet. Sharc-
net is a partnership between a number of universities and

∗This research was supported by a research grant from the Na-
tional Sciences and Engineering Research Council of Canada

colleges in Canada. All the members of Sharcnet are lo-
cated in southwestern Ontario. Currently, Sharcnet has five
members with computing clusters. Two or more comput-
ing clusters are deployed at each of the following locations:
the University of Guelph, McMaster University, and the
University of Western Ontario. One computing cluster is
deployed at the University of Windsor and one is deployed
at Wilfrid Laurier University. Depending on funding from
the government, more computing clusters will be added to
current member sites and to other universities such as the
University of Waterloo, Brock University, and Trent Uni-
versity in the region.

The computing clusters within Sharcnet are quite far
away from each other and not all of them are connected
through dedicated fibre optic lines. For example, the dis-
tance between Wilfrid Laurier University and University
of Western Ontario is almost one hundred kilometers and
there is no dedicated communication line between the two
locations. Hence, the load balancing method to balance the
load between computing clusters should have as few com-
munications as possible.

In this paper, we address the problem of load imbal-
ance in computing clusters. We assume that the job sched-
uler of each computing cluster is connected as a node of
a hypercube. By assuming that the clusters are connected
as a hypercube, we can group clusters that are connected
directly through high-speed link in the same sub cube to
take advantage of their connections. Furthermore, we can
also make use of the topology of a hypercube to reduce the
amount of communications during load balancing.

A n-dimensional hypercube is a network withN = 2n



nodes. Each node can be coded by a binary sequence of
length n. Two nodes are connected if their binary se-
quences differ in exactly one position. Each nodev =
v1v2...vn is connected ton nodes. Nodev is connected
to nodeu = u1u2...un if vi 6= ui andvj = uj for j ∈ 1..n

andj 6= i. The link betweenv andu is also called the link
of dimensioni.

2 Previously proposed load balancing
schemes for hypercubes

If we can estimate the execution time of any task ac-
curately and we also know the total number of tasks in
advance, we can use a static load balancing method to as-
sign balanced load to each of the processing nodes. Load
balancing is not necessary. Unfortunately, there exists a
large class of non-uniform problems with uneven and un-
predictable computation and communication requirement.
For these problems, we have to deal with the load imbal-
ance dynamically.

Many load-balancing algorithms for hypercube have
been proposed. They fall into two types: Synchronous load
balancing and asynchronous load balancing. Synchronous
load balancing [2, 3] is one in which the balancing is done
on a global synchronous manner. Asynchronous load bal-
ancing [4, 5] is one in which each processing node can
initiate the load balancing at any given time.

Two examples of asynchronous load balancing is Re-
ceiver initiated diffusion (RID) and Sender initiated diffu-
sion (SID) [4, 5]. In RID, an under loaded node requests
extra task from overloaded nodes. In SID, an overloaded
node tries to find an under loaded node and transfers some
of its tasks to the under loaded node.

Willebeek-Lamair and Reeves [2] showed that RID al-
ways outperforms SID. In RID, when the load of an under
loaded node drops below a predetermined value, the un-
der loaded node starts to send load balancing requests to
its neighbors. Its neighbors then send their current load
information to the under loaded node. Based on the load
information of its neighbors, the under loaded node calcu-
lates the task that each of its neighbors has to send to it.

Cybenko [1] showed that the diffusion methods are in-
ferior to the dimension exchange method in terms of their
efficiencies and balance qualities. For the dimension ex-
change method (DEM) [7, 1, 2], all node pairs whose ad-
dresses differ only in the least significant bit balance their
load between themselves. Next, all node pairs whose ad-
dresses differ in only the second least significant bit bal-
ance the load between themselves. The above process is
repeated until each node has exchanged and balanced its

load with its neighbors in all the dimensions. After execu-
tion of the DEM, the load difference between any pair of
nodes is at most n.

The number of communication steps in the DEM is3n.
Let wu be the number of tasks in nodeu and⊕ be the
bitwise exclusive OR operator. Figure 1 shows the DEM
algorithm for a hypercube.

DEM

for k = 0 to n− 1
nodeu exchange with nodev the current value ofwu

andwv, where(u⊕ v)⊕ 2k = 0
if (wu − wv) > 1, sendb(wu − wv)/2c tasks to nodev
if (wv − wu) > 1, receiveb(wv − wu)/2c tasks from nodev
wu = d(wu + wv)/2e if wu > wv

wu = b(wu + wv)/2c otherwise

Figure 1: The DEM algorithm for hypercubes.

The cube walking algorithm (CWA)[3] can balance the
load better than the DEM. After applying the CWA to a hy-
percube, the load difference between any nodes is at most
one. The load difference is optimal because a load differ-
ence of zero can only happens if the total load is divisible
by the total number of nodesN . The number of commu-
nication steps in the CWA is the same is DEM. However,
CWA requires an additionalnN/2 messages of sizeO(n)
to send the load information vectors whereN is the num-
ber of nodes in ann-dimensional hypercube.

In order to reduce communications between computing
clusters and get better load balancing quality that is com-
parable to CWA, we propose to use an improved version
of the DEM instead of the CWA. In the next section, we
describe the improved DEM for a hypercube.

3 Improved Dimension Exchange Algorithm
for hypercubes

After the execution of the original DEM, the load dif-
ference between any two nodes is bounded byn. We can
view the exchange of information and task migration in the
least significant dimension of pairs of nodes as dividing the
tasks among the two(n− 1)-cubes roughly equally. How-
ever, the difference in the total number of task between the
two (n − 1)-cubes may be as high asN/2. This happens
when the total number of tasks between every pair of nodes
in the same dimension is an odd number and all the nodes



in one sub-cube have one more task than nodes in the other
sub-cube.

Similarly, the exchange of load information and task
migration in the second least significant dimension can be
viewed as dividing tasks roughly equally between the two
(n− 2)-cubes in each of the(n− 1)-cubes. The difference
in the total number of tasks between two(n− 2)-cube in a
(n− 1)-cube is bounded byN/4.

Using the above reasoning, after the load exchange in
the first dimension, one(n − 1)-cube can have at most
T/2 + N/4 tasks and the other one can have at least
T/2 − N/4 task. After the load exchange in the sec-
ond dimension, some(n − 2)-cubes have at most(T/2 +
N/4)/2+N/8 tasks and some(n− 2)-cubes have at least
(T/2−N/4)/2−N/8 tasks. That is, some(n− 2)-cubes
have at most(T/22 +2N/23) tasks and some have at least
(T/22 − 2N/23) tasks. Hence, after the execution of the
DEM, some nodes have at mostT/2n + n ∗N/2n+1 tasks
and some have at leastT/2n − n ∗ N/2n+1 tasks. After
applying the DEM, the maximum load difference between
any two nodes is at mostn.

The maximum difference can be reduced byn/2 if we
divide the tasks more carefully between the sub-cubes in
the load exchange of each dimension. Consider two neigh-
boring nodesu and v with taskswu and wv. Suppose
(wu−wv) > 0. Instead of simply sendingb(wu−wv)/2c
tasks to nodev, we may want to sendd(wu−wv)/2e tasks
to nodev. By having a better scheme on which node should
sendb(wu − wv)/2c tasks ord(wu − wv)/2e tasks to its
neighboring nodes, we could get a tighter bound on the
maximum task difference. The improved DEM is shown
in figure 2.

Improved DEM

Let nodeu = u1u2...un andv = v1v2...vn.

for k = 0 to n− 1
nodeu exchange with nodev the current value ofwu

andwv, where(u⊕ v)⊕ 2k = 0
if k 6= n

if (wu − wv) > 0 anduk+1 = 0,
sendb(wu − wv)/2c tasks to nodev
wu = d(wu + wv)/2e

if (wu − wv) > 0 anduk+1 = 1,
sendd(wu − wv)/2e tasks to nodev
wu = b(wu + wv)/2c

if (wv − wu) > 0 anduk+1 = 0,

001

101
100

010

011

111110

000

2

2 2

2
6

5 6

10 11

10

6

10

(c)

10 4

2 9

001

101
100

010

011

111110

000
19

0

11

9

(a)

4

3

3

4

001

101
100

010

011

111110

000

8

8

88

8

7

9

8

5

1
1

(b)

6

(d)

001

101
100

010

111110

000

7 7

5

4 5

15 15

011

4

Figure 3. Example to show the execution of
the DEM.

received(wv − wu)/2e tasks from nodev
wu = d(wu + wv)/2e

if (wv − wu) > 0 anduk+1 = 1,
receiveb(wv − wu)/2c tasks from nodev
wu = b(wu + wv)/2c

else
if (wu − wv) > 1

sendb(wu − wv)/2c tasks to nodev
wu = d(wu + wv)/2e

if (wv − wu) > 1
receiveb(wv − wu)/2c tasks from nodev
wu = b(wu + wv)/2c

Figure 2: The improved DEM algorithm for hypercubes.

Figure 3 shows an example of the DEM algorithm in
operation. A total of 33 task migrations took place. The
maximum difference between any two nodes is 2. Figure
4 shows an example of the improved DEM algorithm in
operation. A total of 25 task migrations took place. The
maximum difference between any two nodes is 0. The ex-
amples show that the improved DEM should be able to pro-
vide better load balancing quality with less communication
cost.

Theorem 1: After applying the improved DEM to an
n-dimensional hypercube, the load difference between any
two nodesu andv is at mostn/2.

Proof: In the first step of the improved DEM, the load
is divided roughly equally between the two(n − 1)-cubes
within then-cubes. Due to the new conditions imposed in
the improved DEM, at most half of the nodes in one of the



001

101
100

010

011

111110

000

7 9

8

8

8

8

8

8

1

(c)

001

101
100

010

011

111110

000

6 7

66

9 10

1010

2

1

2

2

(b)

001

101
100

010

011

111110

000

88

8 8

88

8 8

(d)

10 4

2 9

001

101
100

010

011

111110

000
19

0

11

9

(a)

3

9 1

4

Figure 4. Example to show the execution of
the improved DEM.

(n− 1)-cube has one more task than the nodes in the other
(n − 1)-cube. Hence, a(n − 1)-cube has at mostN/22

tasks more than the other(n− 1)-cube.
Let T be the total number of tasks in then-cubes. After

the first application of the dimension exchange, an(n−1)-
cubes with the most tasksTmax,1 will have at mostN /4
more than the other(n − 1)-cubes with the least tasks
Tmin,1. Hence,Tmax,1 will have at mostT/2 + N/23 and
Tmin,1 has at leastT/2−N/23 tasks.

Similarly, after the load exchange in the second dimen-
sion, an(n − 2)-cubes has at mostTmax,2 and at least
Tmin,2 tasks.

Tmax,2 ≤ (T/2 + N/23)/2 + N/23 ∗ 1/2
≤ T/22 + 2N/24

Tmin,2 ≥ (T/2−N/23)/2−N/23 ∗ 1/2
≥ T/22 − 2N/24

After the load exchange in theith application wherei ∈
{1..n}, an (n − l)-cubes has at mostTmax,i and at least
Tmin,i tasks.

Tmax,l ≤ T/2i + iN/2i+2

Tmin,l ≥ T/2i − iN/2i+2

After applying the improved DEM, the maximum dif-
ference between any pairs of nodes in ann-dimensional
hypercube is at mostD tasks.

D = Tmax,n - Tmin,n

= T/2n + nN/2n+2 - T/2n + nN/2n+2

= n/4 + n/4
= n/2

From theorem 1, the improved DEM has a better upper
bound in load difference between any two nodes compared

Max load difference between any two nodes
n 0 1 2 3 4
3 780 49256 49170 793 0
4 0 12827 73855 13318 0
5 0 863 48776 49446 915
6 0 3 13053 73697 13237
7 0 0 864 48815 49461
8 0 0 9 14547 73490
9 0 0 0 859 48865
10 0 0 0 2 11820
11 0 0 0 0 905
12 0 0 0 0 4

Table 1a: The maximum load difference between any two
nodes after applying DEM

Max load difference between any two nodesAvg
n 5 6 7 diff
3 0 0 0 1.50
4 0 0 0 2.00
5 0 0 0 2.50
6 10 0 0 3.00
7 860 0 0 3.50
8 11952 2 0 3.97
9 49393 883 0 4.50
10 73180 14991 7 5.03
11 49152 49024 919 5.50
12 13340 73414 13242 6.00

Table 1b: The maximum load difference between any two
nodes after applying DEM

to the original DEM. Simulations were also done for both
the DEM and the improved DEM for a hypercube from di-
mension 3 to dimension 12. Loads are randomly assigned
to each node of a hypercube and DEM or the improved
DEM are applied to balance the load. The simulation is re-
peated 100,000 times. The results are listed in table 1 and
table 2.

From the data listed in table 1, after applying the origi-
nal DEM to a hypercube, the expected load difference be-
tween any two nodes is roughlyn/2. The difference is
much lower than the upper bound ofn. This can be ex-
plained by the fact that the upper bound can only happen
for a special case.

From the data in table 2, after applying the improved



Max load difference between any two nodesAvg
n 0 1 2 3 4 5 6 7 diff
3 9375 87483 3142 0 0 0 0 0 0.94
4 2030 87595 10375 0 0 0 0 0 1.08
5 104 79546 20350 0 0 0 0 0 1.20
6 0 69903 30097 0 0 0 0 0 1.30
7 0 60765 39235 0 0 0 0 0 1.39
8 0 52938 47062 0 0 0 0 0 1.47
9 0 47435 52565 0 0 0 0 0 1.53
10 0 43649 56351 0 0 0 0 0 1.56
11 0 39580 60420 0 0 0 0 0 1.60
12 0 34671 65329 0 0 0 0 0 1.65

Table 2: The maximum load difference between any two
nodes after applying the improved DEM

DEM, the expected load difference between any two nodes
is always less than 2. If the dimension of the hypercube is
less than or equal to 12, the maximum load difference for
any two nodes is at most 2. This happens because the load
in each sub-cube of the hypercube would be roughly the
same after one step of load balancing. The load balancing
quality of the improved DEM compares favorably with the
CWA where the maximum load difference is at most one.

The CWA requiresnN/2 more messages of sizeO(n)
compared to the improved DEM. If we want to mini-
mize the communications between the nodes, the improved
DEM would be a very good alternative and the resulting
load balancing quality is almost as good as the CWA.

4 Summary
An improved dimension exchange method (DEM) for

synchronous load balancing for hypercube architecture is
presented. The improved DEM requires the same num-
ber of communication steps and roughly the same task
migrations comparing to the original dimension exchange
method. However, the improved DEM provides much
better load balancing quality than the original DEM. Al-
though, theoretically the improved DEM cannot provide
the same load balancing quality as the CWA, in practice,
the improved DEM can provide comparable load balancing
quality of the CWA. The improved DEM is quite suitable
for load balancing for computing clusters that are quite
far apart. In the near future, we will try to conduct load-
balancing experiments between the computing clusters of
Sharcnet and we will also try to address the problem of
having computing clusters of various sizes.

References
[1] G. Cybenko, Dynamic load-balancing for distributed

memory multicomputers,Journal of Parallel and
Distributed Computing, (7)2, October 1989, pages
279-301.

[2] M. Willebeek-Lemair and A.P. Reeves, Strategies for
dynamic load-balancing on highly parallel comput-
ers, IEEE Transcation on Parallel and Distributed
Systems, (4)9, September 1993, Pages 979-993.

[3] M. Wu and W. Shu, A load balancing algorithm for
n-cube,Proceedings of the 1996 International Con-
ference on Parallel Processing, IEEE Computer So-
ciety, 1996, Pages 148-155.

[4] K.G. Shin and Y. Chang, Load sharing in distributed
real-time system with state-change broadcasts,IEEE
Transcation on Computers, (38)8, August 1989,
Pages 1124-1142.

[5] N.G. Shivaratri and P. Krueger, Load distributing for
locally distributed systems,IEEE Computers, (25)12,
December 1992, Pages 33-44.

[6] C.Z. Xu and F.C.M. Lau, The generalized dimen-
sion exchange method for load balancing ink-aryn-
cube and variants.Journal of Parallel and Distributed
Computing, (24)1, January 1995, Pages 72-85.

[7] S. Ranka, Y. Won, and S. Sahni, Programming
a hypercube multicomputer,IEEE Software, (24)1,
September 1988, Pages 69-77.


