
Computing Compressed Multidimensional Skyline Cubes Efficiently ∗

Jian Pei1 Ada Wai-Chee Fu2 Xuemin Lin3 Haixun Wang4

1 Simon Fraser University, Canada, jpei@cs.sfu.ca
2 Chinese University of Hong Kong, adafu@cse.cuhk.edu.hk

3 The University of New South Wales & NICTA, Australia, lxue@cse.unsw.edu.au
4 IBM T. J. Watson Research Center, USA, haixun@us.ibm.com

Abstract

Recently, the skyline computation and analysis have
been extended from one single full space to multidimen-
sional subspaces, which can lead to valuable insights in
some applications. Particularly, compressed skyline cubes
in the form of skyline groups and their decisive subspaces
provide a succinct summarization and compression of mul-
tidimensional subspace skylines. However, computing sky-
line cubes remains a challenging task since the existing
methods have to search an exponential number of non-
empty subspaces for subspace skylines. In this paper, we
propose a novel and efficient method, Stellar, which exploits
an interesting skyline group lattice on a small subset of ob-
jects which are in the skyline of the full space. We show
that this skyline group lattice is easy to compute and can be
extended to the skyline group lattice on all objects. After
computing the skyline in the full space, Stellar only needs
to enumerate skyline groups and their decisive subspaces
using the full space skyline objects. Avoiding searching for
skylines in an exponential number of subspaces improves
the efficiency and the scalability of subspace skyline compu-
tation substantially in practice. An extensive performance
study verifies the merits of our new method.

1 Introduction

The skyline operator is important for many multi-criteria
decision making applications. For example, to search for
∗The authors are grateful to the anonymous reviewers for their con-

structive comments. Jian Pei’s research is supported in part by NSERC
Discovery Grants, NSERC Collaborative Research and Development
Grants, NSF Grant IIS-0308001, and IBM Eclipse Innovation Awards.
Ada Fu’s research is supported in part by the RGC Earmarked Research
Grant of HKSAR CUHK 4120/05E. Xuemin Lin’s research is supported
in part by Australian Research Council Discovery Grant (DP0666428) and
UNSW Faculty Research Grant Program (FRGP, PS08709). All opinions,
findings, conclusions and recommendations in this paper are those of the
authors and do not necessarily reflect the views of the funding agencies.

flight tickets from Vancouver, Canada to Istanbul, Turkey,
a customer prefers low price and short travel time. Route
A dominates route B (or, A is a better choice than B
in the context of this example) if A.price ≤ B.price,
A.traveltime ≤ B.traveltime, and at least one inequality
holds. Those routes not dominated by any others form the
skyline. Given a set of multidimensional objects, a skyline
query returns the complete set of skyline objects.

In many applications, a user may be interested in not
only the skyline in the full space (i.e., with respect to all
available attributes), but also the skylines in various sub-
spaces. In our flight ticket selection example, a user may be
also interested in the number of stops, and thus may want
to compare the skylines in subspaces (price, traveltime),
(price, stops) and (price, traveltime, stops). Generally,
a skyline route with respect to a set of attributes may not
be a skyline route any more if some attributes are added or
removed.

In [10, 15], the full space skyline computation is ex-
tended to subspace skyline computation. Particularly,
in [10], we extended the skyline analysis in full space to
multidimensional subspace skyline analysis, and proposed
a general framework. An object is in the skyline of a sub-
space if it is not dominated by any other objects in the sub-
space. Roughly speaking, a group of objects form a skyline
group if they share common values in a subspace and the
shared values are in the skyline of that subspace. A deci-
sive subspace of a skyline group is a minimal combination
of attributes that qualifies the group of objects exclusively
in the skyline of some subspaces. The model using skyline
groups and the corresponding decisive subspaces can cap-
ture subspace skyline objects and the factors contributing to
their skyline membership.

Given a data set, by computing the compressed skyline
cube consisting of all skyline groups and the corresponding
decisive subspaces, three types of queries can be answered.
First, given any subspace, we can tell the set of skyline ob-
jects in the subspace. Second, given any object or a group of
objects, we can identify the subspaces where the objects are

in the skylines. Last, multidimensional analysis on skylines
in various subspaces can be conducted. Therefore, skyline
groups and their decisive subspaces are a succinct summa-
rization and compression of skylines in all subspaces.

While [10] provides a fundamental framework for mul-
tidimensional subspace skyline analysis, how to compute
skyline groups and decisive subspaces efficiently has not
been addressed sufficiently. In [10], a simple algorithm,
Skyey is proposed by assembling a data cube algorithm and
a sorting-based skyline algorithm. The major idea is that,
starting from the full space, all non-empty subspaces are
searched systematically in a depth-first manner. While sky-
line objects in a subspace are identified by sorting objects
properly, the sorted lists of objects are shared as much as
possible by the skyline computation in multiple subspaces.

The Skyey algorithm may not be efficient or scalable if
the dimensionality is high, since it has to search skyline
in every non-empty subspace! When the dimensionality is
high, the number of subspaces can be huge.

Can we compute skyline groups and their decisive sub-
spaces without searching all subspaces?

In this paper, we study the problem of efficient com-
pressed skyline cube computation by developing a fast al-
gorithm Stellar which computes skyline groups and deci-
sive subspaces without searching all subspaces for skylines.
Particularly, we observe a nice relation between the skyline
groups formed by full space skyline objects only and the
skyline groups formed by all objects: the former lattice is a
quotient lattice of the latter one. Then, we develop an effi-
cient method to compute the full space skyline only and use
the skyline to shape multidimensional skyline groups and
their decisive subspaces. Our method avoids searching for
subspace skylines in all proper subspaces!

The remainder of the paper is organized as follows. In
Section 2, we present the problem definition. We review
related work in Section 3. In Section 4, we draw the relation
between two interesting lattices. In Section 5, we develop
a new algorithm Stellar. Experimental results are presented
in Section 6. The paper is concluded in Section 7.

2 Multidimensional Subspace Skylines

By default we consider a set of objects S in an n-
dimensional space D = (D1, . . . , Dn), where dimensions
D1, . . . , Dn are in the domain of numbers. For the sake of
brevity, we often do not explicitly mention S and D when
they are clear in the context. Moreover, we often write a set
as a string and omit the set brackets. For example, object
set {P2, P5} and subspace (A,C) are written as P2P5 and
AC, respectively.

A subset of dimensions B ⊆ D (B 6= ∅) forms a (non-
trivial) |B|-dimensional subspace of D. For an object u in
space D, the projection of u in subspace B, denoted by uB,

is a |B|-tuple (u.Di1 , . . . , u.Di|B|), where Di1 , . . . , Di|B| ∈
B and i1 < · · · < i|B|.

For objects u, v ∈ S, u is said to dominate v in subspace
B if u.D ≤ v.D for any D ∈ B, and there exists at least one
dimension Di0 ∈ B such that u.Di0 < v.Di0 . Object u is a
skyline object in B if u is not dominated by any other objects
from S in B. The skyline in subspace B is the complete set
of skyline objects in B.

Generally, two objects u and v may have some common
values on some dimensions. The concepts of coincident
groups and skyline groups capture the object groups shar-
ing common values and skyline memberships in subspaces.

Definition 1 (c-group and skyline group [10]) In sub-
space B, a set of objects G forms a coincident group (or
c-group for short) (G,B) if all objects in G have the same
projection in B, i.e., ∀u, v ∈ G, uB = vB. We denote the
common projection by GB.

A c-group (G,B) is maximal if there exists no other ob-
ject v ∈ (S−G) such that vB = GB, and objects in G do not
share the same value on any other dimension D ∈ (D−B).
B is called the maximal subspace for group G.

A maximal c-group (G,B) is a skyline group if GB is in
the skyline of subspace B. Clearly, if (G,B) is a skyline
group, every object u ∈ G is also in the skyline of B.

Roughly speaking, a decisive subspace for a skyline
group is a minimal combination of attributes that enables
all objects in the group as subspace skyline objects exclu-
sively.

Definition 2 (Decisive subspace [10]) For skyline group
(G,B), a subspace C ⊆ B is called decisive if (1) GC is in
the subspace skyline of C; (2) for any object u ∈ (S − G),
uC 6= GC ; and (3) there exists no proper subspace C′ ⊂ C
such that conditions (1) and (2) also hold for C′.

A skyline group can be summarized by the signature
Sig(G,B) = 〈GB, C1, . . . , Ck〉, where C1, . . . , Ck are all
decisive subspaces of the skyline group.

As shown in [10], if C is a decisive subspace for skyline
group (G,B), then, all objects in G are also in the skyline of
any subspaceA between B and C, i.e., C ⊆ A ⊆ B. In other
words, skyline groups summarize the skyline membership
of groups of objects in various subspaces.

Example 1 (Concepts) Consider the set of 5 objects in
Figure 1(a). The subspace skylines are shown in Fig-
ure 1(b). Although object d is a skyline object in the full
space, it is not in any subspace skyline. On the other hand,
object a is not in the full space skyline, but it is in the sub-
space skyline of X .

Object e has value 1 in dimension Y , which enables e
as a skyline object in spaces Y and XY . No other object

1 2 3 4 5 6 7

1

2

3

4

5

6
Y

X

a

b c

d

e

(a) A set of 5 objects

Subspace Skyline
XY b, d, e
X a, b
Y e

(b) Subspace skylines

Figure 1. A set of objects in Example 1

shares the same value on Y with e. Thus, (e,XY) is a sky-
line group with decisive subspace Y , which summarizes the
skyline membership of e in subspaces Y and XY . Object
d is in the skyline of space XY but not in any subspaces.
Thus, (d,XY) is a skyline group and the decisive subspace
is XY . Object b is in the skylines of subspaces XY and X ,
and b.X = 2 enables its skyline membership. However, in
subspace X , b has the same projection as a. Thus, (ab,X)
is a skyline group with decisive subspace X , and (b,XY)
is another skyline group with decisive subspace XY .

Generally, a skyline group may have more than one de-
cisive subspace. We will see an example soon.

Problem Definition. Given a set of objects S in n-dimen-
sional space D, the problem of compressed skyline cube
computation (or subspace skyline computation in [10]) is
to compute the complete set of skyline groups and their de-
cisive subspaces.

The following result can help in compressed skyline
cube computation.

Theorem 1 (Full space skyline objects [10]) For any sky-
line group (G,B), there exists at least one object u ∈ G
such that u is in the skyline of full space D.

3 Related Work

Simultaneous to [10], Yuan et al. [15] studied the prob-
lem of computing the skylines in all subspaces and devel-
oped efficient algorithms. Different from [10], the algo-
rithms in [15] cannot compute skyline groups and their sig-
natures.

Skyline groups and their decisive subspaces can be re-
garded as the summarization and compression of subspace
skylines. As shown in [10], all subspace skylines can be
derived from the complete set of skyline groups and their
decisive subspaces. In this paper, we focus on the compu-
tation of skyline groups and their signatures instead of only
the skylines in subspaces. Directly adopting the algorithms
from [15] cannot help since those algorithms also have to
compute skylines in all subspaces.

Recently, an alternative approach to subspace skyline
analysis was proposed in [13]. Instead of materializing all
subspace skylines as in [10, 15], an effective index on the set
of objects in question is devised in [13] so that any subspace
skyline can be extracted on the fly efficiently. The index can
be implemented efficiently using a B+-tree. However, the
skyline group and decisive subspace issue is not addressed
in [13].

In previous studies, many algorithms have been devel-
oped for skyline query answering, such as the divide-and-
conquer (DC) and block nested loops (BNL) approaches
Borzsonyi et al. [1], the sort-first-skyline (SFS) method by
Chomicki et al. [2], the method using bit-operations by Tan
et al. [12], the nearest neighbor search method by Kossmann
et al. [6] (an improvement in [7]), and the integrated method
LESS by Godfrey et al. [5]. However, all those methods
only consider the skyline in one single space, and do not
address the issue of skyline groups and decisive subspaces.

As multidimensional skyline analysis is interesting and
useful in a few applications, [10, 15] have been extended in
a few interesting ways. For example, Xia and Zhang [14]
studied how to incrementally maintain a skyline cube
against frequent updates.

There have been also some other recent studies on high
dimensional subspace skylines. For example, Chan et al. [4]
studied finding top-k frequent skyline points in multidi-
mensional subspaces. Chan et al. [3] considered the k-
dominance relation and explored k-dominant skylines.

4 Seed Skyline Groups and Lattices

Theorem 1 is an important hint in computing skyline
groups: each skyline group must have a full space skyline
object as a seed. However, it does not answer the question
how the subspace skylines are shaped by the full space sky-
line objects.

Definition 3 (Seed skyline groups) For a data set S in
space D, an object in the full space skyline is called a seed
object. The set of seed objects is denoted by F (S).

The skyline groups on F (S) are called the seed skyline
groups with respect to data set S. The lattice of seed skyline
groups is called the seed lattice, denoted by SSG(S).

Then, what is the relation between the skyline groups on
S and the seed skyline groups?

Example 2 (Seed lattice) Consider the set S of five objects
in 4-d space ABCD shown in Figure 2 as our running ex-
ample.

Objects P2, P4 and P5 are in the full space skyline. That
is, F (S) = {P2, P4, P5} is the set of seed objects. More-
over, it can be verified that object P3 is in the skylines of

(P2, (2,6,8,3), AC, CD) (P4, (6,4,8,5), BC) (P5, (2,4,9,3), AB, BD)

(P2P4, (*,*,8,*), C) (P4P5, (*,4,*,*), B)(P2P5, (2,*,*,3), A, D)

(a) The seed lattice, i.e., the lattice of skyline
groups and decisive subspaces on F (S).

(P5, (2,4,9,3), AB)

(P2P3P5, (*,*,*,3), D)

(P3P5, (*,4,9,3), BD)

(P3P4P5, (*,4,*,*), B)(P2P5, (2,*,*,3), A)

(P4, (6,4,8,5), BC)(P2, (2,6,8,3), ACD)

(P2P4, (*,*,8,*), C)

(b) The skyline groups and decisive subspaces on S.

Figure 3. The skyline groups and decisive subspaces on S and F (S).

oid A B C D

P1 5 6 10 7
P2 2 6 8 3
P3 5 4 9 3
P4 6 4 8 5
P5 2 4 9 3

Figure 2. An object set S as our running
example.

subspaces B, D and BD. Object P1 is not in any subspace
skylines.

Figures 3(a) and 3(b), respectively, show the seed lattice,
i.e., the skyline group lattice on F (S), and the lattice of
all skyline groups on S. In the figures, we omit the unit
elements and the zero elements in the lattices.

Interestingly, the two lattices of skyline groups and their
decisive subspaces are quite similar to each other, except for
the following differences.

Object P3, which is not a seed object, shares the same
value with seed objects P2 and P5 on dimension D, and D is
one of the decisive subspaces of group P2P5 in Figure 3(a).
Thus, the skyline group (P2P5, (2, ∗, ∗, 3), A, D) in Fig-
ure 3(a) is expanded to include a child group (P2P3P5,
(∗, ∗, ∗, 3), D) in Figure 3(b). Moreover, the decisive sub-
space of group P2P5 in Figure 3(b) is adjusted to AD since
dimensions A and D are needed together to distinguish
these two seed objects from P3 and establish their skyline
membership as an exclusive group.

In addition, P3 shares the same values with P5 on di-
mensions B and D, and BD is a decisive subspace of P5 in
Figure 3(a). A new group P3P5 is added in Figure 3(b) to
capture this sharing. The decisive subspace of group P5 in
Figure 3(b) remains AB.

P3 also shares the same value with seed object P4 on
dimension B which is a decisive subspace of group P4P5

in Figure 3(a). Thus, the group P4P5 in Figure 3(a) is ex-

tended to the group P3P4P5 in Figure 3(b).
On the other hand, although object P1 also shares with

seed object P2 the same value on dimension B, however,
it does not cause any change in the skyline groups and the
decisive subspaces since B is not in the decisive subspace
of P2.

In summary, we obtain the following two observations.

• The only differences between the two lattices are some
splitting groups caused by some objects that are not in
the full space skyline but share some common values
with some seed objects in part of their decisive sub-
spaces.

• The seed lattice is a quotient lattice of the skyline
group lattice on S.

Motivated by the observations in Example 2, we extend
Theorem 1 [10] to the following more thorough result. Lim-
ited by space, we omit the proof here.

Theorem 2 (Seed lattices) For a data set S, let SGS be the
skyline group lattice. Then, the seed lattice SSG(S) is a
quotient lattice of SGS .

Theorem 2 provides important insights into the structure
of skyline groups. The skyline groups on S can be com-
posed in two steps. First, we can find the seed skyline groups
and the seed lattice formed by seed objects. Then, we can
extend the seed skyline groups properly to include those ob-
jects that are not seeds but share some common values in
the decisive subspaces.

5 Algorithm Stellar

In this section, we develop algorithm Stellar, which com-
putes skyline groups and decisive subspaces by searching
only the full space skyline. First, we introduce the dom-
inance matrix and the coincidence matrix, which will be
used to compute the seed skyline groups and their decisive

P2 P4 P5

P2 ∅ AD C

P4 B ∅ C

P5 B AD ∅
(a) Dominance matrix Mdom

P2 P4 P5

P2 ABCD C AD

P4 C ABCD B

P5 AD B ABCD
(b) Coincidence matrix Mco

Figure 4. Two matrices in Example 5.

subspaces. Then, we explain how to find the seed skyline
groups and the seed lattice. We also discuss how to extend
the seed lattice to include those non-seed objects. Last, we
present the whole algorithm.

Without loss of generality, we assume that there exist no
objects u, v ∈ S such that u.D = v.D for every dimen-
sion D. If such a situation happens, the two objects can be
bound together since they always appear together if they are
involved in any skyline groups.

5.1 Dominance and Coincidence Matrices

Example 3 (Dominance and coincidence matrices)
Consider our running example in Figure 2. We compute the
skyline objects in the full space as the seed objects. As a
byproduct, we can populate a dominance matrix Mdom and
a coincidence matrix Mco as shown in Figure 4.

In the dominance matrix Mdom, the cell at row Pi and
column Pj , denoted by domPi,Pj , records the dimensions
on which Pi has a smaller value than Pj . For example,
domP2,P4 = AD since P2.A < P4.A and P2.D < P4.D.

In the coincidence matrix Mco, the cell at row Pi and
column Pj , denoted by coPi,pj , records the dimensions on
which Pi and Pj share the same values. For example,
coP2,P4 = C since P2.C = P4.C. Clearly the coincidence
matrix is symmetric, i.e., coPi,Pj = coPj ,Pi . Moreover,
coPi,Pi = ABCD.

Definition 4 (Dominance and coincidence matrices)
The dominance matrix Mdom = {domo,o′}, where
o, o′ ∈ F (S), domo,o′ = {D|D ∈ D, o.D < o′.D}. The
coincidence matrix Mco = {coo,o′}, where o, o′ ∈ F (S),
cell coo,o′ = {D|D ∈ D, o.D = o′.D}.

Apparently, we have the following property.

Property 1 (Dominance and coincidence matrices) In
the dominance matrix Mdom and the coincidence matrix
Mco, for any o, o′ ∈ F (S), (1) domo,o = ∅; (2) coo,o = D;
and (3) coo,o′ = coo′,o = (D − domo,o′ − domo′,o).

Property 1 indicates that a coincidence matrix is redun-
dant. In implementation, we can either derive the coinci-
dence matrix on the fly, or only store a triangle matrix since
coo,o′ = coo′,o. To keep our description simple, we con-
ceptually use the coincidence matrix. A dominance matrix

and a coincidence matrix can be derived as the byproducts
of finding skyline objects in the full space.

5.2 Identifying Seed Skyline Groups

Recall that for skyline group (G,B), B is called the max-
imal subspace of G. Thus, to compute a skyline group,
we need to determine its maximal subspace and its decisive
subspaces.

5.2.1 Maximal Subspaces of Seed Skyline Groups

Each seed object is unique and thus forms a skyline group
in the full space. They are called the singleton seed skyline
groups. In addition, if some seed objects share values on
some dimensions, they may also form seed skyline groups.

Example 4 (Other seed skyline groups) Since coP2,P5 =
AD, objects P2 and P5 share common values on dimen-
sions A and D. Interestingly, P2 and P5 have a smaller
value than P4, the only other seed object on both A and D.
Thus, P2P5 form a skyline group. Similarly, the other seed
skyline groups P2P4 and P4P5 can be identified.

Generally, we have the following result.

Theorem 3 (Skyline groups by sharing) (G,B) (|G| >
1) is a seed skyline group if and only if for any w 6∈ G,
B =

⋂
u,v∈G,u6=v cou,v and B ∩ domu,w 6= ∅.

Theorem 3 says, in order to find skyline groups, we do
not need to search every subspaces. Instead, we only need
to examine how objects share common values in subspaces.
Moreover, we do not need to sort objects in various sub-
spaces. The dominance matrix and the coincidence matrix
are sufficient.

5.2.2 Decisive Subspaces of Seed Skyline Groups

How can we determine the decisive subspaces for a seed
skyline group?

Example 5 (Decisive subspaces of seed objects)
(P2, (2, 6, 8, 3)) is a skyline group. What are its deci-
sive subspaces?

Since domP2,P4 = AD, in all subspaces not contain-
ing dimensions A and D, object P2 is either dominated by
P4 or has the same values as P4. Thus, to form a skyline
group by itself, P2 needs either dimension A or dimension
D. Similarly, since domP2,P5 = C, P2 needs dimension C
to be not dominated by P5 and to be also different from P5.
Therefore, in any super-space of either AC or CD, P2 is a
skyline object. In other words, AC and CD are the decisive
subspaces for skyline group (P2, (2, 6, 8, 3)).

Interestingly, if we treat each dimension as a binary vari-
able, then the conjunctive normal form (A ∨D) ∧C repre-
sents the requirement of subspaces that P2 itself is qualified
as a skyline group. Each conjunction in the minimum dis-
junctive normal form, (A ∧C) ∨ (C ∧D), gives a decisive
subspace.

Similarly, group (P4, (6, 4, 8, 5)) has a decisive sub-
space BC, and group (P5, (2, 4, 9, 3)) has two decisive sub-
spaces AB and BD. This observation can also be extended
to seed skyline groups of multiple objects.

Let us generalize the observation in Example 5.

Theorem 4 (Decisive subspace) C is a decisive subspace
of skyline group (G,B) if and only if for each object o 6∈ G,
there exists at least one dimension D ∈ C such that GD <
o.D.

Theorem 4 discloses the inherent meaning of decisive
subspaces. To facilitate finding the decisive subspaces, we
collect the dominance information in the dominance matrix
and the coincidence matrix as the byproducts of finding seed
objects. Again, we do not need to search all subspaces. In
fact, the dominance matrix is sufficient.

A disjunctive normal form C1 ∨ . . . ∨ Cn is minimum
if there exist no Ci, Cj (1 ≤ i, j ≤ n) such that Ci →
Cj . The following rule gives the decisive subspaces of seed
skyline groups.

Corollary 1 (Decisive subspaces) C = Di1 · · ·Dik
is a

decisive subspace of a seed skyline group (G,B) if and only
if Di1∧. . .∧Dik

is a conjunction in the minimum disjunctive
normal form of formula

∧
u 6∈G(

∨
D∈(B∩domo,u) D), where

{dom} is the dominance matrix and o is any object in G.

Clearly, in our problem, only positive instances appear.
The minimum disjunctive normal form is unique and can
be computed in polynomial time. In fact, for a seed skyline
group G, its decisive subspaces can be computed efficiently
by scanning a row of o ∈ G in the dominance matrix and
using bitmap vectors to record the subspaces.

Example 6 (Computing decisive subspaces) Let us con-
sider computing decisive subspaces for seed group
(P5, (2, 4, 9, 3)). We scan the row of P5 in the dominance
matrix. Since domP5,P2 = B, we initiate a candidate sub-
space B. The next entry in the row is domP5,P4 = AD.
Thus, we make another copy of the existing candidate sub-
space and add to them A and D, respectively. Then, we
have two candidate subspaces: AB and BD. If there are
more entries in the row, we can extend the subspaces. At
any time, we only maintain the minimal subspaces. That is,
we never maintain a candidate subspace C′ if there is an-
other candidate subspace C ⊂ C′.

5.3 Accommodating Non-Seed Objects

Example 7 (Non-seed objects) Object P3 in our running
example shares the same values with object P5 in subspace
BCD, which is a superset of decisive subspace BD of
group (P5, (2, 4, 9, 3)). Thus, we split the group into two
groups. The first group contains P5 and the second group
contains P3P5.

Group P5 has two decisive subspaces in the seed lattice:
AB and BD. AB is not affected by P3 since P3 and P5

does not share on A. Thus, AB is still a decisive subspace
for P5 in the skyline lattice on the whole data set. On the
other hand, BD ⊂ BCD. Therefore, BD becomes the
decisive subspace of the new group (P3P5, (∗, 4, 9, 3)).

The expansion of group (P4P5, (∗, 4, ∗, ∗)) is a little bit
different. P4P5 share with P3 on dimension B, which is
the maximal subspace where P4P5 form a skyline group.
Thus, we do not need to split the group. Instead, we only
add in P3. The decisive subspace of the group, B, remains
the same.

We generalize the observation in Example 7 as follows.

Theorem 5 (Non-seed objects) Given a set of objects S in
space D. (G,B) is a skyline group on S if and only if there
exists a seed skyline group (G,B′) such that

• G = G′, B = B′, and there exists no other object
o ∈ (S − F (S)) such that GB = oB; or

• G′ ⊂ G, B′ ⊃ B, (G − G′) is the set of all objects
in (S −F (S)) that share common values with G′ in B
but not in any proper super-space of B, and there exists
a decisive subspace C′ of seed skyline group (G′,B′)
such that C′ ⊆ B.

A space C ⊆ B is a decisive subspace of skyline group
(G,B) on S if and only if

• C is a decisive subspace of seed group (G′,B′) on
F (S) and there exists no object o ∈ (S − G) such
that oC = GC; or

• there exists a decisive subspace C′ of seed group
(G′,B′) on F (S) such that (1) C′ ⊂ C; (2) there are
some object o ∈ (S − G), oC′ = GC′ but oC 6= GC;
and (3) C is the minimal subspace that have the above
two properties.

Theorem 5 gives the rules on how to accommodate non-
seed objects in to the skyline lattice. Again, we do not need
to search any subspaces for skylines. Instead, we only need
to scan all those non-seed objects once against the seed lat-
tice and make adjustments as indicated by the theorem.

{a,b,d}

{a,b} {a,c}

{a,c,d}

{a,b,c,d}

{a,d}

{a}

{b,c} {b,d}

{b,c,d}

{b} {c}

{c,d}

{d}

{}

{a,b,c}

Figure 5. A set enumeration tree.

5.4 The Algorithm

Algorithm Stellar exploits our findings in the previous
subsections to compute the complete set of skyline groups.
Basically, the algorithm works in two steps. First, it com-
putes the seed skyline groups. Then, it adds in the non-seed
objects based on their sharing of common values with some
seed skyline groups.

In the first step of computing the seed skyline groups,
instead of searching subspace skylines in all subspaces like
Skyey does, Stellar only considers how the seed objects co-
incide in subspaces.

To enumerate all possible subsets of seed objects that
share common values in some subspaces, we can use a set
enumeration tree [11]. A set enumeration tree uses a to-
tal order on the set of all objects. Each subset of objects
is treated as a string such that all objects in the subset are
sorted in the total order. Then, a subset X is an ancestor of
another subset Y in the set enumeration tree if X is a prefix
of Y . For example, the set enumeration in Figure 5 enumer-
ates all possible subsets of object set {a, b, c, d}, where the
alphabetical order is used.

When there are many seed objects, the complete set enu-
meration tree can be huge. However, we do not need to
search all subsets. Instead, we are only interested in those
maximal c-groups – a set of objects G share common values
in the maximum subspace B, and no proper superset of G
shares in B.

Example 8 (Search for maximal c-groups) A segment of
a coincidence matrix on objects {o1, o2, o3, o4, o5} is shown
as follows.

o1 o2 o3 o4 o5

o1 ABCD ACD B ABCD CD
o2 ACD ABCD ∅ CD BCD

. . .

According to the set enumeration tree, all those maximal
c-groups can be divided into 4 subsets: the ones having ob-
ject o1, the ones having object o2 but no o1, the ones having

Input: a set of seed objects F (S) in space D, and
coincidence matrix Mco;

Output: the set of all maximal c-groups of seed objects;
Method:
1: let F (S) = {o1, . . . , ol};
2: for i = 1 to (l − 1) do
3: call recursive-search(oi, {oi}, {oi+1, . . . , ol},D);

Function recursive-search(u,G, H,B)
31: let G′ = {o|o ∈ (F (S)−G), cou,o ⊇ B};
32: if G′ 6⊆ H then return;

// any group containing G but not (G′ −H)
// cannot be maximal

33: let G = G ∪G′ and H = H −G′;
34: output (G,B) as a maximal c-group;
35: let H = {oi1 , . . . , oik

} such that i1 < · · · < ik;
36: for j = 1 to k do
37: let B′ = cou,oij

∩ B;
38: if B′ 6= ∅ then
39: let H ′ = {o|o ∈ H, cou,o ⊇ B′};
40: call recursive-search(u, G ∪ {oij}, H ′,B′);

return;

Figure 6. Computing maximal c-groups.

object o3 but no o1 and o2, and the ones having object o4

but no o1, o2 and o3.
Let us find those maximal c-groups having o1. o1 and o2

share common values in space ACD. Moreover, o4 shares
common values with o1 in ABCD. Therefore, every subset
having o1o2 cannot be maximal if it does not contain o4.
o1o2o4 form a maximal c-group in space ACD. We can
add in o5 to form another maximal c-group in space CD.
After searching the branch of o1o2, we turn to branch o1o3

and find maximal c-group o1o3o4 in subspace B. Similarly,
we can find the other maximal c-group having o1: o1o4 in
space ABCD. Note that o1o5 share common values in CD.
However, o2 and o4 also share common values with o1 on
these two dimensions. Thus, o1o5 is not maximal.

Now, let us find those object subsets having o2 but not
o1. First we consider o2o4, which share common values
in subspace CD. However, o1 also share common values
with o2 in CD. Thus, any subset containing o2o4 but not
o1 cannot be a maximal c-group. All the recursive search of
o2o4 such as o2o4o5 can be pruned.

The algorithms for finding the maximal c-groups is
shown in Figure 6. Please note that the idea of comput-
ing the closure subsets using a set enumeration tree is not
new at all. Instead, it has been exploited extensively in min-
ing frequent closed itemsets [8], such as [9, 16]. However,
the detailed algorithms in [9, 16] are different from the al-

Input: a set of objects S in space D;
Output: the set of skyline groups;
Method:
1: compute full space skyline objects F (S), as a

byproduct, populate the dominance matrix and
the coincidence matrix on F (S);

2: compute maximal c-groups on F (S) (Figure 6);
3: identify the decisive subspaces of the

maximal c-groups using Corollary 1;
4: if a maximal c-group does not have a non-empty

decisive subspace, then it is not a seed skyline
group and thus is drop;

5: add in non-seed objects according to Theorem 5;

Figure 7. Algorithm Stellar.

gorithm here since the problem settings are different.
Based on the above discussion, we have algorithm Stel-

lar as shown in Figure 7.

6 Experimental Results

In this section, we report an extensive performance study
using both real data sets and synthetic data sets. We us:
the Great NBA Players’ technical statistics data set which
is meaningful in practice. We also use synthetic data sets
with uniform, correlated and anti-correlated distributions.
We evaluate the efficiency and the scalability of both Skyey
and Stellar with respect to dimensionality, database size and
data distribution.

Both algorithms were implemented using Microsoft Vi-
sual C++ V6.0. Experiments were conducted on a PC with
an Intel Pentium 4 3.0 GHz CPU and 1.0 GB main memory,
running Microsoft Windows XP operating systems.

6.1 Results on Real Data Set NBA

The real data set used in our empirical study is the Great
NBA Players’ technical statistics from 1960 to 2001. The
data set is available at the NBA official website (basketball-
reference.com). In our experiments, we use the regular sea-
son player statistics, which contains the statistics of 17, 265
players, and is the largest table in the data set. There are 17
dimensions in this table. Hereafter, we refer to this table as
the NBA data set. According to the semantics of this data
set, the larger the dimension values (e.g., total points, total
minutes), the better the player. Thus, a player with larger
dimension values dominates those with smaller values.

In [10], the same table was used to evaluate and illustrate
the meaningfulness of multidimensional skyline analysis.

To evaluate the scalability of Skyey and Stellar with re-
spect to dimensionality, we run the two algorithms on the

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
un

tim
e

(s
ec

on
ds

)

Dimensionality

Skyey
Stellar

Figure 8. Scalabil-
ity w.r.t. dimen-
sionality on real
data set NBA.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
um

be
r

of
 g

ro
up

s
or

 o
bj

ec
ts

Dimensionality

Subspace skyline objects
Skyline groups

Figure 9. Numbers
of skyline groups
and subspace sky-
line objects in real
data set NBA.

data set using the first d dimensions, where d varies from
1 to 17. The results are shown in Figure 8. The runtime is
shown in logarithmic scale.

The results show that Stellar is much faster than Skyey on
this data set. To fully understand the difference in efficiency,
we plot the number of skyline groups and the number of
subspace skyline objects in Figure 9, where the numbers
of groups and objects are in logarithmic scale. If a player
appears in the skylines of multiple subspaces, it is counted
multiple times in the number of subspace skyline objects.
This number is also the size of SkyCube in [15]. As men-
tioned before, Skyey computes SkyCube as a byproduct, and
Stellar computes skyline groups directly.

The number of subspace skyline objects grows exponen-
tially as the dimensionality increases. That is due to the
exponential increase of the number of possible subspaces.
Skyey has to compute the subspace skyline in every non-
empty subspace. The cost grows exponentially as the di-
mensionality increases.

On the other hand, the number of skyline groups in-
creases moderately with respect to dimensionality. In this
data set, we observe that there are no other players sharing
the same values with those skyline players on their decisive
subspaces. In such a case, the number of skyline groups
is bounded by the number of players in the full space sky-
line, and thus is not exponential with respect to dimension-
ality. Thus, Stellar saves substantially by computing skyline
groups directly without searching subspaces for skylines.

As a typical application where skyline analysis is mean-
ingful, the NBA data set does not have a large number of
skyline objects.

We also test the algorithms on some other real data sets.
The results are consistent. Limited by space, we omit the
details here. From the experimental results on the real data
sets, we observe the following.

The number of skyline groups and the number of full
space skyline objects are relatively small on real data sets,
and often do not grow exponentially. That makes the skyline
analysis on those data sets meaningful.

There are dimension value sharing in real data sets,

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r

of
 g

ro
up

s
or

 o
bj

ec
ts

Dimensionality

Skyline groups
Subspace skyline objects

(a) Correlated distributed data set

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6

N
um

be
r

of
 g

ro
up

s
or

 o
bj

ec
ts

Dimensionality

Skyline groups
Subspace skyline objects

(b) Equally distributed data set

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6

N
um

be
r

of
 g

ro
up

s
or

 o
bj

ec
ts

Dimensionality

Skyline groups
Subspace skyline objects

(c) Anti-correlated distributed data set

Figure 10. Skyline distribution in three types of synthetic data sets, each data set has 100, 000 tuples.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
un

tim
e

(s
ec

on
ds

)

Dimensionality

Skyey
Stellar

(a) Correlated distributed data set

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6

R
un

tim
e

(s
ec

on
ds

)

Dimensionality

Skyey
Stellar

(b) Equally distributed data set

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6

R
un

tim
e

(s
ec

on
ds

)

Dimensionality

Skyey
Stellar

(c) Anti-correlated distributed data set

Figure 11. Scalability w.r.t. dimensionality in three types of synthetic data sets, each data set has
100, 000 tuples.

 0

 50

 100

 150

 200

 0 100 200 300 400 500

R
un

tim
e

(s
ec

on
ds

)

Number of tuples (x 1,000)

Skyey
Stellar

(a) Correlated distributed data set
6 dimensions.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500

R
un

tim
e

(s
ec

on
ds

)

Number of tuples (x 1,000)

Skyey
Stellar

(b) Equally distributed data set
4 dimensions.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
un

tim
e

(s
ec

on
ds

)

Number of tuples (x 1,000)

Skyey
Stellar

(c) Anti-correlated distributed data set
4 dimensions.

Figure 12. Scalability w.r.t. database size in three types of synthetic data sets.

though not heavy. Skyline groups provide a substantial
summarization and compression of subspace skylines. On
real data sets with a relatively high dimensionality, the num-
ber of subspace skyline objects still can be huge. Searching
all subspaces is very costly. Stellar is clearly more efficient
and more scalable than Skyey on real data sets since it ex-
ploits the seed skyline groups effectively and never searches
all subspaces.

6.2 Results on Synthetic Data Sets

In order to fully understand the performance of Skyey and
Stellar with respect to different data distributions, we use
synthetic data sets. Particularly, we want to explore in what
situations Skyey and Stellar have advantages, respectively.

We generate three types of data sets using the data gen-

erator provided by the authors of [1]: (1) the correlated
distributed data sets where if a record is good in one di-
mension, likely it is also good in other dimensions; (2) the
equally distributed data sets where the attribute values of
the generated records are uniformly distributed; and (3) the
anti-correlated data sets where if a record is good in one
dimension, it is unlikely to be good in other dimensions. To
introduce a moderate coincidence in dimensions, we trun-
cate the values so that each number has 4 digits in the deci-
mal part.

Figure 10 shows the skyline distribution in the three
types of data sets, where each data set has 100, 000 tuples.
In the correlated data sets, the number of skyline groups is
orders of magnitudes smaller than the number of subspace
skyline objects, and does not grow exponentially. This dis-
tribution is similar to the one in the real data sets exam-

ined. In the equally or anti-correlated distributed data sets,
the number of skyline groups and the number of subspace
skyline objects increase almost exponentially, and the dif-
ference between the two numbers is not substantial. In
such data sets, many objects in a subspace skyline also form
groups individually in that subspace.

The scalability of the two methods with respect to di-
mensionality on the synthetic data sets is shown in Fig-
ure 11. In a correlated distributed data set, Stellar performs
substantially better than Skyey. Not searching all the sub-
spaces brings a tremendous benefit to Stellar. In an equally
distributed data set, Stellar is still faster than Skyey, but the
gap is much smaller than that in correlated distributed data
sets. Interestingly, in anti-correlated distributed data sets,
Skyey is even faster than Stellar. The reason is that most
of the subspace skyline objects form skyline groups. On
the other hand, there are much more objects (100, 000 ob-
jects in this experiment) than the number of dimensions to
search.

The experiments on the three types of data sets clearly
illustrate the difference between the two algorithms. Stellar
exploits skyline groups as a concise summarization of sub-
space skylines. When the summarization and compression
by skyline group is effective, Stellar has good performance.
However, if the compression ratio is low, then Skyey may
have good performance since the dimensionality is typically
smaller than the number of objects.

Furthermore, computing multidimensional skylines on
anti-correlated distributed data sets is much more costly
than on correlated distributed data sets. This is consistent
with the results in previous studies (e.g., [1, 10, 15]). Al-
though Skyey may performs better than Stellar, the runtime
of both of them increases fast as the dimensionality grows.

Using the synthetic data sets, we also test the scalability
of the two algorithms with respect to database size. The
results are shown in Figure 12. Both algorithms are scalable
with respect to database size. Stellar is faster than Skyey on
correlated or equally distributed data sets, but slower than
Skyey on anti-correlated data sets.

6.3 Summary

The extensive performance study clearly demonstrate the
advantages of Stellar and Skyey. As analyzed before, Skyey
searches subspaces for subspace skylines and merge them
into skyline groups. Stellar exploits the skyline groups and
avoids searching all subspaces. Thus, if the skyline groups
summarize and compress subspace skylines well, then Stel-
lar performs substantially better than Skyey. On the other
hand, if most of the subspace skyline objects form a unique
skyline group in their subspaces, then Skyey can be faster.

On the real data sets where skyline analysis is meaning-
ful, it seems that the data distribution favors Stellar. On the

other hand, in a real application with an exponential number
of skyline objects, the advantage of skyline objects over the
others is limited, and the meaningfulness of skyline analysis
could be questionable.

7 Conclusions

While multidimensional skyline analysis is useful in
many applications, computing multidimensional skylines
and compressed skyline cubes is challenging since there are
an exponential number of subspaces to search. The previ-
ous methods searching all subspaces may not achieve good
performance when the dimensionality is high.

In this paper, we propose a novel and efficient method,
Stellar, which exploits the seed skyline group lattice formed
by full space skyline objects. We show that this skyline
group lattice is easy to compute and can be extended to
the skyline group lattice on all objects. After computing
the skyline in the full space, Stellar only needs to enumer-
ate skyline groups and their decisive subspaces using the
full space skyline objects. Avoiding searching for skylines
in an exponential number of subspaces improves the effi-
ciency and the scalability of subspace skyline computation
substantially in practice. An extensive performance study
verifies the efficiency and the scalability of our new method.

References

[1] S. Borzsonyi et al. The skyline operator. In ICDE’01.
[2] J. Chomicki et al. Skyline with pre-sorting. In ICDE’03.
[3] C.-Y. C. et al. Finding k-dominant skylines in high dimen-

sional space. In SIGMOD’06.
[4] C. Y. C. et al. On high dimensional skylines. In EDBT’06.
[5] P. Godfrey et al. Maximal vector computation in large data

sets. In VLDB’05.
[6] D. Kossmann et al. Shooting stars in the sky: an online algo-

rithm for skyline queries. In VLDB’02.
[7] D. Papadias et al. An optimal and progressive algorithm for

skyline queries. In SIGMOD’03.
[8] N. Pasquier et al. Discovering frequent closed itemsets for

association rules. In ICDT’99.
[9] J. Pei et al. CLOSET: An efficient algorithm for mining fre-

quent closed itemsets. In DMKD’00.
[10] J. Pei et al. Catching the best views in skyline: A semantic

approach. In VLDB’05.
[11] R. Rymon. Search through systematic set enumeration. In

KR’92.
[12] K. Tan et al. Efficient progressive skyline computation. In

VLDB’01.
[13] Y. Tao et al. Subsky: Efficient computation of skylines in

subspaces. In ICDE’06.
[14] T. Xia and D. Zhang. Refreshing the sky: the compressed

skycube with efficient support for frequent updates. In SIG-
MOD’06.

[15] Y. Yuan et al. Efficient computation of the skyline cube. In
VLDB’05.

[16] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm
for closed itemset mining. In SIAM DM’02.

