
k-Balanced Sorting and Skew Join in MPI and MapReduce

Silu Huang, Ada Wai-Chee Fu

Department of Computer Science and Engineering, Chinese University of Hong Kong
slhuang,adafu@cse.cuhk.edu.hk

Abstract—
We consider algorithms for sorting and skew equi-join oper-

ations for computer clusters. The proposed algorithms achieve
the best known theoretical workload balancing guarantee, and
exhibit close to optimal balancing in our experiments. Our
empirical studies also show that the proposed sorting algorithm
is up to 30% faster than the state-of-the-art algorithm.

I. I NTRODUCTION

A Computer cluster consists of a set of computers or nodes
connected to each other by a high speed local area network
(LAN). Cluster computing has emerged as a commonly used
infra-structure for efficient big data computation becauseof
the elasticity of the cluster size and low cost CPUs.

We consider the design of parallel algorithms for the basic
data management problems of sorting and join operation on
two tables with skew key distributions, with the models of MPI
and MapReduce for computer clusters. One important property
of the algorithms is the balancing of the workload among the
machines in the cluster. We deal with algorithms where the
runtime for each machine depends in the same way on the
sizes of its input or output, which are assumed to be big. Thus,
we define the workload of a machine as the amount of input
to or the output from the machine, whichever is bigger. Given
t machines, we bound the workloadWi on each machine to
within k times that of the bigger of the average input and
output sizes.

Wi ≤ k (max(Nin, Nout)/t) (1)

whereNin is the input size, andNout is the output size. For
our algorithms, the running time of each machine depends
mainly on the workload. We say that the algorithm isk-
balanced. We propose sorting and skew join algorithms that
are 2-balanced. Our experiments show that they achieve close
to perfect workload distribution in all our test cases.

II. SORTING

We are given a setS of n objects, where each object
is a real number. Our goal is to sort then objects with
a computer cluster. For simplicity the objects themselves
are the sort keys. Let there bet machines in the cluster,
namely,M1,M2, ...,Mt. For simplicity we assume thatn
is a multiple oft, and letm = n/t. This assumption can be
easily removed by padding some dummy objects toS. We
assume that initially then objects are evenly distributed to
the t machines, so that each machine is assignedm objects.

A. Terasort - a randomized algorithm

Terasort is a parallel algorithm proposed to sort data in the
size range of terabytes [9]. There are 3 rounds in Terasort: (1)
a random sample set is collected from the input. (2) From the
sample set, range boundaries are determined fort contiguous
but disjoint ranges that partition the data according to thesort
key values. (3) The objects that fall into a particular rangeare
sent to a corresponding machine. Each machine,Mi, will then
sort the objects received,Si, so that combining the results of
all machines gives a sorted result of the given dataset.

An interesting and useful result is derived in [11] showing
that if the sampling probabilityρ is set to1/m ln(nt), then
with high probability, the number of objects distributed toeach
machine isO(m). From their proof of this result, we can
derive that Terasort is 32-balanced with high probability.To
show that the algorithm isk-balanced for a smallk with high
probability, we would bound the load distribution,|Si|, by km
for a smallk, with high probability. To this end, we first make
some changes to the above in the randomization step (Round
1). We replace the step of sampling each object by Algorithm
S below. AlgorithmS always returns exactly⌈ln(nt)⌉ objects.

Algorithm S [6], [7]: Given objectso1, ..., om, initially no
object is selected. Next consider objects one by one fromo1
to om, when considering objectok, let j be number of objects
already selected, select objectok with probability(⌈ln(nt)⌉−
j)/(m− k + 1).

From Theorem 1 below, Terasort with AlgorithmS is close
to 5-balanced with high probability.

Theorem 1. Given n ≥ 4t as input size for Terasort with
AlgorithmS, |Si| ≤ 5m+1 with probability at least1− 1/n.

Proofs for the theorems of this paper can be found in [5].

B. SMMS sorting - a deterministic algorithm

Our proposed parallel algorithm is called SMMS (Sort-
Map-Merge Sorting). The idea is that if we evenly divide
the data into subsetsSi, and sort eachSi first, we may
derive better range boundaries than random sampling. We have
implemented the algorithm on MPI. Note that if implemented
on Hadoop, the sorting by Hadoop can be turned off in the last
merging step. In the first round, each machine sampless+ 1
objects as follows. Them = n/t objectsSi in each machine
Mi are sorted and divided intos equi-depth (equi-frequency)
intervals. Let the objects received byMi in sorted order be
o1, o2, ..., om. Mi pickss+1 sample objectsλi,0, λi,1, ..., λi,s,
whereλi,0 = o1, andλi,j is the⌈j ∗m/s⌉-th smallest object

SMMS Sorting - a deterministic algorithm

Round 1: S is evenly distributed amongt machines. Each
machineMi handle a subsetSi ⊂ S, where|Si| = n/t = m.
On eachMi, sort subsetSi locally and pickλi,0, λi,1, ...,λi,s

and send to machineM1, whereλi,0 is the smallest object in
Si and for j > 0, λi,j is the ⌈j ∗m/s⌉-th smallest object in
Si.

Round 2: M1 receives{λi,j , 1 ≤ i ≤ t, 0 ≤ j ≤ s}.
M1 selects global boundary numbersb0,b1,...bt. Each interval
[bi, bi+1) is called a bucket. The selection is obtained by
Algorithm 1. b0, b1, ..., bt are sent to all machines.

Round 3: EveryMi sends the objects in[bk−1, bk) from its
local storage toMk, for each1 ≤ k ≤ t. EveryMi merges
objects received in sorted order.

Fig. 1. SMMS sorting Algorithm

in Si. Thus,λi,1 = o⌈m/s⌉, λi,2= o⌈2m/s⌉, ...,λi,s = om. s+1
is the sampling size, ands is a multiple of t. Let s = rt,
wherer ≥ 1 is a small integer. The sampled objects are sent
to machineM1.

In Round 2,M1 collects all the sample objects from every
machine and then computest + 1 global key boundaries
b0, b1, ..., bt, so that each interval[bi, bi+1) forms a bucket
βi+1 and the intervals partition the data set. Each data objects
belongs to one bucket. The algorithm to compute the bound-
aries will be described in the next subsection. The boundaries
are sent to all machines. In Round 3, each machine distributes
the sorted dataSi according to the bucket boundaries, so that
data belonging to bucketβi go to machineMi. Mi merges
the data coming from other machines to form the sorted list for
bucketβi. The sorted lists from all machines form the sorted
result set. The pseudocode for SMMS is given in Figure 1.

1) Algorithm 1: computing bucket boundaries:Algorithm
1 is used to compute the global boundary values ofb0, ..., bt in
Round 2 of the SMMS Algorithm. The input to this algorithm
consists of the local boundary valuesλi,j from each machine
Mi. In this computation, we apply linear interpolation for
each interval[λi,j , λi,j+1) on eachMi. Since there arem/s
objects in the interval by construction, we compute the mean
valueµi,j = (m/s)/(λi,j+1 − λi,j) for Algorithm 1. We also
setµi,s = 0, 1 ≤ i ≤ t.

Each interval[bi, bi+1), 0 ≤ i < t is called abucket. We
use the termbucket densityfor the number of objects in a
bucket, denoted byD[bk, bk+1), 0 ≤ k < t. Note thatbk
is not necessarily an input object, where0 ≤ k ≤ t. The
selection ensures that the estimated bucket density based on
µi,j , 1 ≤ i ≤ t, 1 ≤ j ≤ s, for D[bk, bk+1) is equal tom,
where1 ≤ k < t. A priority queueQ is maintained for storing
triplets of the form〈λ, i, µ〉, which are sorted by the first value
λ as the key. In the triplet〈λ, i, µ〉, λ andµ correspond to a
certain pair of (λi,j , µi,j) values fromMi. Variablecur keeps
count for the estimated density of the current bucket until it

reachesm, in which case, a new boundaryb[k] is determined.
The value ofcfd is for the combined frequency distribution
over the value domain. An example is shown in Figure 2. Here
we have 2 machines, given 40 objects, each machine samples
3 objects, namely, (2,3,4) and (1,6,7), respectively, fromthe
distributed objects. Algorithm 1 processes theλ values in the
order of 1, 2, 3, 4, 6, 7. When 4 is processed, thecur value
exceedsm = 20, the value 3.5 is computed as the bucket
boundary at Line 9.

Algorithm 1: Computing Bucket Boundaries

Input : λi,j , µi,j , 1 ≤ i ≤ t, 0 ≤ j ≤ s
Output : Global boundariesb[k], 0 ≤ k ≤ t

1 Initialize: Create an empty priority queueQ; ∀1 ≤ i ≤ t:
pastfd[i] = 0; next[i] = 0; push〈λi,0, i, µi,0〉 into priority
queueQ; cfd = 0; pre = 0; cur = 0; k = 0; flag = 0;

2 while Q 6= ∅ do
3 〈λ, i, µ〉 ← TopAndPop(Q); /*λ andµ fromMi */
4 if flag == 0 then
5 b[k] = λ, k ++, flag = 1; /*first boundary*/

6 if (λ− pre)× cfd+ cur < m then
7 cur+ = (λ− pre)× cfd; /*keep count*/

8 else
9 b[k] = (m− cur)/cfd+ pre, k++; /* new bucket */

10 cur = (λ− pre)× cfd + cur −m; /* keep count

for new bucket*/
11 pre = λ; /*update previous boundary*/
12 cfd = cfd − pastfd[i] + µ; /* update cfd */
13 pastfd[i] = µ; /*µ will be obsolete for Mi*/

14 if !next[i] then
15 push〈λi,next[i], i, µi,next[i]〉into Q,next[i] + +;

16 bt = λ return b[k], 0 ≤ k ≤ t;

cfd 12
10

2

1 2 3 4 5 6 7

boundary

0

Fig. 2. Example of Combined Frequency Distribution (cfd):n = 40, t = 2,
s = 2, m = 20, samples fromM1 = (2,3,4), samples fromM2 = (1,6,7)

Each while loop handles one sampled valueλij . There are
at mostt elements inQ, hence each while loop costsO(log t)
time. The total time complexity isO(st log t) because oft(s+
1) rounds of the while loop.

We should point out that the complexity of Algorithm 1
is insignificant compared to the problem size. Utilization of
computer cluster is justified only when the problem size is big,
and from previous works such as [11], the size is in terms of
billions of records and is 20 GB or more. Thus, the value of
t is very small in comparison ton. In our experiments, the
runtime for Round 2, including Algorithm 1, is found to be

negligible for all test cases.
2) Analysis: In the first round of SMMS, all machines are

assigned equal workload. In Round 2, the workload is the
t(s + 1) samples which is small compared to the input size,
n. Hence, we need only analyze the workload distribution at
Round 3. We aim for a bound on the maximum workload of
a machine when compared to the even workload.

Theorem 2. At Round 3 of SMMS sorting, the workload of
each machine is bounded by(1 + 2/r + t2/n)m.

For example, ifn ≥ 25M , r = 2, and t = 50, then the
workload for each machine is bounded above by≈ 2m, and
it is 2-balanced. Ifn ≥ 75M , r = 6, and t = 50, then this
bound becomes≈ 1.3m, and SMMS is 1.3-balanced.

Two k-balanced algorithms are comparable when they have
similar operations at each machine. SMMS and Terasort both
involve only sorting and distribution of data as the major steps.
In comparison, Terasort has up to 60% imbalance empirically,
which is higher than the above bound for SMMS.

The global boundaries are related to quantiles of an ordered
sequence of data values. Theφ-quantile is the elementα with
rank⌊φN⌋, whereN is the given number of values [1], [4]. We
adopt a two phase approach as in [1]. However, our problem
is for boundaries instead of ranks, which allows us to apply
linear interpolation in the computation.

III. SKEW JOIN

In the recent development of the Apache Pig system on top
of MapReduce, it has been noted that data skew in join is a
significant and challenging problem [3]. In this section, we
focus on the problem of join when data is skew.

We consider the problem of skew join for two tablesS and
T with an equality join condition ofS.ρ = T.ρ for a certain
join key ρ. As in [8], we model the join result by means of a
|S|×|T | join-matrix Γ as shown in Figure 3(b). In this matrix,
S and T are sorted by the join key into ordered lists

−→
S =

s1, s2, ..., s|S|, and
−→
T = t1, t2, ..., t|T |. In Figure 3(b), the key

values fors1, ..., s|S| are b, d, d, d, d, f , correspondingly. The
matrix entryΓ(i, j) is true (shaded) iffsi.ρ = tj.ρ. The join
result for a certain join keyk form a shaded rectangular region
in Γ, we call this region thejoin result for k, or simply
result(k). For example, in Figure 3(b), the join result for key
d, denoted byresult(d), is the shaded rectangle of size4 ∗ 3.

Supposek is a join key, we say that thesize of the join
result for k is M ×N if M andN are the number of tuples
with key k from S andT , respectively. For example, in Figure
3(b), the join result for keyd has size4×3, which is the cross
product of tuples2 to 5 from S and2 to 4 from T . Next we
define the skew factor to indicate how large the join result
size is compared with the total size ofS andT , where size is
measured by the number of tuples.

Definition 1 (Join Skew Factorσ). The skew factor of the
join, S ⋊⋉ T , of two tablesS and T is given byσ if |S ⋊⋉

T | = σ(|S|+ |T |).

A. StatJoin - A Deterministic Algorithm

In this section we introduce a deterministic algorithm
StatJoin for handling the skew join problem The major idea
for StatJoin is the partitioning of data based onstatistical
information.

1) Statistics Collection: In Algorithm StatJoin, we first
collect statistics from the two tablesS andT . For this purpose,
we apply a parallel sorting algorithm such as Terasort or
SMMS for each ofS andT , allowing for repeated keys. After
sorting, eachMi contains sorted portions or bucketsPS

i and
PT
i of S and T , respectively. All occurrences of the same

join key will be collected at one single machine. Then each
machine calculates the sizes of the join results for different
join keys, and the total join result size that will be generated
from PS

i andPT
i . The result sizes are measured in number of

tuples. Based on such statistics, a task distribution algorithm
is applied on all the join tasks.

Let W be the total join result size. A join result of a key
with a size greater thanW/t is called a big join result ,
otherwise, it is called asmall join result. Note that the biggest
size of a small join result isW/t. We decide on the task
distribution by first considering the big join results, followed
by the consideration of the small join results.

Although the statistics collection requires a sorting of the
input datasets, this overhead is insignificant when compared
to the overall runtime, because for skew join the input size is
small when compared to the result size.

2) Big Join Results:We consdier the big join results one
at a time, in an arbitrary order. LetB be a big join result
with a size ofM × N , where(j − 1)W/t < MN ≤ jW/t.
We apply aresult-to-machinemapping method forB with the
number of machines set toj. Without loss of generality, let the
machines assigned beM1, ...,Mj . The result of the mapping
is that each machineMi will be mapped to a rectangular
region in the join resultB. Each rectangular region is defined
by a quadruple〈lis, h

i
s, l

i
t, h

i
t〉, wherelis, h

i
s are two tuple id’s in

tableS, wherelis < hi
s, andlit, h

i
t are two tuple id’s in tableT ,

wherelit < hi
t. A tuple in tableS with id in [lis, h

i
s] is assigned

to Mi. Similarly, a tuple inT with id in [lit, h
i
t] is assigned

to Mi. For example, in Figure 3 (b), suppose we divide the
join result horizontally into 2 equal sized rectangles. Thetop
rectangle is defined by〈2, 3, 2, 4〉. Suppose this rectangle is
assigned to machineM2. Then tuples 2 and 3 ofS, and tuples
2, 3, and 4 ofT will be assigned toM2.

We divide theMN result tuples amongj machines by
partitioning the longer side of the rectangleB into j intervals
as evenly as possible. Without loss of generality, assume
M ≥ N . ThenM is divided intoj intervals. Each of thej
intervals and the side of sizeN of regionB form a rectangle in
B. HenceB is partitioned intoj such rectangles. We call these
rectangles themapping rectangles. There are two possible
cases for the size ofMN :

1) MN = jW/t. In this case, thej mapping rectangles
are of the same size,W/t. The output of each mapping
rectangle are assigned to one ofj machines that have

S

T

2 1

3 4

Interval

1

Interval

2

Interval 1 Interval 2

2

2

3

4

5

1

1

6

S

T

3 4 5 6

1

2

2

1

1 1 2

d a d d e g

d

d

d

d

b

f

(a) (b)

Fig. 3. (a) machine matrixA for 4 machines (t = 4), a = b = 2. (b) join
matrix Γ and randomized tuple-to-interval mapping

not been assigned any big join result so far. We send the
N tuples on theT side ofB and tuples along interval
i, 1 ≤ i ≤ j, on theS side ofB, to Mi.

2) MN < jW/t. Since we partition the longer side of
B (with M tuples) as even as possible, each interval
has either⌈M/j⌉ or ⌊M/j⌋ tuples. Thus, the smallest
mapping rectangleRmin has a size smaller thanW/t.
For each of thej − 1 mapping rectangles other than
Rmin, the corresponding tuples are processed as in
Case (1) above, so that their output are assigned to
j − 1 machines. ForRmin, it is treated as a small join
result, which is to be processed as described in the next
subsection. We callRmin a residual join result.

3) Small Join Results:After the big join results are as-
signed to the machines, we deal with theresult-to-machine
mapping for the small join results. The small join results
include those residual join results. We consider small join
results for different join keys one by one, each time we assign
the next join result to the machine with a smallest assigned
workload.

The work assignment resembles the greedy bin-packing
algorithm and hence we have the following result.

Theorem 3. Let the total join results size beW . With StatJoin,
the total size of the join results generated by any machine is
at most2W/t.

B. RandJoin- A Randomized Algorithm

In this subsection, we introduce our randomized algorithm,
RandJoin, for handling skew join. In this algorithm we assign
tuples to machines in a randomized approach. A randomized
algorithm is proposed in [8] which maps square regions of the
join result to machines. However, since the join result may
not be a perfect square, the mapping does not ensure equal
probabilities of assignments, and results in a maximum work-
load imbalance factor of 4. Here we propose another mapping
technique where each tuple has equal expected probabilities
for the assignments. Our method is based on a conceptual
machine matrix.

1) Machine MatrixA: Let the number of machines bet,
we determine two integersa andb such that firstly,a× b = t
and secondly, among alla, b satisfyinga×b = t, a|T |+b|S| is
minimized. We shall see thata×b = t is a sufficient condition

for our workload balancing guarantee. The minimization of
a|T | + b|S| can lead to some minor improvement for load
balancing related to the join input size to each reducer. The
reason for this choice will be explained later. With the values
of a and b, we form aa × b matrix A called themachine
matrix . For matrix A, we call the first dimensionS and
the second dimensionT . EachA[i, j] is assigned a unique
machine. We say thatA[i, j] lies on interval i of S and
interval j of T .

Example 1. Fig.3(a) shows the machine matrixA given 4
machines. The two dimensions ofS and T each consists
of 2 intervals, i.e.,a = b = 2. MachinesM1, M2, M3,
andM4 are assigned toA[1, 1], A[1, 2], A[2, 1], andA[2, 2],
respectively.

2) Tuple-to-Interval Mapping:We assign tuples to ma-
chines by a randomized algorithm. For each tuple inS we
randomly select an integeri in 1, ..., a and map the tuple to
interval i of S in the machine matrixA. For each tuple in
T , We randomly select an integerj in 1, ..., b and map the
tuple to intervalj of T in A. Then each tuple is assigned
to the machines as follows: if anS tuple x is mapped to
interval i of S in matrix A, thenx is sent to each of theb
machines assigned toA[i, 1], A[i, 2], ...,A[i, b]. If a T tupley
is assigned to intervalj of T in A, theny is sent to each of
the a machines assigned toA[1, j], A[2, j], ..., A[a, j]. Each
machine computes the cross-product of all theS tuples andT
tuples that it has received for a single join key. Hence, the join
result for tuplesx and y, if any, will be uniquely generated
by the machine assigned toA[i, j].

Example 2. : In Figure 3(b), we show the join matrix for the
tablesS and T . Each table contains 6 tuples. We show that
tuples 2,3,4,5 ofS are randomly assigned interval numbers
1,2,2,1. Then the second tuple ofS will be mapped to the first
interval onS in matrixA in Figure 3(a), and it will be sent to
machinesM1 andM2. The join result in the join matrix for
the darker shaded area will be generated by machineM1.

From the above tuple-to-interval mapping, each tuple inS
is assigned tob machines, and each tuple inT is assigned toa
machines. By selectinga andb that minimizea|T |+ b|S| we
minimize the total input size to the machines in the number
of tuples.

The following theorem establishes that RandJoin is 2-
balanced with high probability.

Theorem 4. If the join results for each join key is either an
empty set or a set with sizeM × N whereM/a ≥ 300 and
N/b ≥ 300, then the probability that the workload of any
machine is less than twice the even workload is more than
1− 1.2× 10−9.

IV. EXPERIMENTAL RESULTS

Our experiments for the parallel algorithms have been
conducted on a 16 machine cluster with a master machine
and 15 slave machines. The master is a Dell R720 Server with

15 30 60 120 180

0.8

1

1.2

1.5

1.8

2

number of processes

workload imbalance

 TeraSort
 SMMS

15 30 60 120

250

500

750

1000

1250

1500

number of processes

total running time(sec)

 TeraSort
 SMMS

(a) workload (input size) (b) run time

Fig. 4. Sorting for real dataset LIDAR, workload imbalance =maximum
workload / optimal workload

Dual 6-core Xeon E2620 2.0GHz, 192GB RAM and 4x 3TB
SAS Hard Disk. Each slave machine is a Dell R620 Server -
Dual 6-core Xeon E2620 2.0GHz, with 48GB RAM and 2x
300GB SAS Hard Disk. All machines are connected by a 1GB-
ethernet switch. We have installed Hadoop (version 1.2.1) on
the cluster for MapReduce algorithms. There are 6x2x15 =
180 cores in the slaves, we can activate up to 180 workers in
parallel for Hadoop mappers or reducers.

We have implemented the sorting algorithms (SMMS and
Terasort) based on MPI, and the join algorithms RandJoin and
StatJoin based on Hadoop MapReduce. We have set the DFS
dfs.replication factor to 3. The fs.block.size is set to 64MB.
Other Hadoop parameters are set to the default values. The
computer cluster consists of 15 worker machines each with
8 cores that share 2 hard disks. We shall call the parallel
computational unitsprocessesinstead of machines in our
experiments.

We evaluate our algorithms by two measurements: the work-
load distribution and the runtime. The workload is measured
by the input size for sorting and by the result size for join.
The sizes are given in the number of tuples unless otherwise
specified. We examine theworkload imbalance which is
given by the ratio of the maximum workload on a machine
versus the even workload. Theruntime is given by the longest
runtime taken by any process.

A. Results for Sorting

We evaluate the sorting algorithms of SMMS and Terasort
on a real dataset LIDAR and also on a synthetic dataset. For
SMMS, we set the value ofr to 1 so that each process samples
t objects. We vary the number of processes from 15 to 180,
and measure both the workload distribution and the runtime
performance.

Real Data: We use the real dataset LIDAR1 for experiments
on sorting, which has been used for the sorting experiments in
[11]. LIDAR contains 8.27 billion records, each of which is
a 3D point representing a location in North Carolina. We sort
the records by the first dimension. The dataset size is 123GB.
The input data is distributed sequentially to the machines.

Synthetic Data : We have generated 4 sets of random data,
with 1.8 billion objects, 5.4 billion objects, 9 billion objects
and 18 billion objects. The sizes of these datasets are 19.9 GB,

1Downloadable from http://www.ncfloodmaps.com

15 30 60 120 180

0.8

1

1.2

1.5

1.8

2

number of processes

workload imbalance

 TeraSort
 SMMS

15 30 60 120
500

1000

1500

2000

2500

3000

3500

number of processes

total running time(sec)

 TeraSort
 SMMS

(a) workload (input size) (b) run time (sec)

Fig. 5. Comparing SMMS and Terasort for Random Dataset with 18 billion
objects (199.3 GB)

1.8 5.4 9 18

0.8

1

1.2

1.5

1.8

2

dataset size(billion)

workload imbalance

 TeraSort
 SMMS

1.8 5.4 9 18
50

100

200

300

400

500

dataset size(billion)

total running time(sec)

 TeraSort
 SMMS

(a) workload (input size) (b) run time (sec)

Fig. 6. Sorting results for Random Datasets of different sizes with 120
processes

59.9 GB, 99.8 GB and 199.3 GB, respectively. The key of each
data object in a dataset is a randomly generated number in the
range of [1, 12 × 106]. We generate unique objects in each
machine.

The results of workload imbalance are shown in Figures
4(a), 5(a), and 6(a). In all cases, SMMS distributes the
workload very evenly and the imbalance is close to the optimal
value of 1. TeraSort has comparably much larger workload
imbalance, in most cases the maximum workload of a process
is above 1.5 of the optimal load. Similar results are reported
in [11]. The imbalance affects the performance in runtime.
However, the effect is mitigated by the fact that we have a
star cluster with a bottleneck at the master node, as shown in
Figures 4(b), 5(b), and 6(b). The improvement in runtime by
SMMS is expected to be more significant in a decentralized
setting. The figures also show that SMMS achieves almost
linear speedup.

B. Results on Skew Join

For the Skew Join experiments the dataset consists of
two input tablesS and T . We adopt two different methods
to form a dataset with skew join keys. The first method
is to generate tables with attributes drawn from the Zipf
distribution, maintaining the same distribution for both tables
so that each key has the same frequency in both of the input
tables. We vary the Zipf skew parameterθ between 0 (skew)
and 1 (uniform), i.e.,Z(r) ∝ 1/r(1−θ), wherer is a frequency
rank,Z(r) is the frequency of the item with rankr.

The second kind of skew data is generated as described in
[2]. For a table withn tuples, the join key has a domain of
[n, 2n). The special join keyn appears in a fixed number of
tuples, while the remaining tuples are randomly assigned a

3 30 60 120 180
0.9

0.95

1

1.05

1.1

number of processes

workload imbalance

 RandJoin
 StatJoin

3 30 60 120 180
0.9

0.95

1

1.05

1.1

number of processes

workload imbalance

 RandJoin
 StatJoin

(a) θ = 0.7, |S| = |T |=5M (b) θ = 0.3, |S| = |T |=1.5M
output size = 147GB output size = 59GB

(29.4×109 tuples,σ=2940) (11.8×109 tuples,σ=3900)

Fig. 7. Workload distribution of RandJoin and StatJoin for Zipf distributions:
(θ = 1 : uniform key distribution).

3 7 15 30

500
1000

2000

3000

4000

5000

number of processes

total running time(sec)

 θ=1
 θ=0.7
 θ=0.3
 θ=0

3 7 15 30

500
1000

2000

3000

4000

5000

number of processes

total running time(sec)

 θ=1
 θ=0.7
 θ=0.3
 θ=0

(a) RandJoin (b) StatJoin

Fig. 8. Running time for Zipf skew datasets (in sec)

3 30 60 120 180
0.8

0.9

1

1.1

1.2

number of processes

workload imbalance

 RandJoin
 StatJoin

3 30 60 120 180
0.8

0.9

1

1.1

1.2

number of processes

workload imbalance

 RandJoin
 StatJoin

(a) M = 105, N = 2× 104 (b) M = 2× 105 N = 104

Fig. 9. Workload distribution for scalar skew data.

join key from [n, 2n). The output tuple size is 95 bytes. The
skew keyk0 = n is generated in both tablesS andT , and it
occursM times inS andN times inT . By adjustingM and
N we can control the expected output join sizes. This kind of
test data is called “scalar skew” in [12] and is also used in the
study in [10].

Zipf distributed dataset: We aim to compare the effect
of skewness on similar join output size. However, Zipf dis-
tributions would vary the output size for the same input size.
Therefore we vary the input table sizes accordingly. Following
the design of [8] for skew key distribution, each tuple contains
a 4 byte join key with a domain of[1000, 1999].

Scalar skew dataset: We tested on two sets of scalar skew
data. As in [2], we fix an output size and vary the values of
M andN to examine the effect of different key skewness in
the two given tables. For the first dataset, we setM = 105,
andN = 2 × 104. For the second set, we setM = 2 ∗ 105

andN = 104. The output size of the join ofS andT for both
datasets is 190GB. In both datasets,|S| = |T | = 1.5M , and
the skew factorσ is 600.

1) Runtime Analysis:The total runtimes for Zipf skew data
are shown in Figure 8. The results for scalar skew data are
similar. It can be seen that there is almost linear speedup up
to 15 processes. due to the highly even workload distribution.
The speedup effect beyond 15 processes is discounted by the
overhead in the file replication of Hadoop HDFS. The file
replication factor is 3, hence, with 34 hard disks, there is good
speedup effects with up to 15 processes.

2) Workload Imbalance:The results of workload distri-
bution are shown in Figures 7 and 9. For the scalar skew
dataset, RandJoin did not distribute the workload as evenly
when the number of processors is large, this is because the
values ofM/a andN/b are too small to satisfy the condition
in Theorem 4. StatJoin achieves near optimal results in all
cases.

V. CONCLUSION

We study the problems of sorting and skew join in a com-
puter cluster environment. We propose algorithms that achieve
the best known theoretical guarantees on even workload dis-
tribution. Extensive empirical study shows that our sorting
algorithm performs better than the state-of-the-art method of
TeraSort. All our algorithms achieve near optimal workload
distribution in all test cases.

ACKNOWEDGEMENTS

This research was supported by GRF CUHK412313 and
Direct grant 2050497. The authors would like to thank the
reviewers for helpful comments, James Cheng for the use of
the computer cluster, Yanyan Xu, Yi Lu, Wenqing Lin and
Yingyi Bu for sharing their experiences with MPI and Hadoop,
the authors of [11] for their source code and a pointer to a
dataset, and the authors of [8] for explaining their source code.

REFERENCES

[1] K. Alsabti, S. Ranka, and V. Singh. A one-pass algorithm for accurately
estimating quantiles for disk-resident data. InVLDB, 1997.

[2] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical
skew handling in parallel joins. InVLDB, 1992.

[3] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a high-
level dataflow system on top of map-reduce: The pig experience. In
VLDB, 2009.

[4] M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. InSIGMOD, 2001.

[5] S. Huang and A. W.-C. Fu. (a, k)-minimal sorting and skew join in mpi
and mapreduce. InCoRR (arXiv), 2014.

[6] T. Jones. A note on sampling a tape file.Commun. ACM, 5(6):343,
1962.

[7] D. E. Knuth. The Art of Computer Programming, Volume 2 Seminumer-
ical Algorithms 3rd Ed.Addison Wesley, 1997.

[8] A. Okcan and M. Riedewaid. Processing theta-joins usingmapreduce.
In SIGMOD, 2011.

[9] O. O’Malley. Terabyte sort on apache hadoop. InTechnical Report,
Yahoo, 2008.

[10] E. Omiecinski. Performance analysis of a local balancing hash-join
algorithm for a shared memory multiprocessor. InVLDB, 1991.

[11] Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In
SIGMOD, 2013.

[12] C. Walton, A. Dale, and R. Jenevein. A taxonomy and performance
model of data skew effects in parallel joins. InVLDB, 1991.

