
Computing Join Aggregates over Private Tables

Rong She
1
, Ke Wang

1
, Ada Waichee Fu

2
, Yabo Xu

1

1 School of Computing Science, Simon Fraser University, Canada

{rshe,wangk,yxu}@cs.sfu.ca
2 Dept. of Computer Science & Engineering, Chinese University of Hong Kong

adafu@cse.cuhk.edu.hk

Abstract. We propose a privacy-preserving protocol for computing aggregation

queries over the join of private tables. In this problem, several parties wish to

share aggregated information over the join of their tables, but want to conceal

the details that generate such information. The join operation presents a chal-

lenge to privacy preservation because it requires matching individual records

from private tables. We solve this problem by a novel sketching protocol that

securely computes some randomized summary information over private tables.

It ensures that during the query computation process, no party will learn other

parties’ private data, including the individual records and data distributions.

Previous works have not provided this level of privacy for such queries.

1 Introduction

In many scientific and business applications, collaborations among various autono-

mous data holders are necessary in order to obtain global statistics or discover trends.

When private sources are involved in such practices, their privacy concerns must be

addressed. For example, a hospital keeps a table H of patients’ medical histories, and

a research institute has a table R of patients’ DNA samples. Both tables contain a

common attribute “Patient_Name” (not necessarily a key attribute if a patient has

several diseases or DNA samples). To establish the relationships between diseases

and DNA anomalies, the research institute wants the answer to the following query:

This query returns the number of occurrences for each combination of disease and

DNA characteristics, providing helpful insights into their relationships. For example,

from <d,c,70> and <c,100>, where d is a disease and c is a DNA characteristic, it can be

learnt that if a patient has the DNA characteristic c, he/she has the disease d with a 70%

chance. While there is need to answer such queries, due to privacy restrictions such as

the HIPAA policies (http://www.hhs.gov/ocr/hipaa/), neither party is willing to dis-

close local patient-specific information (such as patient names) to the other party. This

is an example of private join aggregate queries that we want to consider in this paper.

SELECT H.Disease, R.DNA_Characteristics, COUNT(*)

FROM H, R

WHERE H.Patient_Name = R.Patient_Name

GROUP BY H.Disease, R.DNA_Characteristics

Private Join Aggregate Queries. In general, a join aggregate query has the form:

where each Ti is a table; Ji and
'Ji are join attributes from different tables;

group-by-list is a list of group-by attributes possibly from different tables; exp is an

arithmetic expression over aggregation attributes; agg is an aggregation function. In

this paper, we consider the aggregation functions COUNT and SUM. Conceptually, the

tables in FROM are joined according to the predicates in WHERE, and the joined re-

cords are then grouped on the group-by-list. The query result contains one row for each

group with agg(exp) being computed over the group. If the optional GROUP BY is

missing, there is only one group and one row in the result. We can assume that a table

contains only join attributes, aggregation attribute and group-by attributes; all other

attributes are invisible to the query and thus are safe to be ignored for our purpose.

In a private join aggregate query, each Ti is a private table owned by a different

party. These parties wish to compute and share the query result as specified in

SELECT, but not any other information, including join attribute values and their dis-

tributions. This level of privacy was not provided by previous solutions, which will be

discussed in more details in Section 2.

We assume the honest-but-curious behavior [12]: The parties follow the protocol

properly with the exception that they may keep track of all intermediate computations

and received messages, and try to induce additional information. Our focus is on pri-

vacy protection in the computation process, not against the answers to queries. Our

assumption is that, when the participating parties wish to share the query result, in-

formation inferred from such results is a fair game [2]. Protection against query results

has been studied in statistical databases [1] and is beyond the scope of this paper.

Our Contributions. We present a novel solution to private join aggregate queries

based on the sketching technique previously studied for join size estimation and data

stream aggregations [4][7]. None of these works involves privacy issues. The basic

idea of sketching is that each table maintains a summary structure, called atomic

sketch, which is later combined to estimate the query result. A striking property of

atomic sketches is that they are computed locally without knowing any data in other

tables, which makes them promising for privacy protection. However, we will show

that a straightforward way of combining atomic sketches would allow a party to learn

the distribution of join values owned by other parties. We will analyze the source of

such privacy leakage and determine the types of information that need to be

concealed. We then propose a private sketching protocol where each party holds a

“random share” of the same atomic sketch so that collectively they represent the

atomic sketch, but individually they are useless. We show how the query can be

estimated directly from such random shares in a way such that no party learns private

information (both individual values and their distributions) from other parties.

Due to space limit, we will mainly discuss our protocol for computing the join ag-

SELECT group-by-list, agg(exp)

FROM T1,…,Tn

WHERE J1=J1
’
 and … and Jm=Jm

’

GROUP BY group-by-list

gregate COUNT(*) with two parties. It should be noted that this protocol is extendable

to multiple parties and on more general aggregates.

2 Related Work

In general secure computations, the trusted third party model [14] allows all parties

to send data to a “trusted” third party who does the computation. Such a third party has

to be completely trusted and is difficult or impossible to find. In the secure multi-party

model [21], given two parties with inputs x and y, the goal is to compute a function

f(x,y) such that the two parties learn only f(x,y) and nothing else. In theory, any

multi-party computation can be solved by simulating a combinatorial circuit. However,

its communication cost is impractical for data intensive problems.

In [8], privacy-preserving cooperative statistical analysis was studied for vertically

or horizontally partitioned data. With vertically partitioned data, n records {(x1,y1),…,

(xn,yn)} are distributed at two parties such that Alice holds {x1,…, xn} and Bob holds

{y1,…,yn}. In this case, the join relationship is one-to-one and is implicit by the se-

quential ordering of records. A similar data partition based on a common key identifier

is assumed in [9][19]. In real world, it is odd that the data owned by two mutually

un-trusted parties are about the exactly same set of entities. In [3], horizontally parti-

tioned data is considered where each party possesses some records from the same un-

derlying table. In this paper, we consider general join relationships specified by the

SQL statement, which can be foreign-key based join or many-to-many join.

Another recent work [10] also discussed aggregations such as SUM queries over

several private databases. However, it assumes all parties contain the same pair of at-

tributes: a “key” and a “value” field. The SUM query is to aggregate the values with the

same key from all parties. In contrast, we deal with tables with different attributes and

general join relationships, where the aggregation is defined over the joined table. The

closest work to ours is [2] that studied the private join size problem. It proposed a

scheme for encrypting join values but required exchanging the frequency of encrypted

values. As noted in [2], if the frequency of some join values is unique, the mapping of

the encryption can be discovered by matching the frequency before and after the en-

cryption. So the privacy of join values is compromised. We do not have such problem.

Another related problem is the restriction-based inference control in OLAP queries

[20][22]. The goal of inference control is to prevent values of sensitive data from being

inferred through answers to OLAP queries. These works mainly dealt with the privacy

breaches that arise from the answers to multiple queries; they do not consider the pri-

vacy breaches during query processing. The inference control problem has been studied

largely in statistical databases, for example, see [1].

3 Preliminaries

First, we review some basic techniques that are the building blocks of our solution.

Sketching. Sketching is a randomized algorithm that estimates the join aggregate

result with a random variable, called sketch. The sketch is obtained by multiplying

some atomic sketches, which are computed at each table. The expected value of the

sketch is shown to be equal to the aggregate result with bounded variance [4][7].

As an example, consider the query SUM(A) over 3 tables T1, T2 and T3, with join

conditions T1.J1=T2.J2 and T2.J3=T3.J4, where A is an aggregation attribute in T1. The

table containing A (in this case, T1) will be called the aggregation table. Each pair of

the join attributes (J1, J2) or (J3, J4) is called a join pair. J2 and J3 may be the same at-

tribute in T2, but conceptually they belong to different join pairs and are treated sepa-

rately. Let Di denote the domain of Ji. Each join pair shares the same domain. For

simplicity, we assume Di={1,…,|Di|}. For any table Ti, let JSi be the set of join attrib-

utes in Ti. Suppose JSi contains m join attributes, then a value instance V on JSi is a set

that contains one value for each of the m attributes, i.e. V={x1,…,xm} where xi is a value

of a distinct join attribute in JSi. Let Ti(V) be the set of records in Ti having the value

instance V on JSi. For an aggregation table Ti, we define Si(V) to be the sum of ag-

gregation attribute values over all records in Ti(V); for any non-aggregation table Ti, we

define Fi(V) to be the number of records in Ti(V). Thus, T1 will have S1(V) defined; T2

and T3 will have F2(V) and F3(V) defined. The sketch is constructed as follows:

The ε family: For each join pair (Ji, Jj), select a family of 4-wise independent binary

random variables {εk, k=1,…,|Di|}, with each εk∈{1,-1}. That is, each join value k is
associated with a variable εk whose value is randomly selected from {1,-1} and any 4

tuple of such ε variables is jointly independent. The set of values for all εk variables is

called a ε family. In this example, there are two independent ε families, one for each

join pair. In table Ti, with a join value instance V, for each join value x in V (x is a value

of some join attribute J), there is one εx variable from J’s ε family. Let Ei(V)= Πx∈V εx.

Atomic sketches: There is one atomic sketch for each table. For the aggregation table

T1, its atomic sketch X1=ΣV[S1(V)×E1(V)], i.e. the sum of S1(V)×E1(V) over all distinct

V in T1, called S-atomic sketch (S for summary); the atomic sketch for T2 and T3 is X2=

ΣV[F2(V)×E2(V)] and X3=ΣV[F3(V)×E3(V)], called F-atomic sketches (F for frequency).

The sketch: The sketch is defined as Πi (Xi), the multiplication of atomic sketches

over all tables. The expected value of the sketch can be shown to be equal to SUM(A)

with bounded variance. We refer interested readers to [4][7] for details.

Because sketch is a random variable, the above computation must be repeated many

times to get a good average. [5] suggests a procedure of boosting where the number of

trials is α×β. For every α trials, the average of their sketches is computed, resulting in β

averages. The final estimator is the median of these β averages. Note the ε families are

chosen independently in each trial. We will refer to this process as αβ-boosting. The

time complexity of sketching with αβ-boosting is O(α×β×Σi|Ti|), where |Ti| denotes the

number of records in table Ti. Experiments from previous works and our experiences

show it is usually accurate (error rate < 5%) with moderate size of α (~50) and β (~5).

Private Shared Scalar Product Protocol. The private scalar product protocol was

first discussed in [8]. Given two d-dimensional vectors U
uv
=<U1,…,Ud> and

V
uv
=<V1,…,Vd> owned by two honest-but-curious parties, this protocol computes

U V×
uv uv

 such that the two parties obtain no additional knowledge other than U V×
uv uv

.

In some applications, a scalar product U V×
uv uv

 is needed as a part of the computation,

but the value of U V×
uv uv

 needs to be concealed. Such problems can be addressed by the

private shared scalar product (SSP) protocol [11]. Each party obtains a random share

of U V×
uv uv

, denoted as R1 and R2, such that R1+R2=U V×
uv uv

. R1 and R2 are complementary to

each other with their sum being U V×
uv uv

, but the sum is unknown to both parties. The

range of R1 and R2 can be the real domain, thus it is impossible to guess U V×
uv uv

 from any

single share. Efficient two-party SSP protocols are available with linear complexity

[6][8][9]. The multi-party SSP protocol was studied in [11]. In the rest of this paper, we

will use SSP(V
uv

1,…,V
uv

k) to denote the SSP protocol on input vectors V
uv

1,…,V
uv

k.

4 Private Sketching Protocol

We illustrate our protocol on the basic join aggregate COUNT(*) over two private ta-

bles, i.e. the join size of two tables. Note that our protocol can be extended to other

queries. We will first analyze the privacy breaches in the standard sketching process,

from which we derive the requirements on the types of information that must be con-

cealed. We then show how to conceal such information using our protocol.

Assume that Alice holds table T1 and Bob holds T2 with a common join attribute J.

Let D1 be the set of join values in T1, D2 be the set of join values in T2. Thus, J’s active

domain D= D1∪D2. First, a ε family for J is selected. Then both parties use this same ε

family to compute their atomic sketches. For illustration purposes, assume D has two

values v1 and v2 (|D|=2); there are two variables {ε1, ε2} in the ε family. Let Fi(v) denote

the number of records with join value v in table Ti. F1(v) belongs to Alice and should be

concealed from Bob; F2(v) belongs to Bob and should be concealed from Alice.

The two parties compute their atomic sketches Xi as follows:

Alice (T1):

Bob (T2):

X1 = F1(v1) × ε1 + F1(v2) × ε2,

X2 = F2(v1) × ε1 + F2(v2) × ε2.

(1)

(2)

So far, the computation of Xi is done locally, using the shared ε family and locally

owned Fi(vj) values without any privacy problem. Because the ε family is just some

random value, knowing it will not lead to any private information about the other party.

Next, the sketch X1×X2 needs to be computed. Suppose Alice sends her atomic

sketch X1 to Bob. Now, Bob knows X1, X2 and the ε family. In Equation (1) and (2),

with only F1(v1) and F1(v2) being unknown, Bob can infer some knowledge about

F1(vj). For example, knowing ε1=1 and ε2=-1, if X1 is positive, Bob knows that v1 is

more frequent than v2 by a margin of X1 in T1. The problem may be less obvious when

there are more values in D, however, it still leaks some hints on F1(vj). Furthermore, in

the αβ-boosting process, the above computation is repeated α×β times and there is one

pair of Equation (1) and (2) for each of the α×β trials. With the ε family being inde-

pendently chosen in each trial, each pair of equations provides a new constraint on the

unknown F1(vj) values. If the number of trials is equal to or greater than |D|, Bob will

have a sufficient number of Equation (1) to solve all F1(vj) values. Therefore, even for a

large domain D, the privacy breach is severe if Bob knows both atomic sketches.

On the other hand, even if Bob only knows his own X2, given the result of X1×X2, he

can easily get X1. Now, if the individual sketch X1×X2 in each trial is also concealed

from Bob, because both parties agree to share the final result which is an average of

X1×X2, by comparing the final result with his own X2’s, Bob may still infer some ap-

proximate knowledge on X1. The situation is symmetric with Alice. Therefore, to

prevent any inference on other party’s Fi(vj), all atomic sketches should be unknown to

all parties. This implies that the ε families should also be concealed from all parties.

Now suppose all atomic sketches Xi and ε families are concealed. If the sketch

X1×X2 is known to Bob, Bob may still learn X1 in some extreme cases. For example,

knowing X1×X2=0, and F2(v1)=10 and F2(v2)=5, since X2≠0 for any value of ε1 and ε2,

Bob can infer that X1=0. Additionally, from Equation (1), X1=0 holds only if F1(v1)=

F1(v2) (because ε1,ε2∈{1,-1}). Consequently, Bob learns that the two join values are
equally frequent in T1. To prevent this, the individual sketch in each trial should also be

concealed from all parties. Therefore, the only non-local information that a party is

allowed to know is the final query result which will be shared at the end. Because the

final result is something that has been averaged over many independent trials, dis-

closing one average will not let any party infer the individual sketches or underlying

atomic sketches. Note that with the current problem definition where parties agree to

share the final result, we cannot do better than this.

Since the ε families must be concealed from Alice and Bob, we need a semi-trusted

third party [15], called Tim, to generate the ε families. To fulfill its job, Tim must also

be an honest-but-curious party who does not collude with Alice or Bob. In real world,

finding such a third party is much easier than finding a trusted third party. The protocol

must ensure that Tim does not learn private information about Alice or Bob or the final

query result, i.e. Tim knows nothing about atomic sketches, sketches or Fi(vj) values.

The only thing Tim knows is the ε families which are just some random variables. On

the other hand, Alice owns F1(vj) and Bob owns F2(vj), both should know nothing about

the other party’s Fi(vj), the ε families, atomic sketches or individual sketches.

Information Concealing. Let Y denote an average of sketches over α trials in

αβ-boosting. There will be β number of such Y’s in total. A protocol satisfying the

following requirements is called IC-conforming: Alice learns only Y’s and local F1(vi);

Bob learns only Y’s and local F2(vi); Tim learns only the ε families; atomic sketches Xi

and individual sketches X1×X2 are concealed from all parties.

Theorem 1. A IC-conforming protocol conceals Fi(v) from all non-owning parties

throughout the computation process. ■

Proof: First, Tim knows only the ε families and nothing about Fi(v). Consider Alice

and Bob. From IC-conformity, the only non-local knowledge gained by Alice or Bob is

the value of Y, which is an average of sketches over α trials. With α≥2, such an average

provides no clue on any individual sketch because each sketch is computed with an

independent and random ε family. Even if there is a non-zero chance that Tim chooses

the same ε family in all α trials, therefore Y is equal to each individual sketch, Alice or

Bob will have no way of knowing it because the ε families are unknown to them.

Alice or Bob knows that Y is an approximation of the query result F1(v1)×F2(v1)+...

+F1(vk)×F2(vk). However, this approximation alone does not allow any party to solve

the other party’s Fi(v) because there are many solutions for the unknown Fi(v). It does

not help to use different averages Y in αβ-boosting because they are instances of a

random variable and do not act as independent constraints. ■

4.1 IC-Conforming Protocol for Two-Party COU*T(*) Query

Assume Bob is the querying party who issues the query. The overall process of our

protocol is shown below. The α×β trials are divided into β groups, each containing α

trials. Each trial has the ε-phase and the S-phase. The ε-phase generates the ε family

and the S-phase computes atomic sketches. For each group, the α-phase computes the

sketch average over α trials. Finally the β-phase finds the median of the β averages.

1. for i=1 to β do

2. for j=1 to α do

3. ε-phase;

4. S-phase;

5. α-phase;

6. β-phase;

ε-phase. In this phase Tim generates the ε family. Let D1 be the set of join values in T1

(Alice’s table); D2 be the set of join values in T2 (Bob’s table). D=D1∪D2. To generate

the ε family, Tim needs |D|, |D1|, |D2| and the correspondence between ε variables and

join values. Alice and Bob can hash their join values by a cryptographic hash function

H [18]. H is (1) pre-image resistant: given a hash value H(v), it is computationally

infeasible to find v; (2) collision resistant: it is computationally infeasible to find two

different inputs v1 and v2 with H(v1)=H(v2). Industrial-strength cryptographic hash

functions with these properties are available [16]. The ε-phase is as follows.

1. Alice and Bob agree on some cryptographic hash function H and locally compute

the hashed sets of their join values S1={H(v)|v∈D1} and S2={H(v)|v∈D2} using H.
2. Alice sends S1 and Bob sends S2 to Tim.

3. Tim computes S=S1∪ S2.

4. Tim assigns a unique ε variable to each value in S, generating a ε family E
r

1 for

S1 and a separate ε family E
r

2 for S2.

Security analysis. Alice and Bob do not receive information from any party. With

the cryptographic hash function H, Tim is not able to learn original join values from the

hashed sets. Since Tim does not know H, it is impossible for Tim to infer whether a join

value exists in T1 or T2 by enumerating all possible values. What Tim does learn is the

domain size |D1|, |D2|, |D1∪D2| and |D1∩D2|. But they will not help Tim to infer

atomic sketches or sketches. Therefore, this phase is IC-conforming.

S-phase. This phase computes the atomic sketches X1 for T1 and X2 for T2. Let F
r

i be

the vector of Fi(v) values where v∈Di, arranged in the same order as in E
r

i. Xi is ac-

tually the scalar product F
r

i× E
r

i where F
r

i is owned by Ti and E
r

i is owned by Tim.

To conceal E
r

i, F
r

i and Xi, the three parties can use SSP protocol to compute Xi.

1.Alice and Tim compute SSP(E
r

1, F
r

1), where Alice obtains RA and Tim obtains

TA, with RA+TA=X1.

2.Bob and Tim compute SSP(E
r

2, F
r

2), where Bob obtains RB and Tim obtains TB,

with RB+TB=X2.

Security analysis. The SSP protocol ensures that E
r

i, F
r

i and Xi are concealed. Tim

obtains two non-complementary random shares of different atomic sketches, which are

not useful to infer any atomic sketch. Thus, this phase is IC-conforming.

α-phase. This phase computes the average of sketches for every α trials. The sketch in

the jth trial is X1j×X2j, where X1j and X2j are atomic sketches for T1 and T2. However, at

the end of S-phase, no party knows X1j or X2j; rather, Tim has TAj and TBj, Alice has

RAj and Bob has RBj, such that X1j=TAj+RAj and X2j=TBj+RBj. After α trials, let RA
uuuv

be the vector <RA1,…,RAα> and let RB
uuuv
,TA
uuv
,TB
uuv
 be defined analogously. Alice owns

RA
uuuv
, Bob owns RB

uuuv
, Tim owns TA

uuv
 and TB

uuv
. The sketch average Y over the α trials is:

The numerator is the sum of several scalar products. To compute these scalar

products, if we allow the input vectors to be exchanged among parties, a party obtaining

both complementary random shares immediately learns the atomic sketch, thereby

violating the IC-conformity. Therefore we use the SSP protocol again as follows.

1. Alice and Bob compute SSP(RA
uuuv
, RB
uuuv
).

2. Tim and Bob compute SSP(TA
uuv
, RB
uuuv
).

3. Tim and Alice compute SSP(TB
uuv
, RA
uuuv
).

4. Tim computes TA
uuv
×TB
uuv
 (no SSP is needed).

5. Tim sums up all his random shares and TA
uuv
×TB
uuv
, sends the sum to Alice.

6. Alice adds all her random shares to the sum from Tim, forwards it to Bob.

7. Bob adds all his random shares to the sum from Alice, divides it by α. In the end,

Bob has the average Y over the α trials.

Security analysis. The SSP protocols ensure that RA
uuuv
, RB
uuuv
,TA
uuv
,TB
uuv
 are concealed from

a non-owning party; therefore, no party learns atomic sketches. After SSP computa-

tions, a party may obtain several non-complementary random shares. For example,

Alice obtains one random share of RA
uuuv
× RB
uuuv
 and one random share of TB

uuv
× RA
uuuv
, which

will not help her learn anything. A party may receive a partial sum during sum for-

warding. However, each partial sum always contains two or more non-complementary

random shares. It is impossible for the receiver to deduce individual contributing

random shares from such a sum. Therefore, this phase is IC-conforming.

β-phase. Repeating the α-phase β times would yield the averages Y1, …, Yβ at Bob. In

the β-phase, Bob finds the median of them, which is the final query estimator.

Security analysis. This phase is done entirely by Bob alone and there is no infor-

mation exchange at all. Thus the level of privacy at all parties is unchanged.

Cost Analysis. Let |Ti| be the number of records in Ti. Let CH denote the computation

cost of one hash operation. Let CSP(d) denote the computation cost and S(d) denote the

communication cost for executing the SSP protocol on d-dimensional vectors.

αα

αα
α

αα

TBTATBRARBTARBRATBTATBRARBTARBRA

TBRBTARAXX
Y

j jjjjjjjj

j jjjjj jj

×+×+×+×
=

×+×+×+×
=

+×+
=

×
=

∑

∑∑

=

==

1

11 21

)(

)]()[()(

The running time of our protocol is as follows. (1) ε-phase: hashing and generating ε

families takes O(CH×|D|+Σi|Ti|+α×β×|D|) time. Note that hashing is done only once for

all trials, but the ε family is generated independently in each trial. (2) S-phase: com-

puting atomic sketches takes O(α×β×ΣiCSP(|D|)). (3) α-phase: computing the β aver-

ages takes O(β×CSP(α)). (4) β-phase: finding the median of β averages takes O(β) time.

The communication cost is 2|D| for generating ε families, 2αβ×S(|D|) for computing

atomic sketches, 3β×S(α) for computing averages.

4.2 Protocol Extensions

Our protocol can be extended to n-party queries. Using only one third party Tim,

each party securely computes their atomic sketches with Tim and the sketch averages

are computed over n parties using the n-party SSP protocol. Our protocol also works

with SUM(A) queries. The only difference is that the table with attribute A will com-

pute S-atomic sketches instead of F-atomic sketches. Such change only affects local

computations in that table. We can even handle more general forms of aggregations like

SUM(A×B×C) or SUM(A+B+C). Group-by operators can also be handled, where each

group can be considered a partition of original tables and there is a sketch for each

partition. In addition, our protocol is extendable to perform roll-up/drill-down opera-

tions [13], by rolling-up/drilling-down on local random shares. For details on our

protocol extensions, please refer to a full version of our paper [17].

5 Experiments

We implemented the two-party protocol on three PCs in a LAN to simulate Alice

(T1), Bob (T2) and Tim. All PCs have Pentium IV 2.4GHz CPU, 512M RAM and

Windows XP. The cryptographic hash function was implemented using QuickHash

library 3.0 (http://www.slavasoft.com/quickhash/). We use the SSP protocol in [9].

Tests were done on synthetic datasets with various table sizes and join characteristics.

|D| varies from 100 to 10000, |T1| from 10000 to 1 million, join values follow zipf

distribution. T2 was generated such that for every join value in T1, B number (1~10)

of records are generated in T2 with the same join value. Thus, |T2|=B×|D| and the join

size |T1∞T2|=B×|T1|. In our experiments, with α ranging from 50 to 300 and β from 5

to 20, the error rate in all runs is no more than 6%. For large α and β, the error is usu-

ally less than 2%. This shows that the approximation provided by sketching is suffi-

cient for most data mining applications where the focus is on trends and patterns, in-

stead of exact counts. As analyzed in Section 4, the protocol is very efficient and

finishes within seconds in all runs. Please see [17] for more details.

6 Conclusions

We proposed a privacy-preserving protocol for computing join aggregate queries over

private tables. The capabilities of computing such queries are essential for collabora-

tive data analysis that involves multiple private sources. By a novel transformation of

the sketching technique, we achieve a level of protection not provided by the previous

encryption method. The key idea is locally maintaining random shares of atomic

sketches that provide no clue on the data owned by other parties.

References

1. N. R. Adam, J. C. Wortman, Security-control methods for statistical databases, ACM

Computing Surveys, 21(4):515-556 (1989).

2. R. Agrawal, A. Evfimievski, R. Srikant, Information sharing across private databases,

SIGMOD (2003)

3. R. Agrawal, R. Srikant, D. Thomas, Privacy preserving OLAP, SIGMOD (2005)

4. N. Alon, P. B. Gibbons, Y. Matias, M. Szegedy, Tracking join and self-join sizes in lim-

ited storage, PODS (1999)

5. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency

moments, STOC (1996)

6. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M. Y. Zhu, Tools for privacy preserving

distributed data mining, SIGKDD Explorations (2002)

7. A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi, Processing complex aggregate queries

over data streams, SIGMOD (2002)

8. W. Du, M. J. Atallah, Privacy-preserving cooperative statistical analysis, Computer Secu-

rity Applications Conference (2001)

9. W. Du, Z. Zhan, Building decision tree classifier on private data, In Workshop on Privacy,

Security, and Data Mining, ICDM (2002)

10. F. Emekci, D. Agrawal, A. E. Abbadi, A. Gulbeden, Privacy preserving query processing

using third parties, ICDE (2006)

11. B. Goethals, S. Laur, H. Lipmaa, T. Mielikainen, On private scalar product computation

for privacy-preserving data mining, International Conference in Information Security and

Cryptology (2004)

12. O. Goldreich, Secure multi-party computation. Working draft, Version 1.3 (2001)

13. J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: a relational aggregation opera-

tor generalizing group-by, cross-tab, and sub-totals, ICDE (1996)

14. N. Jefferies, C. Mitchell, and M. Walker. A proposed architecture for trusted third party

services. In Cryptography Policy and Algorithms Conference (1995)

15. M. Kantarcioglu, J. Vaidya, An architecture for privacy-preserving mining of client in-

formation, In Workshop on Privacy, Security and Data Mining, ICDM (2002)

16. National Institute of Standards and Technology (NIST), Secure hash standard, Federal In-

formation Processing Standards Publication (FIPS) 180-2 (2002)

17. R. She, K. Wang, A. W. Fu, Y. Xu, Computing join aggregates over private tables. Tech-

nical report TR 2007-12, School of Computing Science, Simon Fraser University

(http://www.cs.sfu.ca/research/publications/techreports/) (2007)

18. D. R. Stinson, Cryptography: theory and practice, Chapman & Hall/CRC, 3rd ed. (2006)

19. J. S. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically parti-

tioned data. SIGKDD, 639-644 (2002)

20. L. Wang, S. Jajodia, D. Wijesekera, Securing OLAP data cubes against privacy breaches,

IEEE Symposium on Security and Privacy (2004)

21. A. C. Yao, How to generate and exchange secrets. 27th IEEE Symposium FOCS (1986)

22. N. Zhang, W. Zhao, J. Chen, Cardinality-based inference control in OLAP systems: an in-

formation theoretical Approach, DOLAP (2004)

