
On Efficient Content Matching in Distributed
Pub/Sub Systems

Weixiong Rao∗ Lei Chen� Ada Wai-Chee Fu∗
∗Department of Computer Science and Engineering �Department of Computing Science

The Chinese University of Hong Kong Hong Kong University of Science and Technology
{wxrao,adafu}@cse.cuhk.edu.hk {leichen}@cse.ust.hk

Abstract—The efficiency of matching structures is the key issue
for content publish/subscribe systems. In this paper, we propose
an efficient matching tree structure, named COBASTREE, for
a distributed environment. Particularly, we model a predicate
in each subscription filter as an interval and published content
value as a data point. The COBASTREE is designed to index
all subscription intervals and a matching algorithm is proposed
to match the data points to these indexed intervals. Through
a set of techniques including selective multicast by bounding
intervals, cost model-based interval division, and COBASTREE
merging, COBASTREE can match the published contents against
subscription filters with a high efficiency. We call the whole
framework including COBASTREE and the associated techniques
as COBAS. The performance evaluation in simulation environ-
ment and PlanetLab environment shows COBAS significantly
outperforms two counterparts with low cost and fast forwarding.

I. INTRODUCTION

Recently, Content based Publish/Subcribe System (CBPS)
has emerged as a new paradigm to provide fine-grained content
publishing and filtering services [5], [18]. In CBPS, con-
sumers (subscribers) declare their interested contents through
“subscriptions”, producers (publishers) publish content mes-
sages, and pub/sub servers (brokers) match the subscriptions
with content messages and deliver the subscribers with the
expected documents. Usually in CBPS, contents are structured
by pairs of <attribute, value> [9], [5]. The subscribers can
specify selective predicates over content attributes as subscrip-
tions, which are also called filters.

Due to the geographic distribution of publishers and sub-
scribers, CBPS is often applied in a distributed environment,
some examples are distributed multiplayer game [3], and
system monitoring [5] etc. A distributed CBPS system usually
consists of a set of pub/sub servers that manage filters and
forward content messages to interested subscribers. Thus, the
key issue of a distributed CBPS system is how to design an
efficient matching structure to organize filters stored in dis-
tributed pub/sub servers. A well designed matching structure
can efficiently forward content messages to relevant filters; and
meanwhile, filters themselves can be effectively propagated
within the matching structure.

To design an efficient matching structure for the distributed
CBPS, two different approaches have been attempted:

i) Multiple single-dimensional indexes: Suppose there are
d attributes in the content schema, d single-dimensional in-
dexes are created. With d single-dimensional indexes, each

publication creates d content copies to reach all indexes. Ob-
viously, the high dimensionality value of d directly indicates
massive message traffic volume. In addition, if a filter with
predicates over multiple attributes is distributed in multiple
single-dimensional indexes, the counting algorithm in [10] has
to wait for the arrivals of all matching result, resulting in high
filter matching latency.

ii) A single multi-dimensional index with dimensionality
of d: this approach suffers from the problem of dimension-
ality curse due to the high dimensionality of d, i.e. the
lookup performance over the multi-dimensional index steeply
degrades with the dimensionality. Correspondingly, during
the content matching, the high dimensionality in the single
multi-dimensional index produces the massive message traffic
volume and high filter matching latency. Moreover, the number
of attributes that appear in the filters is usually much less than
that in the contents, we call this phenomenon “dimensionality
mismatch”. In order to build a full-space indexing structure,
the whole domain ranges of the missing attributes in the filter
predicate are used which results in elongated boundaries and
less efficient in the later on content matching.

In this paper, we model each predicate in a subscription filter
as an interval, and content value as a data point. We arrange the
intervals into a data structure called the COBASTREE. In order
to handle the overloading problem and single point of failure in
distributed CBPS system, we avoid forwarding all published
messages towards the root of the COBASTREE. Instead, we
propose a bottom-up matching algorithm and a leaf node in
the tree is a start point to process the content matching. We
call a node in the tree a logical node (lnode), in contrast to
the physical node (pnode) which may store the contents of
multiple lnodes.

We propose three techniques to overcome the challenges
in CBPS (i.e. massive message traffic volume and high filter
matching latency):

1) Instead of a tree structure for each dimension, or a single
multi-dimensional tree, we propose to use a limited number of
trees, each covering a subset of the dimensions. To this end,
single dimension COBASTREES are adaptively merged and
the total number of COBASTREES is decided by an integrated
cost model (which incorporates the forwarding cost and filter
maintenance cost).

2) We propose to replace single “long” interval by multiple
“short” segments. The purpose of interval division is to solve

a: 0.7
b: 1

Publisher
Agent

CobasTree-a

CobasTree-b

F1: a>0.6
F2: b<4
F3: 0.4<a<0.8
 2<=b<8
F4: 2<b<8
F5: 3<b<=5

Subscriber
Agent

F1: a:(0.6,1)
F3: a:(0.4,0.8)

F2: b: [0,4)
F4: b: [2,8)
F5: b: (3,5]

F4

Content Msg C

F2

F5

Filters

0 2 4 831 6

.4 .6 .8 1.7.5 .9

publish

subscribe

delivery

Fig. 1. Basic COBAS Framework: two COBASTREEs respectively for attribute
a and b composed by 5 filters, and three pub/sub servers A, B and C.

the bottleneck problem caused by long intervals since they
match most published content.

3) We propose a technique of selective multicast. A pub-
lished content is multi-casted from the leaf node to and only
to the non-leaf nodes containing filters that are interested in
the publication.

We call the proposed distributed CBPS framework COBAS

(abbreviation for Content based pub/sub system). The perfor-
mance of COBAS is evaluated in a Peer-to-Peer (P2) overlay
network, using the open source code of Mercury [2] for imple-
mentation. The experimental results based on the simulation
environment and PlanetLab show that COBAS can significantly
reduce the network traffic volume with low latency.

The rest of this paper is organized as follows: Section II
shows the basic frame work of COBAS; as the principle of
from easy to complex, we first describes selective multicast
(Section III), then interval division (Section IV), and finally
adaptive merging (Section V). Section VI summaries related
works, and Section VII evaluates COBAS and two counterparts.
Finally, Section VIII concludes this paper.

II. BASIC FRAMEWORK

A. Data Model

Given a data schema M = {A1, ..., Ad}, we model the
predicate condition of attribute Ai, li ≤ Ai ≤ ui, as an interval
[li, ui] over Ai. For example in Figure 1 where the domain
range of attribute a is [0, 1), the predicate condition in F3 like
0.4 < a < 0.8 is treated as an interval a : (0.4, 0.8); the half
coverage like a > 0.6 in F1 as an interval a : (0.6, 1.0). For the
equality condition like a = 0.5, we can treat it as a : [0.5, 0.5]
where the lower bound is equal to the upper bound.

Similarly, we can also model the content value over attribute
Ai as a point. For example, C = {〈a, 0.7〉, 〈b, 1〉}, can be
treated as a : (0.7, 0.7) and b : (1, 1), which can be intuitively
seen as a point in 4-dimensional space. Given the above model,
matching attribute value 〈Ai, vi〉 against predicates li ≤ Ai ≤
ui can be seen as a stabbing query of point (vi, vi) against
intervals [li, ui].

B. Basic COBASTREE

After the predicates of subscription filters are modeled as
intervals, we organize all subscription intervals of attribute Ai

into a logical tree of attribute Ai, and call it the COBASTREE

of Ai. The COBASTREE is used to index the subscription
filters for efficient content matching.

The COBASTREE is primarily a balanced binary tree, where
each node is labeled by a unique key value, and each interval is
stored in exactly one lnode with a key value that is contained
in the interval. An interval [l, u] is kept at the highest lnode
it covers, i.e. the highest lnode with key value w for which
l ≤ w ≤ u holds when descending the tree from the root. In
COBASTREE-b of Figure 1, though the key value of 4 is inside
both interval (3, 5] and [2, 8), interval [2, 8) is kept only at
the higher level node with key 3. Also any interval registered
to the node with key 4 must have a upper bound less than
6 and lower bound larger than (or equal to) 3; otherwise the
interval should reside at a higher node. Each of the logic nodes
(lnode) w is associated with two lists L(w) and U(w). L(w)
and U(w) contain, respectively, sorted lists of the lower and
upper bounds of the intervals stored at w.

For a COBASTREE with height H , each leaf node records
H “bounding intervals” with one for each lnode along the
bottom-up path from the leaf lnode to the root: among all upper
bound values (i.e. U(w)) in each lnode, we record the maximal
upper bound value, denoted as ub; similarly the minimal lower
bound value in L(w), denoted as lb. For ub and lb of each
lnode, we may treat [lb, ub] as the bounding interval of such a
lnode. For lnode 3 in COBASTREE-b of Figure 1, there are two
upper bounds: 4 and 8 and two lower bounds: 0 and 2; then ub

is 8 and lb is 0. So lnode 3 has the bounding interval [0, 8).
Note that bounding interval [lb, ub] is not necessarily a real
interval stored in the lnode. In COBASTREE-b of Figure 1,
no interval [0, 8) is really stored in lnode 3. The bounding
intervals can help the content matching, which will be shown
later in Section III.

C. System Overview

In COBAS, each pub/sub server (i.e. the physical node,
pnode) maintains contiguous data ranges for d attributes
(dimensions) and all pnodes are connected as a P2P overlay
network. In our implementation, Mercury [2] is used as the
overlay network with O(log N) lookup complexity where N
is the number of pnodes. A pnode responsible for some data
range Ri stores all lnodes with key values inside Ri, and
resolves the matching of content C with attribute value vi

inside Ri. In Figure 1 with two attributes a and b in schema M
and three pnodes A, B and C: pnode A maintains data ranges
a : [0.4, 0.6], b : [0, 3], pnode B data ranges a : (0.6, 0.7], b :
(3, 5], and pnode C data ranges a : (0.7, 0.1], b : (5, 8].

As a logical structure, the COBASTREE is physically dis-
tributed across the pub/sub overlay network. In Figure 1, for
the COBASTREE of attribute b, the subtree of 4 nodes with key
0,1,2 and 3 is stored in pnode A, the node with key 4 in pnode
B and the subtree of 2 nodes with key 6 and 8 in pnode C.
Similar situation holds for the COBASTREE of attribute a. By
this semantical locality property, the content matching in the
whole COBASTREE may save on communication cost across
the underlying pnodes. For example, for any content value

vb = 0, all relevant filters are certainly located in the path
from the lnode with key 3 to the leaf lnode with key 0 in
COBASTREE-b, and no communication cost is consumed to
traverse this path since all lnode are stored in pnode A.

D. Subscription

In COBAS, the registration of filter F is the process to
insert predicate intervals in F to COBASTREEs. For F with
predicates over only one attribute Ai, a subscriber can contact
a pnode as Subscriber Agent (SA) to send the subscription to
the COBASTREE of Ai; after some lnode is found to insert F ,
F is physically stored in some pnode which stores the found
lnode. When some content C matches F , this pnode delivers
content C to SA, then the subscriber receives the subscribed
contents via SA.

For a filter F with predicates over multiple attributes, we
register F in one chosen COBASTREE. Here we do not
registering F to d COBASTREEs to avoid sending duplicates
to Subscriber Agent(SA). In Figure 1, F3 with attributes a and
b is inserted to only one COBASTREE: COBASTREE-a. In the
implementation for simplicity, we use the random policy to
chose one among total d COBASTREEs.

E. Publication

After injecting C to Cobas via some speical pnode, named
publisher agent (PA), C will be matched and forwarded inside
d COBASTREEs by the following steps:

1). With the underlying pub/sub overlay network, content
C is routed to pnodes with data ranges Ri covering vi where
i = 1, ..., d. For simplicity, this step is called content routing
in pub/sub overlay network;

2). By means of the COBASTREE, content C is forwarded
to all lnodes that store the intervals covering 〈Ai, vi〉. This
step is called content forwarding in COBASTREEs;

3). The forwarded content C will locally match each re-
trieved filter F in last step (i.e. predicates of F except Ai);
whenever C matches a filter F , C will be delivered to the
subscriber agent(SA) of F .

Each content is associated with d pairs of 〈Ai, vi〉, d copies
of content C are routed to d pnodes. For example in Figure 1,
two copies of content C are routed to pnode A and C
because the data range of attribute a responsible by pnode
C, a : [0.8, 0.1], covers the value of attribute a in content
C, 0.7; the data range of attribute b maintained by pnode A,
b : [0, 3], covers the value of attribute b in content C, 1.

The Local Matching, i.e. the fourth step of publication, is
necessary. For example in Figure 1, for F3 in the COBASTREE

of attribute a, though C satisfies predicate 0.4 < a < 0.8,
we must determine whether content C can match predicate
2 < b < 8. In this paper, the classical algorithms in [9] are
used for local matching.

From the publication steps, the publication performance de-
pends on two factors: i) the communication traffics consumed
by the first two steps of content publication (content routing
and content forwarding); ii) the workload to locally process
the matching between the contents and filters by the last two

1 6

3

F2: b: [0,4)

(b)

2 4

1 6

3

F2: b: [0,4)

(c)
0 8

F4: b: [2,8) F4: b: [2,8)

1 6

3

F2: b: [0,4)

(a)

b: 0

2 4 802 4 80
b: 0 b: 0

Fig. 2. Content Forwarding: (a)top-down (b)bottom-up (c)selective multicast

steps of content publication. This paper focuses on how to
reduce the communication costs; it is important to reduce the
processing workload of the local matching by fewer contents
forwarded to the pnodes. The following sections optimize the
messaging cost for forwarding and routing content messages.

III. SELECTIVE MULTICAST

In this section, we consider content forwarding in the
COBASTREE, which is the second step in publication.

A. Basic Content Forwarding

When content C with d pairs of 〈Ai, vi〉 is forwarded to
each COBASTREE of Ai, one may follow a top-down traversal
from the root to the leaf nodes along the COBASTREE (see
Figure 2 (a)). However, this overloads the pnode responsible
for the root. To solve this problem, we consider a bottom-up
approach traversing from a leaf towards the root as illustrated
by Figure 2 (b) to forward a content with an attribute value
b := 0.

The bottom-up forwarding need use FIND LEAF(v) to
find some leaf lnode which has the closet key value to
v. FIND LEAF(v) can be implemented by the basic lookup
algorithm provided by the underlying pub/sub overlay net-
work to find some pnode with the closest key vale to v.
In our implementation of COBAS, the underlying overlay
network Mercury [2] provides O(log N) lookup hops for
FIND LEAF(v).

B. Selective Multicast

For a COBASTREE with height H , the sequential traversal
from the leaf lnode to the root produces O(H) latency and
H units of network traffic volume. In Figure 2(b), though
there is no registered filter in lnode 1, the sequential approach
still visits both lnode 1 and lnode 3, wasting 1 unit of
traffic volume. Moreover, if lnode 3 does not contain F4, the
forwarding to lnode 3 is also unnecessary.

Here the “bounding interval” that is recorded for each leaf
lnode (See Section II-B) becomes useful for avoiding the
unnecessary messaging along the bottom-up path. We can
multicast content C with attribute value vi to and only to
lnodes with bounding interval [lb, ub] covering vi. The key
point is: lnodes with bounding interval covering some content
value vi, i.e. lb ≤ vi ≤ ub, must contain a predicate interval
covering the required value vi. This property is given by
Lemma below. Thus, forwarding contents to these lnodes will
not generate unnecessary communication cost. We call this
selective multicast

Lemma 1: For some lnode N in COBASTREE of Ai with
bounding interval [lb, ub], if attribute value vi in content C is

L(ve)-h(ve)

2 4

1 6

3F2: b: [0,4)
F4: b: [2,8)

(a)

0 8

F5: b: [0,2)

2 4

1 6

3F2: b: [2,4)

(b)

0 8

F5: b: [0,2)
F2: b: [0,2)

1

3

(c)

0

L(ve)

h(ve)

F4: b: [2,8)

L(ve)

0

L(ve)-h(ve)

H

Fig. 3. Interval Division: (a) before dividing with two units of messages; (b)
after dividing with only one unit of message; (c) setting up the level of ve.

inside bounding interval [lb, ub], lnode N certainly contains
subscription filters f with predicate intervals covering the
attribute value vi. �

For forwarding latency, selective multicast in Figure 2(c)
forwards content from leaf lnode 4 to lnode 3 with only 1 hop.
For forwarding messaging cost, the traffic volume of selective
multicast is decided by the number of bounding intervals
covering the content value vi, bounded by the height H of
the COBASTREE.

IV. INTERVAL DIVISION

When H bounding intervals of lnodes along the bottom-up
path cover vi, all these lnodes receive the forwarded contents
by selective multicast and produce H units of content copies.
By interval division, the forwarding cost of selective multicast
can be further reduced.

A. Basic Idea

We illustrate the basic idea in Figure 3. In Figure 3(a), by
selective multicast, a stabbing query for b := 0 reaches three
leaf lnodes respectively with key 0, 1 and 3. In Figure 3(b)
F2 = [0, 4) is divided into two segments [0, 2) and [2, 4). The
new segment [0, 2) is reinserted to lnode 1. Now selective
multicast only forwards contents from leaf node 0 to lnode
1. Note that filter F2 is maintained in two lnodes: lnode 1
for segment [0, 2) and lnode 3 for segment [2, 4), resulting in
more maintenance cost.

We can continue the above step to divide the interval [0, 2)
in lnode 1 to two segments [0, 1) and [1, 2), and the new
segment [0, 1) will be reinserted to lnode 0. When content
having attribute value b = 0 reaches lnode 0, no multicast is
required since LOCAL MATCH can directly be used to match
the content against segment [0, 1) in lnode 0. Compared with
Figure 3(b), the benefits is no communication traffic, but more
maintenance cost is needed to maintain filter F2 in three lnodes
and to maintain F5 in 2 lnodes.

We call the operation to divide one long interval to two
shorter segments and to register one segment with a child
lnodes with the remaining segment still in the original lnode
a “push-down” operation.

In addition, so far we have not considered the problem
of long intervals in subscriptions. A long interval tends to
reside at a higher level lnode in COBASTREE and it attracts
intensive querying since a lot of stabbing queries will stab the
interval. This result in unbalanced workload and overloaded
nodes. Interval division by push-down operation can also help
to distribute the workload that is generated by long intervals.

B. Cost Model

Interval divisions helps to save on the forwarding cost and
to avoid the overloading problem; however, there is a tradeoff
in the maintenance cost. Here we introduce a cost model to
find a good balance between the two odds.

We consider two main costs in our cost model: the content
forwarding cost Cost(C) and the filter maintenance cost
Cost(F). Interval division reduces Cost(C) as shown in
Section IV-A, but Cost(F) is increased because the segments
divided from the interval are registered to more lnodes in
COBASTREE. Though the filter maintenance cost Cost(F)
includes the increased storage cost and the communication
cost, we mainly consider the communication cost between
subscriber agent (SA) and the pnode responsible for filters
as Cost(F), because memory is relatively cheap nowadays.
In COBAS, the tradeoff between Cost(C) and Cost(F) will
determine how predicate intervals are divided.

The frequencies of attribute values may be skewed, while
some values appear in many contents, others rarely. We define
the content density of ve, denoted as γe, as the average number
of published contents having value ve. In addition, content
popularity of ve in the subscriber side, denoted by ηe, is
defined as the total number of intervals covering ve is ηe.

Our optimal solution to minimize the overall cost
Cost(A) = Cost(C)+Cost(F) for COBASTREE of Ai shows
that:
• When ve is frequent published (i.e. γe is large), intervals

covering ve should be “pushed-down” to lnodes at a lower
level, to reduce Cost(C), albeit having a higher Cost(F).

• When ve are popular subscribed so that many filter inter-
vals covers ve (i.e. ηe is large), without any optimization
policy, dividing these intervals covering ve may produce
more smaller segments and increase the filter maintenance
cost.

• To minimize the total cost Cost(A), optimally COBAS

favors the interval division in order to control Cost(F)
while trading off a higher Cost(C).

V. MAINTAINING COBASTREES

This section describes a special tree merging mechanism to
reduce the the messaging costs for content routing processing,
that is the first step of content publication (See Section II-E).

Until now, in COBAS we assume there are d COBASTREEs,
one for each attribute Ai. High dimensionality directly indi-
cates more content copies, which significantly increases the
network traffics. To reduce the above content copies in COBAS,
building a multidimensional (MD) COBASTREE seems a good
idea. However, a high dimensional COBASTREE may suffer
from the well known problem of dimensionality curse. Instead,
we propose the merge algorithm as follows.

Suppose COBASTREE of Aj is merged to the COBASTREE

of Ai where i �= j. Among all filters in the COBASTREE of
Aj , some filter Fij may contain predicate intervals over both
Ai and Aj , then Fij is inserted to the COBASTREE of Ai.

For a filter Fkj in COBASTREE of Aj which does not
contain predicates over attribute Ai, it may contain a third

Fig. 4. Merging COBASTREEs

attributes Ak, then Fkj may be merged to the COBASTREE

of Ak, instead of being merged to the COBASTREE of Ai, as
shown in Figure 4. Only for some filter fj containing a single
attribute Aj would we consider using domain range [Li,Hi]
as the predicate interval to merge fj to the COBASTREE

of Ai. After the merging, the original COBASTREE for Aj

will be eliminated. This merging can be repeated for other
COBASTREES so that d′ COBASTREEs remain in COBAS.

The goal of merging COBASTREEs are twofold: (1) the
overall cost (including Cost(A) = Cost(C)+Cost(F)) after
merging should be less than that before merging; (2) among
all possible merging combination candidates, the one with
the minimal overall cost should be chosen to form the final
merging structure.

Since the cost model in Section IV-B is for a single
COBASTREE, the cost model for the whole COBAS system
is the aggregation result of each COASTREE. Obviously, the
higher dimensionality d means the larger aggregation value
for Cost(C). We denote the aggregation result of the whole
Cobas system as Costw(A)=Costw(C) + Costw(F) where
Costw(C) and Costw(F) respectively is the aggregation of
Cost(C) and Cost(F) of each COBASTREE in the whole
COBAS system. And After merging, the cost of COBAS,
denoted as Cost′w(A), will still be the aggregation result of
each remaining COBASTREE. By merging we expect a larger
positive value of ΔCostw(A) = (Costw(A)−Cost′w(A)) > 0
which means more gain of merging.

An exhaustive algorithm may find the minimal ΔCostw(A)
among all possible merging instances, with exponential com-
plexity. Instead, we use a greedy algorithm with a quadratic
complexity to profit ΔCostw(A). �

After merging COBASTREEs, “domain range” like long
intervals used to rebuild filters with single attribute(like Fj

in Figure 4) are divided as described in Section IV to ensure
the best result. Our experiment in Section VII shows that only
merging COBASTREEs without interval division will produce
more network traffic volume than COBAS. Due to the dynamic
patterns of contents and filter, COBAS may periodically run
the greedy algorithm to adaptively merge COBASTREES to
achieve better performance.

VI. RELATED WORK

[2], [10], [19], [1] are the examples of multiple single-
dimensional indexing structures. [2] creates one P2P ring
overlay structure for each attributes and build the pub/sub
service over the overlay network. [10] creates one filtering
and forwarding tree for each attribute. Two problems with
this approach are that the number of content message copies
for each publication is equal to the dimensionality, which

is typically high, and the response latency caused by asyn-
chronously counting the intermediate matching results from
multiple single-dimensional indexes. In Ferry [19], the home
node for each attribute, as the rendezvous node for such
attribute, may suffer from overloading and single point of
failure issue. Also, for each attribute, PastryStrings [1] builds
the prefix based string tree over Pastry [15].

[16], [11] are examples of using a single multi-dimensional
indexing structure. After mapping content values and predicate
conditions into 2d-dimensional points, [16] utilizes the R-Tree
structure to index the predicate conditions and the content
matching is transferred to the R-Tree query processing; [11]
utilizes the underlying P2P overlay network CAN [14] to re-
organizes the filters in the d-dimensional Cartesian coordinate
space.

[5], [4] focus on the generic graph-like network. Without
particularly building the distributed matching structure, each
pub/sub servers maintains the forwarding states about all
subscriptions over multiple attributes, and the subscriptions
are merged to reduce the maintained forwarding states. The
“general” graph network favors the more reliability; however,
a content message may be forwarded to each intermediate node
along the forwarding path to the another endpoint, creating a
high message traffic volume. Also instead of a tree structure,
Sub-2-Sub [17] builds the unstructured overlay network for
content pub/sub by an epidemic based algorithm; in particular,
also modeled as intervals, the subscription predicates are
clustered which is further used for publication.

For indexing structures, the main-memory based interval
tree [8] and the segment tree [7] are both geometric data
structures to index intervals. Both allow efficient retrieval of
intervals covering a query point, however, they are designed
for centralized control, therefore a search always begins at
the root, making it a critical point that is not suitable for a
distributed environment. The interval tree allows for O(N)
storage space given N intervals, compared to O(NlogN) for
segment tree. In the interval tree, long intervals are not broken
up; since they can satisfy most querying, in a distributed
publish/subscribe environment, a physical node that contains
long intervals will be overloaded. Compared with interval tree
and segment tree, the significant novelty of COBASTREE is
the mechanism of interval division for the efficient content
matching. Moreover, the bottom-up select multicast and adap-
tive merging algorithm are also unique in the COBASTREE.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

Prototype Implementation of COBAS and Counterparts:
To illustrate how COBAS works as a distributed CBPS system,
we need to chose an overlay network to connect pnodes. For a
given value vi, such an overlay network is expected to lookup
a pnode with local data range Ri containing vi. The lookup
can support the function FIND LEAF that is used by COBAS.

There are many works like [6], [2] to connect distributed
nodes as a Peer-to-Peer (P2P) overlay network. During our im-
plementation, we chose Mercury[2] as the underlying pub/sub

overlay network due to its efficient lookup (comparable to
other methods) and simple circular structure. In fact, other
P2P networks supporting range query functions can also be
used for COBAS.

Mercury handles multi-attribute queries by creating a rout-
ing hub for each attribute in the application schema. A logical
collection of servers in the system are organized to a circular
overlay, and data are placed contiguously on this ring, with
each server responsible for a non-overlapping data range for
the particular attribute. When each server maintains k links
to other servers, the routing algorithm supports range-based
lookups within each routing hub in O(log2 N/k) hops. To
balance the load, random sampling is used to estimate the
load distribution across the whole system.

To support COBAS, we extend the basic lookup algorithm in
Mercury to find some data with the closest (nearest) value to
some given value vi, with O(log N) hops by setting k = log N
links per server. The random sampling algorithm of Mercury
is used by COBAS to collect statistics information for the
periodical optimizations of interval division and COBASTREE

merging. To build the COBASTREE structure over Mercury,
lnodes refer to the address information of the parent and
child lnodes, if any. Besides, the level information of lnodes
are periodically propagated across COBASTREE, and COBAS-
TREE rotation is lazily balanced when the root of COBASTREE

detects the level of either subtree is smaller than half of the
level of another subtree.

Running Environments: We implement COBAS

over the open source code of Mercury (version 0.9.2:
http://www.cs.cmu.edu/∼ashu/research.html). In the open
source code of Mercury, two running modes are supported by
the same event driven scheduler: simulation mode and real
communication mode. We use both modes to evaluate the
performance of COBAS in two environments, respectively:
• Simulation mode by a single Linux machine with the 4-way

3.2GHz CPU machine with 2G RAM. We setup the number
of pnodes that participate the pub/sub overlay network
from 103 to 8 ∗ 104; all pnodes are logically organized
to the circular overlay structure as Mercury [2]. Each
pnode acts as the publisher agent (PA) to inject content
messages to COBAS and total 104 content messages per
minute are published with each content message carrying
a payload of 256kb. Each pnode also acts as subscriber
agent (SA) to register the generated filters in COBAS. The
connection between SA and the pnode storing subscription
filters (either original intervals or divided segments) is
maintained by the one heartbeat message of size 128 bytes
per 10 minutes.

• Real mode by PlanetLab (http://www.planet-lab.org). In
PlanetLab, we deploy the COBAS prototype to around
70 physically distributed machines as pnodes of COBAS.
Around 120 content messages (with 10 attributes) are
published per minute, and total 105 filters are registered.
Due to he limited bandwidth and low capacity of physical
machines in PlanetLab, we set content arriving rate as 120
contents per minute and filter number as 105. The COBAS

prototype has run in PlanetLab for 24 hours.

Counterparts: For comparison, we use two counterparts:

1) We extend Mercury pub/sub application [3] as the exam-
ple of multiple one dimensional structures by Counting
algorithm for content matching. For Counting approach,
we forward published contents to each attribute and then
count the matching result in the subscriber machine. Since
[3] is the pub/sub application in Mercury, we directly use
the pub/sub example application provided in Mercury open
source code. For simplicity, we abbreviate this approach as
“multi-1D”.

2) R-Tree approach [16] as the example of one multidimen-
sional structure. During the implementation of R-Tree
approach, we first preprocess all subscription filters into
the R-Tree structure in the full d dimensional space and use
space-filling curve (Hilbert curve) to transform the multidi-
mensional R-Tree to the single dimensional tree structure,
which can be easily implemented in Mercury [2]. This kind
of RTree implemented in the distributed environment (i.e.
Mercury) is abbreviated as “DRtree”.

With consideration of the skew filter popularity and content
density, we use Mercury load balancing utility to adjust
the data range of pnode to balance the (storage space and
matching processing) load in each pnode. In addition, in two
experiments (Figure 6(c)), we replicate the filter copies to
multiple pnodes. According to the proportional replication
principle [12], [13], the filters that covers more content values
are replicated to more pnodes.

Data Set: we use Zipf distribution to generate both the
predicate intervals and attribute values. For simplicity, all data
types in schema M are doubles draw within domain range
[0,1]. We produce the attribute values by a Zipf distribution
within the domain range. For predicate intervals I , first we
draw a number from the Zipf distribution as the interval
median Im; the half of the interval length,denoted as l1/2,
is drawn from range [0,Im] if Im < 1 − Im; otherwise
from range [0,1 − Im]. The Zipf distribution of attribute
values and the predicate intervals can respectively indicate
the skew of content density and filter popularity. Given data
scheme M with d attributes A1, ..., Ad, we follow the Zipf
distribution to pick |Af | attributes among A1, ..., Ad used as
predicate attributes, where |Af | ∈ [1, d]. The dimensionality of
the produced contents is d. The related parameters including
allowable range, probability distribution and default value can
refer to Table I. Without special mention, all parameters use
default values.

Evaluation Metrics: We mainly focus on the performance
evaluation for:

• the network traffic volume: message volume consumed
to forward content messages from the publisher machine
to the subscriber agent machine, i.e. Cost(C), and to
exchange the heartbeat message between the subscriber
agent maintenance and the machines responsible for the
subscription filters, i.e. Cost(F).

• the content processing time: the period between the mo-

Parameter Range Distribution Default

N : # of pnodes S:103 − 8 ∗ 104, P:70 104

d: dimensionality 1-20 Constant 10

n: # of filters S: 105−8, P: 105 Constant 107

Im:interval median [0,1.5] Zipf, [0,1.5] 0.95
l1/2: half interval length [0,Im] or [0,1-Im] Zipf, [0,1.5] 0.95
|Af |: attribute # in filter f [1,n] Zipf, [0,1.5] 0.95

|C|: # of contents per sec S: 104, P: 120 Constant
γe: content density [0,1] Zipf, [0,1.5] 0.95
ve: attribute value [0,1.0] Zipf, [0,1.5] 0.95

TABLE I
PARAMETERS USED IN EXPERIMENTS(S: SIMULATION; P: PLANETLAB)

(a) Anti-occurrence (b) Co-occurrence

Fig. 5. Effect of Content Density and Filter Popularity

ment of the content publication at publisher machine and
the moment that satisfied contents arrive at the subscriber’s
machine.

B. Simulation Results

Effect by Content Density and Popularity: In the first
experiment we study the performance of COBAS itself with the
effect of several parameters: skew of content density (indicated
by the Zipf parameter α to generate the value of γe), and
skew of filter popularity (also indicated by the Zipf parameter
α to generate Im and l1/2). We are particularly interested
whether the skew of content density co-occurs with skew of
filter popularity or not. The co-occurrence means: the attribute
values, frequently published, are simultaneously covered (or
subscribed) by the a large number of predicate intervals, and
vice versa. The anti-occurrence means the frequently produced
values are not necessarily covered (or subscribed) by many
predicate intervals.

Figure 5(a) and (b) respectively plot the network traffics
for both cases where the experiment is conducted in COBAS

with only one COBASTREE. In the anti-occurrence case, the
network traffic volume is reduced with increasing skews (i.e.
larger values of both Zipf parameters α): from the maximal
80.25 TB/min to the minimal 55.3 TB/min; while in the co-
occurrence case, the minimal 48.45 TB/min is achieved when
content density is α = 1.2 and filter popularity is α = 1.0, not
the most skew situation with α = 1.5. The reason is: in the
anti-occurrence case, the skew of interval popularity can be
divided independently on the skew of content density. How-
ever, in co-occurrence case, the skew of interval popularity
also means the skew filter popularity; thus covering highly
dense attribute values, the intervals will be divided to more
small segments; simultaneously, due to the high popularity, the
number of those intervals is also high, producing an extremely
large number of small segments and requiring high Cost(F).
Consequently, the most skew of filter popularity and content

density do not produce the minimal network traffics in co-
occurrence case.

Effect by Dimensionality: In the following four simulation
experiments from Figure 6 to Figure 7, we compare COBAS

with two counterparts (DRtree and Multi-1D). Figure 6(a) plots
the network traffic volume per minute with the varied attribute
number (dimensionality). In particular, we study: COBAS with
both interval division and merging COBASTREEs, in short
COBAS; COBAS having interval division but without merging
COBASTREEs, in short COBAS WITHOUT MERGING (there
are d COBASTREEs and long intervals are divided); Cobas
having merging COBASTREEs but without interval division,
in short COBAS WITHOUT DIVISION (d COBASTREEs are
merged but the domain range like long intervals in the root
are not divided).

From Figure 6(a), we can find for Multi-1D and DRtree
approach with a high dimensionality, the network traffic vol-
ume grows significantly. With a higher dimensionality, Multi-
1D approach uses more content copies since each copy is
forwarded for each attribute. When the dimensionality is low,
DRtree approach does not cause high network traffic volume;
but when the dimensionality is high (around larger 12), the
network traffic volume of DRtree is larger than that of Multi-
1D approach, due to the curse of dimensionality.

For COBAS WITHOUT MERGING and COBAS WITHOUT

DIVISION, dimensionality 17 becomes the turning point: for
dimensionality lower than 17, COBAS WITHOUT MERGING

consumes more message cost; but for the higher dimension-
ality, COBAS WITHOUT DIVISION consumes more cost. This
is because: merging COBASTREEs can reduce the message
copy number, however, without interval division, the “domain
range” like long intervals are registered in the root of the
merged COBASTREE. When the dimensionality is higher, the
number of these long intervals becomes more and the root of
merged COBASTREE is registered with more long intervals,
resulting in following outcomes:
• the load balancing utility of Mercury will adjust the data

range of pnode and redistribute these long intervals to more
pnodes; intuitively, these long intervals are expanded to
more pnodes and result in the larger value of m of the con-
tent matching complexity O(log n + m) in COBASTREE.

• since these (domain range like) long intervals satisfy each
content value, each content value suffers from the larger
value of m. As a result, when the dimensionality is higher,
COBAS WITHOUT DIVISION suffers from a higher cost
even than COBAS WITHOUT MERGING.

Finally, with minimal message cost, COBAS itself can
benefit from the integrated solution of interval division and
COBASTREE merging.

Effect by Filters: In Figure 6(b), we evaluate the network
traffics with the varied number of subscription filters from
105 to 108. In general, the network traffic volumes of three
approaches are increased, but with a relatively smooth growth.
In COBAS the increased number of filters means the COBAS-
TREE with a higher value of H; similar situation holds for
DRtree approach. For Multi-1D approach by [3], the increased

(a) Effect by Attribute Number (b) Effect by Filter Number (c) Network Traffics by Node Count (d) Latency by Node Count

Fig. 6. Comparison with counterparts

(a) Load Distribution (b) Maintenance Cost (c) Network Traffic Volume (d) Latency

Fig. 7. Maintenance Result and PlanetLab Result

number of filters means more pnodes store the filters and the
more forwarding cost. Among three approaches, COBAS has
the least traffic cost with the increasing of subscriptions.

Effect by Nodes: In experiments in Figure 6(c) and (d),
we study how the node count (i.e. the number of pnodes) and
caching technique affect the network traffics.

Figure 7(a) plots the network traffic volume per minute
when the node count is varied from 103 to 8×104. When node
count becomes larger, the network traffic volumes of three
approaches grow too. The more number of pnodes participated
in the P2P network Mercury result in two outcomes:

• Mercury P2P routing algorithm (with log N hops for each
lookup) will consume more lookup messages;

• the data range responsible by each pnode becomes smaller.

For Multi-1D approach, since the contents are forwarded
to d COBASTREEs, the more hop number of Mercury lookup
contributes the growth of content forwarding cost in the Multi-
1D approach; in addition, the smaller data range of each pnode
means each predicate interval will cover more data ranges
of pnodes, resulting in each filter stored in more pnodes and
higher filter maintenance cost.

For DRtree, with the smaller data range in each pnode,
the logic bounding box in DRtree will cover more smaller
data ranges of pnodes, resulting in more pnodes physically
responsible for the logic bounding box; then each query in
DRtree will consume more visits of pnodes when the bounding
boxes in DRtree overlaps, which produces the high network
traffic volume in DRtree approach. Among three approaches,
COBAS suffers from the smallest growth when pnode number
becomes larger. When caching is used to reduce Mercury
lookup hop number, the message traffic volume caused by
the P2P lookup used in each FIND LEAF(vi) is reduced.
Furthermore, with d FIND LEAF(vi) operations in d Mercury
hubs, Multi-1D approach benefits most from the reduced hop
number by caching technique; with one Mercury hub, DRtree
approach achieves the least benefits, and COBAS obtained
benefits between those of DRtree and Multi-1D approach.

Figure 6(d) plots the average latency when pnode number
grows. The Multi-1D algorithm suffers from the highest la-
tency since the Multi-1D algorithm requires waiting for the
matching result from distributed pnodes. The most late arriving
matching result becomes the bottleneck time to evaluate the
whole filter. When there are overlapped bounding boxes,
DRtree requires exploring each possible leaf node until the
real data point(the predicate interval) is found. The latency
of DRtree approach is always related to the height of DRtree.
Instead, the latency of COBAS is mainly decided by the routing
process to FIND LEAF(vi); while the selective forwarding
process across COBASTREE only requires 1 hop.

Maintenance Study: The final two simulations study the
system maintenance aspects of COBAS. Figure 7(a) shows
the load distribution in COBAS. We distinguish two types of
loads: the storage load of a pnode is indicated by the rate
of the filter number stored in the pnode over all filters in
COBAS; the matching load of a pnode is indicated by the
rate of incoming content number forwarded to a pnode over
all contents. Here we consider the (either storage or matching)
load within [avg load*10,avg load/10] as allowable load, oth-
erwise the load higher than avg load*10 means overloading.
In Figure 7(a), without load balancing (provided by Mercury),
1.02% pnodes have to serve 47.12% (storage) load. After
the load balancing utility is applied, for the storage load, all
pnodes are safely inside the allowable load range; for the
matching cost, around 0.27% pnodes are overloaded due to the
dynamic publication of contents, but with only 5.25% overall
load.

Figure 7(b) shows the maintenance cost of COBAS when
pnodes dynamically join and leave simultaneously with filter
insertion and deletion. The maintenance cost is measured by
the consumed message traffics to re-structure and re-balance
COBASTREE. By this figure we find compared with filter
insertion/deletion, pnode join/leave may consume relatively
more maintenance cost. It is not hard to explore: the pnode
join/leave may result in the lnode lose and COBASTREE

restructuring; moreover, because pnodes are used to respon-
sible for all COBASTREEs in COBAS, the lost lnodes by
pnode leave require repairing all COBASTREEs. Instead, filter
insertion/deletion may consume less cost.

C. PlanetLab Results

In PlanetLab, we measure the network traffic volume and
latency of three approaches. Figure 7(c) plots the network
traffic volume of COBAS, DRtree and Multi-1D approach,
in every 1 hour to compute the average network traffic per
minute. For COBAS, we specially plots the content forwarding
cost Cost(C), and filter maintenances cost Cost(F) (for
Cost(F), we use the bottom-x and right-y axes; other curves
use the default bottom-x and left-y axes). It is not supervised
that DRtree and Multi-1D approach consume more traffics than
COBAS in the final moment. For COBAS, it may be observed
that: during the period from the beginning to the 4-th hour,
the value of Cost(C) drops quickly from the 2354.6MB/min
to 361.8MB/min, due to the effect of merging COBASTREEs
and interval division; while the value of Cost(F) grows
from 2.083MB/min to 33.5MB/min. Since the overall cost
Cost(A) of COBAS is the sum of Cost(C) and Cost(F), the
value of Cost(A) also quickly drops from 2356.683MB/min
to 395.3MB/min. In the later period from 4-th to the end
of the experiment, the value of Cost(C) is reduced from
361.8MB/min to 222.56MB/min with around 38.5% drop,
but the value of Cost(F) is increased from 33.5MB/min
to 52.1MB/min. By this experiment, we find that merging
COBASTREE and interval division may significantly the value
of Cost(C) of COBAS.

Figure 7(d) shows the worst, best and average latency
every three hour for three approaches. In this figure, COBAS

may achieve the minimal average latency with around 1.1
seconds, and Multi-1D approach introduces the highest latency
with 3.07 seconds. The latency of COBAS is relatively stable
due to the selective multicast which is independent on other
operations in COBAS like COBASTREE merging or interval
division. The worst case of Multi-1D approach is as high as
6.64 seconds because the Multi-1D approach waiting for the
matching result from each attribute may suffer from the lowest
latency in a PlanetLab like distributed system.

Discussion: 1) The range query function, random sampling,
load balancing and other utilities of Mercury provide many
facilities for Cobas implementation, thus we can focus on
the function of Cobas as an application abover Mercury; 2)
The detection of data pattern like the distribution of content
density etc requires a relatively long period of the data sam-
pling. Too frequent CobasTree merging operations produce the
highly maintenance load to adjust the CobasTrees. The similar
situation holds for interval division; 3) The tree structure is
sensitive to the high node failure rate. The passive policy to
allow the unbalanced tree structure consumes the less cost
to adjust the tree shape, but more forwarding cost for such
unbalanced tree.

VIII. CONCLUSION AND FUTURE WORKS

We present COBAS as a framework for efficient match-
ing for distributed CBPS. The key component of COBAS

is the novel COBASTREE structure and a set of techniques
like selective multicast, interval division and COBASTREE

merging. The experiments of COBAS in two running modes
illustrate the efficiency of COBAS. In order to demonstrate
the practical application of COBAS, from the semantic side,
we plan to enhance the flexibility of the content filtering of
COBAS by using more complicated content format and filtering
mechanism; from the system side, we may consider reliable
message delivery over the COBAS framework.

ACKNOWLEDGMENT

Funding for this work was partially provided by RGC
Earmarked Research Grant of HKSAR CUHK 4118/06E,
NSFC/RGC Joint Research Scheme N HKUST602/08 and
National Natural Science Foundation of China (NSFC) under
Grant No. 60736013.

REFERENCES

[1] I. Aekaterinidis and P. Triantafillou. Pastrystrings: A comprehensive
content-based publish/subscribe dht network. In ICDCS, page 23, 2006.

[2] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting
scalable multi-attribute range queries. In SIGCOMM, 2004.

[3] A. R. Bharambe, S. G. Rao, and S. Seshan. Mercury: a scalable publish-
subscribe system for internet games. In NETGAMES, pages 3–9, 2002.

[4] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for
content-based networking. In INFOCOM, 2004.

[5] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network.
In SIGCOMM, pages 163–174, 2003.

[6] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range
queries in trie-structured overlays. In Peer-to-Peer Computing, 2005.

[7] M. de Berg, M. O. Marc van Kreveld, and O. Schwarzkopf. Com-
putational geometry: Algorithms and applications. In Springer-Verlag,
Berlin, 1997.

[8] H. Edelsbrunner. A new approach to rectangle intersections. In
International Journal Computational Mathematics 13, pages 209–219
and 221–229, 1983.

[9] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe. In SIGMOD Conference, pages 115–126, 2001.

[10] S. Ganguly, S. Bhatnagar, A. Saxena, R. Izmailov, and S. Banerjee. A
fast content-based data distribution infrastructure. In INFOCOM, 2006.

[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot:
Content-based publish/subscribe over p2p networks. In Middleware,
pages 254–273, 2004.

[12] V. Ramasubramanian and E. G. Sirer. The design and implementation
of a next generation name service for the internet. In SIGCOMM, 2004.

[13] W. Rao, L. Chen, A. W.-C. Fu, and Y. Bu. Optimal proactive caching
in peer-to-peer network: analysis and application. In CIKM, pages 663–
672, 2007.

[14] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A
scalable content-addressable network. In SIGCOMM, 2001.

[15] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, pages 329–350, 2001.

[16] P. F. S. Bianchi, A.K. Datta and M. Gradinariu. Stabilizing dynamic
r-tree-based spatial filters. In ICDCS, pages 447–457, 2007.

[17] S. Voulgaris, E. Riviere, A. Kermarrec, and M. van Steen. Sub-2-sub:
Self-organizing content-based publish subscribe for dynamic large scale
collaborative networks. In IPTPS, 2006.

[18] R. Zhang and Y. C. Hu. Hyper: A hybrid approach to efficient content-
based publish/subscribe. In ICDCS, pages 427–436, 2005.

[19] Y. Zhu and Y. Hu. Ferry: An architecture for content-based pub-
lish/subscribe services on p2p networks. In ICPP, pages 427–434, 2005.

