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Abstract. The problem of finding anomaly has received much attention
recently. However, most of the anomaly detection algorithms depend
on an explicit definition of anomaly, which may be impossible to elicit
from a domain expert. Using discords as anomaly detectors is useful
since less parameter setting is required. Keogh et al proposed an efficient
method for solving this problem. However, their algorithm requires users
to choose the word size for the compression of subsequences. In this
paper, we propose an algorithm which can dynamically determine the
word size for compression. Our method is based on some properties of the
Haar wavelet transformation. Our experiments show that this method is
highly effective.

1 Introduction

In many applications, time series has been found to be a natural and useful form
of data representation. Some of the important applications include financial data
that is changing over time, electrocardiograms (ECG) and other medical records,
weather changes, power consumption over time, etc. As large amounts of time
series data are accumulated over time, it is of interest to uncover interesting
patterns on top of the large data sets. Such data mining target is often the
common features that frequently occur. However, to look for the unusual pattern
is found to be useful in some cases. For example, an unusual pattern in a ECG
can point to some disease, unusual pattern in weather records may help to locate
some critical changes in the environments.

Algorithms for finding the most unusual time series subsequences are proposed
by Keogh et al in [6]. Such a subsequence is also called a time series discord, which
is essentially a subsequence that is the least similar to all other subsequences.
Time series discords have many uses in data mining, including improving the
quality of clustering [8,2], data cleaning and anomaly detection [9,1,3]. By a
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comprehensive set of experiments, these previous works demonstrated the utility
of discords on different domains such as medicine, surveillance and industry.

Many algorithms have been proposed for detecting anomaly in a time series
database. However, most of them require many un-intuitive parameters. Time se-
ries discords, which were first suggested by Keogh et al, are particular attractive
as anomaly detectors because they only require three parameters. The efficiency
of the algorithm in [5] is based on an early pruning step and a reordering of
the search order to speed up the search. Each time series is first compressed into
lower dimensions by a piecewise linear transformation, so that the result is a
shorter string (word) of alphabets, where each alphabet corresponds to a range
of measured values that has been replaced by the mean value. Hence users are
required to choose two parameters, the cardinality of the alphabet sizea, and the
word size w. For the parameter a, previous works reported that a value of either
three or four is the best for any task on any dataset that have been tested.

However, for the parameter w, there is no single suitable value for any task
on any dataset. It has been observed that relatively smooth and slowly changing
datasets favor a smaller value of w; otherwise a larger value for w is more suitable.
Unfortunately, we still have questions on how to determine a time series is smooth
or not and what is the meaning of a larger value of w.

In this paper we propose a word size free algorithm by first converting subse-
quences into Haar wavelets, then we use a breadth first search to approximate
the perfect search order for outer loop and inner loop. In this way, it is possible
to dynamically select a suitable word size.

2 Background

We first review some background material on time series discords, which is the
main concern of our proposed algorithm. Then Haar transform will be intro-
duced, which provides an efficiency way to estimate the discord in a given time
series and it plays an important role in our algorithm.

2.1 Time Series Discords

In general, the best matches of a given subsequence (apart from itself) tend to
be very close to the subsequence in question. Such matches are called trivial
matches. When finding discords, we should exclude trivial matches; otherwise,
we may fail to obtain true patterns. Therefore, we need to formally define a
non-self match.

Definition 1. Non-self Match: Given a time series T, containing a subsequence
C of length n beginning at position p and a matching subsequence M beginning
at q, we say that M is a non-self match to C if |p − q| ≥ n

We now can define time series discord by using the definition of non-self matches:

Definition 2. Time Series Discord: Given a time series T, the subsequence D
of length n beginning at position l is said to be the discord of T if D has the
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largest distance to its nearest non-self match. That is, all subsequence C of T,
non-self match MD of D, and non-self match MC of C, minimum Euclidean
Distance of D to MD > minimum Euclidean Distance of C to MC .

The problem to find discords can obviously be solved by a brute force algorithm
which considers all the possible subsequences and finds the distance to its nearest
non-self match. The subsequence which has the greatest such value is the discord.
However, the time complexity of this algorithm is O(m2), where m is the length
of time series. Obviously, this algorithm is not suitable for large dataset.

Keogh et al introduced a heuristic discord discovery algorithm based on the
brute force algorithm and some observations [5]. They found that actually we
do not need to find the nearest non-self match for each possible candidate sub-
sequence. According to the definition of time series discord, a candidate cannot
be a discord, if we can find any subsequence that is closer to the current can-
didate than the current smallest nearest non-self match distance. This basic
idea successfully prunes away a lot of unnecessary searches and reduces a lot of
computational time.

2.2 Haar Transform

The Haar wavelet Transform is widely used in different applications such as com-
puter graphics, image, signal processing and time series querying [7]. We propose
to apply this technique to approximate the time series discord, as the resulting
wavelet can represent the general shape of a time sequence. Haar transform can
be seen as a series of averaging and differencing operations on a discrete time
function. We compute the average and difference between every two adjacent
values of f(x). The procedure to find the Haar transform of a discrete function
f(x) = (9 7 3 5) is shown below.

Example
Resolution Averages Coefficients

4 (9 7 3 5)
2 (8 4) (1 -1)
1 (6) (2)

Resolution 4 is the full resolution of the discrete function f(x). I n resolution 2, (8
4) are obtained by taking average of (9 7) and (3 5) at resolution 4 respectively. (1
-1) are the differences of (9 7) and (3 5) divided by two respectively. This process
is continued until a resolution of 1 is reached. The Haar transform H(f(x)) =
(c d0

0 d1
0 d1

1) = (6 2 1 -1) is obtained which is composed of the last average value
6 and the coefficients found on the right most column, 2, 1 and -1. It should be
pointed out that c is the overall average value of the whole time sequence, which
is equal to (9+7+3+5)/4 = 6. Different resolutions can be obtained by adding
difference values back to or subtract difference from an average. For instance, (8
4) = (6+2 6-2) where 6 and 2 are the first and second coefficient respectively.

Haar transform can be realized by a series of matrix multiplications as il-
lustrated in Equation (1). Envisioning the example input signal x as a column
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vector with length n = 4, an intermediate transform vector w as another column
vector and Haar transform matrix H

⎡
⎢⎢⎣

x′
0

d1
0

x′
1

d1
1

⎤
⎥⎥⎦ =

1
2

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x0
x1
x2
x3

⎤
⎥⎥⎦ (1)

The factor 1/2 associated with the Haar transform matrix can be varied accord-
ing to different normalization conditions. After the first multiplication of x and
H, half of the Haar transform coefficients can be found which are d1

0 and d1
1 in w

interleaving with some intermediate coefficients x′
0 and x′

1. Actually, d1
0 and d1

1
are the last two coefficients of the Haar transform. x′

0 and x′
1 are then extracted

from w and put into a new column vector x′ = [x′
0 x′

1 0 0]T . x′ is treated as the
new input vector for transformation. This process is done recursively until one
element is left in x′. In this particular case, c and d0

0 can be found in the second
iteration.

Hence can convert a time sequence into Haar wavelet by computing the aver-
age and difference values between the adjacent values in the time series recur-
sively. It can be also varied according to different normalization conditions. The
algorithm shown in Algorithm 1 is using the orthonormal condition. This trans-
formation can preserve the Euclidean distance between two time series, and is
therefore useful in our algorithm. If we only consider a prefix of the transformed
sequences, the Euclidean distance between two such prefixes will be a lower
bounding estimation for the actual Euclidean distance, the longer the prefix the
more precise the estimation. Also note that the transformation can be computed
quickly, requiring linear time in the size of the time series.

Algorithm 1. Haar Transform
1: // Initializtion
2: w = size of input vector
3: output vector = all zero
4: dummy vector = all zero
5:
6: //start the conversion
7: while w > 1 do
8: w = w/2
9: for i = 0; i < w; i++ do

10: dummy vector[i] = input vector[2∗i]+input vector[2∗i+1]√
2

11: dummy vector[i + w] = input vector[2∗i]−input vector[2∗i+1]√
2

12: end for
13: for i = 0; i < (w ∗ 2); i++ do
14: output vector[i] = dummy vector[i]
15: end for
16: end while
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3 The Proposed Algorithm

We follow the framework of the algorithm in [6]. In this algorithm, we extract
all the possible candidate subsequences in outer loop, then we find the distance
to the nearest non-self match for each candidate subsequence in inner loop. The
candidate subsequence with the largest distance to its nearest non-self match is
the discord. We shall refer to this algorithm as the base Algorithm.

Algorithm 2. Base Algorithm
1: //Initialization
2: discord distance = 0
3: discord location = 0
4:
5: // Begin Outer Loop
6: for Each p in T ordered by heuristic Outer do
7: nearest non-self match distance = infinity
8: //Begin Inner Loop
9: for Each q in T ordered by heuristic Inner do

10: if |p − q| ≥ n then
11: Dist = Euclidean Distance (tp, tp+1, ...tp+n−1, tq, tq+1, ...tq+n−1)
12: if Dist < discord distance then
13: break;
14: end if
15: if Dist < nearest non-self match distance then
16: nearest non-self match distance = Dist
17: end if
18: end if
19: end for
20: //End For Inner Loop
21: if nearest non-self match distance > discord distance then
22: discord distance = nearest non-self match distance
23: discord location = p
24: end if
25: end for
26: //End for Outer Loop
27:
28: //Return Solution
29: Return (discord distance, discord location)

In the above algorithm, we the heuristic search order for both outer and inner
can affect the performance. In fact, if a sequential search order is used, this
algorithm will become a brute force algorithm. Note that the discord D is the
one that maximizes the minimum distance between D and any other non-self
subsequence E

max
D

(min
E

(Dist(D, E))

The Outer heuristic should order the true discord first since it will get the
maximum value for discord distance which has the best chance to prune other
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candidates at Line 12. Given the subsequence p, the Inner heuristic order should
pick the subsequence q closest to p first, since it will give the smallest Dist value,
and which will have the best chance to break the loop at Line 12. In this section,
we will discuss our suggested heuristic search order, so that the inner loop can
often be broken in the first few iterations saving a lot of running time.

3.1 Discretization

We shall impose the heuristic Outer and Inner orders based on the Haar trans-
formation of subsequences.We first transform all of the incoming sequences by
the Haar wavelet transform. In order to reduce the complexity of time series
comparison, we would further transform each of the transformed sequences into
a sequence (word) of finite symbols. The alphabet mapping is decided by dis-
cretizing the value range for each Haar wavelet coefficient. We assume that for all
i, the ith coefficient of all Haar wavelets in the same database tends to be evenly
distributed between its minimum and maximum value, so we can determine the
”cutpoints” by partitioning this specify region into several equal segments. The
cutpoints define the discretization of the i − th coefficient.

Definition 3. Cutpoints: For the ith coefficient, cutpoints are a sorted list
of numbers Bi = βi,1, βi,2, ..., βi,m, where m is the number of symbols in the
alphabet, and

βi,j − βi,j+1 =
βi,a − βi,0

a
(2)

βi,0 and βi,a are defined as the smallest and the largest possible value of the ith

coefficient, respectively.

We then can make use of the cutpoints to map all Haar coefficients into different
symbols. For example, if the ith coefficient from a Haar wavelet is in between
βi,0 and βi,1, it is mapped to the first symbol ’a’. If the ith coefficient is between
βi,j−1 and βi,j , it will be mapped to the jth symbol, etc. In this way we form a
word for each subsequence.

Definition 4. Word mapping: A word is a string of alphabet. A subsequence
C of length n can be mapped to a word Ĉ = ĉ1, ĉ2, ..., ĉn. Suppose that C is
transformed to a Haar wavelet C̄ = {c̄1, c̄2...., c̄n}. Let αj denote the jth element
of the alphabet, e.g., α1 = a and α2 = b, .... Let Bi = βi,1, ...βi,m be the Cutpoints
for the i-th coefficient of the Haar transform. Then the mapping from to a word
Ĉ is obtained as follows:

ĉi = αj ⇐⇒ βi,j−1 ≤ c̄i < βi,j (3)

3.2 Outer Loop Heuristic

First, we transform all the subsequences, which are extracted by sliding a win-
dow with length n across time series T, by means of the Haar transform. The
transformed subsequences are transformed into words by using our proposed dis-
cretizing algorithm. Finally, all the words are placed in an array with a pointer
referring back to the original sequences. Figure 1 illustrates this idea.
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Fig. 1. An array of words for building an augmented trie

Next, we make use of the array to build an augmented trie by an iterative
method. At first, there is only a root node which contains a linked list index of
all words in the trie. In each iteration all the leaf nodes are split. In order to
increase the tree height from h to h+1, where h is the tree height before splitting,
the (h + 1)th symbol of each word under the splitting node is considered. If
we consider all the symbols in the word, then the word length is equal to the
subsequence length. In previous work [6] a shorter word length is used by using a
piecewise linear mechanism to compress the subsequence, which means that user
need to determine the word length beforehand. Here we make use of the property
of Haar wavelets to dynamically adjust the effective word length according to the
data characteristics. The word length is determined by the following heuristic:

Word length heuristic: Repeating the above splitting process in a breadth
first manner in the construction of the trie until (i) there is only one word in
any current leaf node or (ii) the nth symbol has been considered.

The Haar coefficient can help us to view a subsequence in different resolu-
tions, so the first symbol of each word gives us the lowest resolution for each
subsequence. In our algorithm, more symbols are to be considered when the trie
grow taller, which means that higher resolution is needed for discovering the
discord. The reason why we choose to stop at the height where some leaf node
contains only one word (or subsequence) is that the single word is much more
likely to be the discord compared to any other word which appears with other
words in the same node, since such words in the same node are similar at the
resolution at that level. Hence the height at that point implies a good choice for
the length of the word that can be used in the algorithm.

We found that the performance of this breadth first search on the trie approach
is pretty good, since it can efficiently group all the similar subsequences under
the same tree node and the distance between any two subsequences under the
same node are very small.
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Fig. 2. 1st symbol is considered for splitting the root node. All leaf nodes will be split,
since no leaf node contains only 1 word.

Fig. 3. 2nd symbol is considered. No tree node is split in next iteration, since there is
only 1 word mapped to ’ac’.

Heuristic: the leaf nodes are visited in ascending order according to the word
count.

We search all the subsequences in the nodes with the smallest count first, and
we search in random order for the rest of the subsequences. The intuition behind
our Outer heuristic is the following. When we are building an augmented trie, we
are recursively splitting all the leaf nodes until there is only one subsequence in
a leaf node. A trie node with only one subsequence is more likely to be a discord
since there are no similar nodes that are grouped with it in the same node. This
will increase the chance that we get the true discord as the subsequence used in
the outer loop, which can then prune away other subsequences quickly.

More or less, the trie height can reflect the smoothness of the datasets. For
smooth dataset, the trie height is usually small, as we can locate the discord at
low resolution. On the other hand, the tire height is usually large for a more
complex data set.

From this observation, it is obvious that the first subsequence that map to a
unique word is very likely to be an unusual pattern. On the contrary, the rest
of the subsequences are less likely to be the discord. As there should be at least
two subsequences map to same tree node, the distance to their nearest non-self
match must be very small.
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3.3 Inner Loop Heuristic

When the ith subsequence P is considered in the outer loop, we look up words
in the ith level of the trie.

Heuristic: We find a node which gives us the longest matching path to p in the
trie, all the subsequences in this node are searched first. After exhausting this set
of subsequences, the unsearched subsequences are visited in a random order.

The intuition behind our Inner heuristic is the following. In order to break
the inner loop, we need to find a subsequence that has a distance to the ith word
in the outer loop less than the best so far discord distance, hence the smallest
distance to p will be the best to be used. As subsequences in a node with a path
close to p are very likely to be similar, by visiting them first, the chance for
terminating the search is increased.

4 Empirical Evaluation

We first show the utility of time series discords, and then we show that our
algorithm is very efficient for finding discords. The test datasets, which represent
the time series from different domains, were obtained from ”The UCR Time
Series Data Mining Archive”[4].

4.1 Anomaly Detection

Anomaly Detection in a time series database has received much attention [9,1,3].
However, most anomaly detection algorithms require many parameters. In con-
trast our algorithm only requires two simple parameters, one is the length of the
discord, another is the alphabet size, and for the alphabet size, it is known that
either 3 or 4 is best for different tasks on many datasets from previous studies.

To show the utility of discords for anomaly detection, we investigated elec-
trocardiograms (ECGs) which are time series of the electrical potential between
two points on the surface of the body caused by a beating heart. In the exper-
iment, we set the length of the discord to 256, which is approximately one full
heartbeat and set the alphabet size to be three.

Our algorithm has successfully uncovered the discord in figure 4. In this exam-
ple, it may seem that we can discover the anomaly by eye. However, we typically
have a massive amount of ECGs, and it is impossible to examine all of them
manually.

4.2 The Efficiency of Our Algorithm

Next we study the efficiency of the algorithm. From 4 datasets, 10 data sequences
were picked. For each data sequence, prefixes of lengths 512, 1024, 2048, 4096
and 8192 were truncated, forming 4 derived datasets of varying dimensions.
In figure 5, we compared the base Algorithm with our proposed algorithm in
terms of the number of times the Euclidean distance function is called. In this
experiment, we set the length of the discord to 128 and found the discord on all
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Fig. 4. A time series discord (marked in bold line) was found at position 2830
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Fig. 5. Number of times distance function is called by the base Algorithm and Our
Proposed Algorithm

the created subsequences. Each of the experiments was repeated 10 times and
the average value was taken.

In this experiment, we did not measure the CPU time directly in order to
ensure that there was no implementation bias. In fact, it has been discovered
that the distance function accounts for more than 99% of the running tine. By
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measuring the number of distance computation, we have a relatively fair measure
for the running time.

From the experimental results, we found that there was no special value for
word size which was suitable for any task on any dataset. The results suggested
that relatively smooth and slowly changing datasets favor a smaller value of
word size, whereas more complex time series favor a larger value of word size.
However, it is difficult to determine whether a dataset is smooth or otherwise.
In most cases our proposed algorithm gave a better performance without the
consideration of the word size comparing with the base Algorithm.

5 Conclusion and Future Work

We introduce a novel algorithm to efficiently find discords. Our algorithm only
requires one intuitive parameter (the length of the subsequence). In this work,
we focused on finding the most unusual time series subsequence. We plan to
extent our algorithm to K time series discord which refers to finding K discords
with the largest distance to its nearest non-self match.
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