
J Intell Inf Syst (2009) 33:209–234
DOI 10.1007/s10844-008-0075-2

(α, k)-anonymous data publishing

Raymond Wong · Jiuyong Li ·
Ada Fu · Ke Wang

Received: 2 June 2008 / Revised: 25 November 2008 /
Accepted: 25 November 2008 / Published online: 8 January 2009
© Springer Science + Business Media, LLC 2008

Abstract Privacy preservation is an important issue in the release of data for mining
purposes. The k-anonymity model has been introduced for protecting individual
identification. Recent studies show that a more sophisticated model is necessary
to protect the association of individuals to sensitive information. In this paper, we
propose an (α, k)-anonymity model to protect both identifications and relationships
to sensitive information in data. We discuss the properties of (α, k)-anonymity model.
We prove that the optimal (α, k)-anonymity problem is NP-hard. We first present an
optimal global-recoding method for the (α, k)-anonymity problem. Next we propose
two scalable local-recoding algorithms which are both more scalable and result in less
data distortion. The effectiveness and efficiency are shown by experiments. We also
describe how the model can be extended to more general cases.

Keywords Privacy · Data mining · Anonymity ·
Privacy preservation · Data publishing

R. Wong
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Kowloon, Hong Kong

J. Li (B)
School of Computer and Information Sciences, University of South Australia,
Mawson Lakes, South Australia, Australia
e-mail: jiuyong.li@unisa.edu.au

A. Fu
Department of Computer Science and Engineering,
Chinese University of Hong Kong,
Shatin, Hong Kong

K. Wang
Department of Computer Science, Simon Fraser University,
Burnaby, Canada

210 J Intell Inf Syst (2009) 33:209–234

1 Introduction

Privacy preservation has become a major issue in many data mining applications.
When a data set is released to other parties for data mining, some privacy-preserving
technique is often required to reduce the possibility of identifying sensitive infor-
mation about individuals. This is called the disclosure-control problem (Cox 1980;
Willenborg and de Waal 1996; Hundepool and Willenborg 1996) in statistics and
has been studied for many years. Most statistical solutions concern more about
maintaining statistical invariant of data. The data mining community has been study-
ing this problem aiming at building strong privacy-preserving models and designing
efficient optimal and scalable heuristic solutions. The perturbing method (Agrawal
and Srikant 2000; Agrawal and Aggarwal 2001; Rizvi and Haritsa 2002) and the
k-anonymity model (Sweeney 2002a; Samarati 2001) are two major techniques for
this goal. The k-anonymity model has been extensively studied recently because of
its relative conceptual simplicity and effectiveness (e.g. Iyengar 2002; Wang et al.
2004; Fung et al. 2005; Bayardo and Agrawal 2005; Aggarwal et al. 2005; Meyerson
and Williams 2004).

In this paper, we focus on a study on the k-anonymity property (Sweeney 2002a;
Samarati 2001). The k-anonymity model assumes a quasi-identifier, which is a set
of attributes that may serve as an identifier in the data set. It is assumed that the
dataset is a table and that each tuple corresponds to an individual. A data set satisfies
k-anonymity if there is either zero or at least k occurrences for any quasi-identifier
value. As a result, it is less likely that any tuple in the released table can be linked to
an individual and thus personal privacy is preserved.

For example, we have a raw medical data set as in Table 1. Attributes job, birth
and postcode1 form the quasi-identifier. Two unique patient records 1 and 2 may be
re-identified easily since their combinations of job, birth and postcode are unique.
The table is generalized as a 2-anonymous table as in Table 2. This table makes the
two patients less likely to be re-identified.

In the literature of privacy preserving, there are two main models. One model is
global recoding (Sweeney 2002a; LeFevre et al. 2005; Bayardo and Agrawal 2005;
Samarati 2001; Iyengar 2002; Wang et al. 2004; Fung et al. 2005) while the other
is local recoding (Sweeney 2002a, b; Aggarwal et al. 2005; Meyerson and Williams
2004; Hundepool and Willenborg 1996; Hundepool 2004). Assuming a conceptual
hierarchy for each attribute, in global recoding, all values of an attribute come from
the same domain level in the hierarchy. For example, all values in Birth date are
in years, or all are in both months and years. One advantage is that an anonymous
view has uniform domains but it may lose more information. For example, a global
recoding of Table 1 may be Table 4 and it suffers from over-generalization. With
local recoding, values may be generalized to different levels in the domain. For
example, Table 2 is a 2-anonymous table by local recoding. In fact one can say that
local recoding is a more general model and global recoding is a special case of local
recoding. Note that, in the example, known values are replaced by unknown values
(*). This is called suppression, which is one special case of generalization, which is in
turn one of the ways of recoding.

1We use a simplified postcode scheme in this paper. There are four single digits, representing states,
regions, cities and suburbs. Postcode 4350 indicates state-region-city-suburb.

J Intell Inf Syst (2009) 33:209–234 211

Table 1 Raw medical data set Job Birth Postcode Illness
Cat 1 1975 4350 HIV
Cat 1 1955 4350 HIV
Cat 1 1955 5432 flu
Cat 1 1955 5432 fever
Cat 2 1975 4350 flu
Cat 2 1975 4350 fever

Table 2 A 2-anonymous data
set of Table 1

Job Birth Postcode Illness
Cat 1 * 4350 HIV
Cat 1 * 4350 HIV
Cat 1 1955 5432 flu
Cat 1 1955 5432 fever
Cat 2 1975 4350 flu
Cat 2 1975 4350 fever

Table 3 An alternative
2-anonymous data set of
Table 1

Job Birth Post code Illness
* 1975 4350 HIV
* * 4350 HIV

Cat 1 1955 5432 flu
Cat 1 1955 5432 fever

* * 4350 flu
* 1975 4350 fever

Table 4 A (0.5, 2)-anonymous
table of Table 1 by full-domain
generalization

Job Birth Post code Illness
* * 4350 HIV
* * 4350 HIV
* * 5432 flu
* * 5432 fever
* * 4350 flu
* * 4350 fever

212 J Intell Inf Syst (2009) 33:209–234

Let us return to the earlier example. If we inspect Table 2 again, we can see that
though it satisfies 2-anonymity property, it does not protect two patients’ sensitive
information, HIV infection. We may not be able to distinguish the two individuals
for the first two tuples, but we can derive the fact that both of them are HIV
infectious. Suppose one of them is the mayor, we can then confirm that the mayor has
contracted HIV. Surely, this is an undesirable outcome. Note that this is a problem
because the other individual whose generalized identifying attributes are the same
as the mayor also has HIV. Table 3 is an appropriate solution. Since (*,1975,4350)
is linked to multiple diseases (i.e. HIV and fever) and (*,*,4350) is also linked to
multiple diseases (i.e. HIV and flu), it protects individual identifications and hides
the implication.

We see from the above that protection of relationship to sensitive attribute values
is as important as identification protection. Thus there are two goals for privacy
preservation: (1) to protect individual identifications and (2) to protect sensitive
relationships. Our focus in this paper is to build a model to protect both in a disclosed
data set. We propose an (α, k)-anonymity model, where α is a fraction and k is an
integer. In addition to k-anonymity, we require that, after anonymization, in any
equivalence class, the frequency (in fraction) of a sensitive value is no more than α.
We first extend the well-known k-anonymity algorithm Incognito (LeFevre et al.
2005) to our (α, k)-anonymity problem. As the algorithm is not scalable to the size of
quasi-identifier and may give a lot of distortions to the data since it is global-recoding
based, we also propose two efficient local-recoding based methods.

This proposal is different from the work of association rules hiding (Verykios et al.
2004) in a transactional data set, where the rules to be hidden have to be known
beforehand and each time only one rule can be hidden. Also, the implementation
assumes that frequent itemsets of rules are disjoint, which is unrealistic. Our scheme
blocks all rules from quasi-identifications to a sensitive class.

This work is also different from the work of template-based privacy preservation
in classification problems (Wang et al. 2005, 2007), which considers hiding strong as-
sociations between some attributes and sensitive classes and combines k-anonymity
with association hiding. There, the solution considers global recoding by suppression
only and the aim is to minimize a distortion effect that is designed and dedicated
for a classification problem. The model defined in this paper is more general in
that we allow local recoding and that we aim at minimizing the distortions of data
modifications without any attachment to a particular data mining method such as
classification.

This work is proposed to handle the homogeneity attack as l-diversity
model (Machanavajjhala et al. 2006) does. Homogeneity attack is possible when a
group of individuals, whose identities are indistinguishable in a published table, share
the same sensitive value. In other words, an attacker does not need to identify an
individual from a group, but can learn his/her sensitive information. We handle the
problem in a different way from l-diversity model. l-diversity model requires that
the sensitive values of every identity undistinguishable group in a published table
has at least l different sensitive values. This gives a general principle for handling
the homogeneity attack, but l-diversity model suffers a major problem in practice.
l-diversity does not specify the protective strength in terms of probability of leakage.
Note that l-diversity does not mean that the probability of knowing one’s sensitive
value is less than 1/ l when the distribution of sensitive values is skewed. Also,

J Intell Inf Syst (2009) 33:209–234 213

it is quite difficult for users to set parameter l. In contrast, α in our model is a
probabilistic parameter and is intuitive to set. Furthermore, the proposed algorithm
in Machanavajjhala et al. (2006) is based on a global-recoding algorithm Incognito,
which may generate more distortion compared to a local recoding approach. We
propose two local recoding algorithms which can give low information loss.

It is worth mentioning other works (Li and Li 2007; Xiao and Tao 2006, 2007;
Bu et al. 2008) which are also related to us although they are different from us.
Li and Li (2007) proposed a privacy model called t-closeness. With this model,
the distribution in each A-group in T∗ with respect to the sensitive attribute is
roughly equal to the distribution of the entire table T∗. The difference between
the distribution in each A-group and the distribution of the entire table should be
bounded with a parameter t. However, similar to l-diversity, it is difficult for the users
to set parameter t since parameter t is not intuitive. Xiao and Tao (2006) proposed a
personalized privacy model such that each individual can provide his/her preference
on the protection of his/her sensitive value. The above works study the problem
for a one-time publication. Xiao and Tao (2007) and Bu et al. (2008) proposed the
problems for multiple-time publications. In this paper, we focus on the one-time
publication.

We propose to handle issues of k-anonymity with protection of some sensitive
values. This is based on the fact that we could not protect too many sensitive values
in a data set. If we do, a published data set may be hardly useful because of too many
distortions have been done to the data set. Practically, not all sensitive information
is considered as privacy. For example, people care more about depression than
virus infection. We consider our proposed method as a practical enhancement of
k-anonymity with the consideration of the utility of published data.

Our Contributions:

– We propose a simple and effective model to protect both identifications and
sensitive associations in a disclosed data set. The model extends the k-anonymity
model to the (α, k)-anonymity model to limit the confidence of the implications
from the quasi-identifier to a sensitive value (attribute) to within α in order to
protect the sensitive information from being inferred by strong implications. We
prove that the optimal (α, k)-anonymity by local recoding is NP-hard.

– We extend Incognito (LeFevre et al. 2005), a global-recoding algorithm for the k-
anonymity problem, to solve this problem for (α, k)-anonymity. We also propose
two local-recoding algorithms, which are scalable and generate less distortion.
In our experiment, we show that, on average, the two local-recoding based
algorithms performs about 4 times faster and gives about 3 times less distortions
of the data set compared with the extended Incognito algorithm.

2 Problem definition

We assume that each attribute has a corresponding conceptual hierarchy or taxon-
omy. A lower level domain in the hierarchy provides more details than a higher level
domain. For example, birth date in D/M/Y (e.g. 15/Mar/1970) is a lower level domain
and birth date in Y (e.g. 1970) is a higher level domain. We assume such hierarchies
for numerical attributes too. In particular, we have a hierarchical structure defined

214 J Intell Inf Syst (2009) 33:209–234

with {value, interval, *}, where value is the raw numerical data, interval is the range of
the raw data and * is a symbol representing any values. Intervals can be determined
by users or a machine learning algorithm (Fayyad and Irani 1993). In a hierarchy
domains with fewer values are more general than domains with more values for an
attribute. The most general domain contains only one value. For example, 10-year
interval level in birth domain is more general than one-year level. The most general
level of birth domain contains value unknown (e.g. *). Generalization replaces lower
level domain values with higher level domain values. For example, birth D/M/Y is
replaced by M/Y.

Let D be a data set or a table. A record of D is a tuple or a row. An attribute
defines all the possible values in a column. For a data set to be disclosed, any identifier
column (e.g. secure id and passport number) is definitely removed. However, some
attribute combinations after this removal may still identify some individuals.

Definition 1 (Quasi-identifier) A quasi-identifier is a minimum set of attributes of D
that may serve as identifications for some tuples in D.

For example, domain expert may decide that the attribute set {Job, Birth, Post-
code} in Tables 1–4 is a quasi-identifier. The first goal of privacy preserving is
to remove all possible identifications in a disclosed table (according to the quasi-
identifer) so that individuals are not identifiable. We define an important concept,
equivalence class, which is fundamental to our (α, k)-anonymity model.

Definition 2 (Equivalence Class) Let Q be an attribute set. An equivalence class of a
table with respect to attribute set Q is a collection of all tuples in the table containing
identical values for attribute set Q.

For example, tuples 1 and 2 in Table 2 form an equivalence class with respect
to attribute set {Job, Birth, Postcode}. The size of an equivalence class indicates
the strength of identification protection of individuals in the equivalent class. If the
number of tuples in an equivalence class is greater, it will be more difficult to re-
identify individual.

Definition 3 (k-Anonymity Property) Let Q be an attribute set. A data set D is
k-anonymous with respect to attribute set Q if the size of every equivalence class
with respect to attribute set Q is k or more.

The k-anonymity model requires that every value set for the quasi-identifier
attribute set has a frequency of zero or at least k. For example, Table 1 does not
satisfy 2-anonymity property since tuples {Cat1, 1975, 4350} and {Cat1, 1955, 4350}
occur once. Table 2 satisfies 2-anonymity property. Consider a large collection of
patient records with different medical conditions. Some diseases are sensitive, such
as HIV, but many diseases are common, such as cold and fever. Only associations
with sensitive diseases need protection. To start with, we assume only one sensitive
value, such as HIV. We introduce the α-deassociation requirement for the protection.

Definition 4 (α-Deassociation Requirement) Given a data set D, an attribute set Q
and a sensitive value s in the domain of attribute S �∈ Q. Let (E, s) be the set of
tuples in equivalence class E containing s for S. and α be a user-specified threshold,

J Intell Inf Syst (2009) 33:209–234 215

where 0 < α < 1. Data set D is α-deassociated with respect to attribute set Q and the
sensitive value s if the frequency (in fraction) of s in every equivalence class is less
than or equal to α. That is, |(E, s)|/|E| ≤ α for all equivalence classes E.

For example, Table 3 is 0.5-deassociated with respect to attribute set {Job, Birth,
Postcode} and sensitive value HIV. There are three equivalence classes: {t1, t6}, {t2, t5}
and {t3, t4}. For each of the first two equivalent classes of size two, only one tuple
contains HIV and therefore |(E, s)|/|E| = 0.5. For the third equivalence class, no
tuple contains HIV and therefore |(E, s)|/|E| = 0. Thus, for any equivalence classes,
|(E, s)|/|E| ≤ 0.5.

However, the above definition may be too restrictive. For example, suppose k is
set to 2 and α is set to 0.1. If the equivalence class contains two tuples, there should
not be any tuples containing the sensitive value because the greatest possible number
of tuples containing the sensitive value |(E, s)| is equal to α × |E| = 0.1 × 2 = 0.2,
which is smaller than one. If all equivalence classes contain only two tuples, then
no equivalence classes can store any tuple containing the sensitive value, which is
an undesirable result. One solution to this is to generate equivalence classes E of
greater size such that α × |E| should be at least equal to 1. But, this solution may
lead to unnecessary generalizaton. Therefore our solution is to introduce a ceiling to
the formula α × |E|.

Definition 5 (Refined α-Deassociation) Given a data set D, an attribute set Q and
a sensitive value s in the domain of attribute S �∈ Q. Let (E, s) be the set of tuples
in equivalence class E containing s and α be a user-specified threshold, where 0 < α

< 1. Data set D is α-deassociated with respect to attribute set Q and the sensitive
value s if the number of tuples containing s in every equivalence class is less than or
equal to �α|E|�, i.e. |(E, s)| ≤ �α|E|� for all equivalence classes E.

Our objective is therefore to anonymize a data set so that it satisfies both the
k-anonymity and the α-deassociation criteria.

Definition 6 ((α, k)-Anonymization) A view of a table is said to be an (α, k)-
anonymization of the table if the view modifies the table such that the view satisfies
both k-anonymity and α-deassociation properties with respect to the quasi-identifier.

For example, Table 3 is a (0.5, 2)-anonymous view of Table 1 since the size of all
equivalence classes with respect to the quasi-identifier is 2 and each equivalence class
contains at most half of the tuples associating with HIV.

Both parameters α and k are intuitive and operable in real-world applications.
Parameter α caps the confidence of implications from values in the quasi-identifier
to the sensitive value while parameter k specifies the minimum number of identical
quasi-identifications.

Definition 7 (Local Recoding) Given a data set D of tuples, a function c that convert
each tuple t in D to c(t) is a local recoding for D.

Local recoding typically distorts the values in the tuples in a data set. We can
define a measurement for the amount of distortion generated by a recoding, which

216 J Intell Inf Syst (2009) 33:209–234

we shall call the recoding cost. If a suppression is used for recoding of a value which
modifies the value to an unknown *, then the cost can be measured by the total
number of suppressions, or the number of *’s in the resulting data set. Our objective
is to find local recoding with a minimum cost. We call it the problem of optimal
(α, k)-anonymization. The corresponding decision problem is defined as follows.

(α, k)-ANONYMIZATION: Given a data set D with a quasi-identifier Q and
a sensitive value s, is there a local recoding for D by a function c such that, after
recoding, (α, k)-anonymity is satisfied and the cost of the recoding is at most C?

Optimal k-anonymization by local recoding is NP-hard as discussed in Meyerson
and Williams (2004) and Aggarwal et al. (2005). Now, we show that optimal (α, k)-
anonymization by local recoding is also NP-hard.

Theorem 1 (α, k)-anonymity is NP-hard for a binary alphabet (
∑ = {0, 1}).

Proof Sketch The proof is by transforming the problem of EDGE PARTITION
INTO 4-CLIQUES to the (α, k)-anonymity problem.

Edge partition into 4-cliques: Given a simple graph G = (V, E), with |E| = 6m for
some integer m, can the edges of G be partitioned into m edge-disjoint 4-cliques?
(Holyer 1981)

Given an instance of EDGE PARTITION INTO 4-CLIQUES. Set α = 0.5 and
k = 12. For each vertex v ∈ V, construct a non-sensitive attribute. For each edge
e ∈ E, where e = (v1, v2), create a pair of records rv1,v2 and r̃v1,v2 , where the two
records have the attribute values of both v1 and v2 equal to 1 and all other non-
sensitive attribute values equal to 0, but one record rv1,v2 has the sensitive attribute
equal to 1 and the other record r̃v1,v2 has the sensitive attribute equal to 0.

We define the cost of the (0.5, 12)-anonymity to be the number of suppressions
applied in the data set. We show that the cost of the (0.5, 12)-anonymity is at most
48m if and only if E can be partitioned into a collection of m edge-disjoint 4-cliques.

Suppose E can be partitioned into a collection of m disjoint 4-cliques. Consider a
4-clique Q with vertices v1, v2, v3and v4. If we suppress the attributes v1, v2, v3 and v4

in the 12 records corresponding to the edges in Q, then a cluster of these 12 records
are formed where each modified record has four *’s. Note that the α-deassociation
requirement can be satisfied as the frequency of the sensitive attribute value 1 is
equal to 0.5. The cost of the (0.5, 12)-anonymity is equal to 12 × 4 × m = 48m.

Suppose the cost of the (0.5, 12)-anonymity is at most 48m. As G is a simple graph,
any twelve records should have at least four attributes different. So, each record
should have at least four *’s in the solution of the (0.5, 12)-anonymity. Then, the
cost of the (0.5, 12)-anonymity is at least 12 × 4 × m = 48m. Combining with the
proposition that the cost is at most 48m, we obtain the cost is exactly equal to 48m
and thus each record should have exactly four *’s in the solution. Each cluster should
have exactly 12 records (where six have sensitive value 1 and the other six have
sensitive value 0). Suppose the twelve modified records contain four *’s in attributes
v1, v2, v3 and v4, the records contain 0’s in all other non-sensitive attributes. This
corresponds to a 4-clique with vertices v1, v2, v3 and v4. Thus, we conclude that the
solution corresponds to a partition into a collection of m edge-disjoint 4-cliques. �	

Let p be the fraction of the set of tuples that contain sensitive values. Suppose α is
set smaller than p. Then no matter how we partition the data set, by the pigeon hole

J Intell Inf Syst (2009) 33:209–234 217

principle, there should be at least one partition P which contains p or more sensitive
value, and therefore cannot satisfy α-deassociation property.

Lemma 1 (Choice of α) α should be set to a value greater than or equal to the
frequency (given in fraction) of the sensitive value in the data set D.

Distortion Ratio or Recoding Cost: Since we want to analyze the published data, it
is interesting to see how large the distortion is the published data. There are many
utility metrics (Machanavajjhala et al. 2006; Xu et al. 2006; Li et al. 2006) to define the
distortion ratio of a published table. For example, in Machanavajjhala et al. (2006), a
metric can be the average size of the equivalence classes without using the taxonomy
trees for attributes. Xu et al. (2006) and Li et al. (2006) define more complicated
metrics with the use of the taxonomy trees.

In this paper, we focus on the following distortion ratio. Note that how to define
distortion ratio is orthogonal to our (α, k)-anonymity model. Since we assume the
more general case of a taxonomy tree for each attribute, we define the cost of local-
recoding based on this model. The cost is given by the distortion ratio of the resulting
data set and is defined as follows. Suppose the value of the attribute of a tuple
has not been generalized, there will be no distortion. However, if the value of the
attribute of a tuple is generalized to a more general value in the taxonomy tree,
there is a distortion of the attribute of the tuple. If the value is generalized more (i.e.
the original value is updated to a value at the node of the taxonomy near to the
root), the distortion will be greater. Thus, the distortion of this value is defined in
terms of the height of the value generalized. For example, if the value has not been
generalized, the height of the value generalized is equal to 0. If the value has been
generalized one level up in the taxonomy, the height of the value generalized is equal
to 1. Let hi, j be the height of the value generalized of attribute Ai of the tuple t j. The
distortion of the whole data set is equal to the sum of the distortions of all values in
the generalized data set. That is, distortion =

∑
i, j hi, j. Distortion ratio is equal to the

distortion of the generalized data set divided by the distortion of the fully generalized
data set, where the fully generalized data set is one with all values of the attributes
are generalized to the root of the taxonomy.

3 Global-recoding

In this section, we extend an existing global-recoding based algorithm called Incog-
nito (LeFevre et al. 2005) for the (α, k)-anonymous model. Incognito algorithm
(LeFevre et al. 2005) is an optimal algorithm for the k-anonymity problem. It has
also been used in Machanavajjhala et al. (2006) for the l-diversity problem.

Table 5 shows a data set containing three attributes (Gender, Birth and Postcode)
and one sensitive attribute Sens, where c is the sensitive value and n represents

Table 5 A data set Gender Birth Post code Sens
male May 1965 4351 n
male Jun 1965 4351 c
male Jul 1965 4361 n
male Aug 1965 4362 n

218 J Intell Inf Syst (2009) 33:209–234

P4 = {****}

P3 = {4***}

P2 = {43**}

P1 = {435*, 436*}

P0 = {4351, 4361, 4362}

B2 = {*}

B1 = {1965}

B0 = {May 1965, Jun 1965, Jul 1965, Aug 1965}

G0 = {male, female}

G1 = {Person}

(a) (b)

(c)

Fig. 1 Generalization hierarchy

some non-sensitive value. Figure 1a, b and c show the generalization hierarchies of
attributes Postcode, Birth and Gender, respectively. Each node in a generalization
hierarchy of attribute A corresponds to a generalization domain with respect to A.
The generalization domain in the lower level has more detailed information than
the higher level. For example, in Fig. 1a, generalization domain P0 (with respect to
Postcode) has the most detailed information. It contains three postcodes 4351, 4361
and 4362. Generalization domain P1 (with respect to Postcode) has more general
information. It contains two generalized postcodes 435* and 436*.

Lemma 2 (Generalization Property) Let T be a table and let Q be an attribute set
in T. Let G and G′ be the generalization domains with respect to Q, where G′ is a
generalization domain which is more general than G. If the table T generalized with
the generalization domain G with respect to Q is (α, k)-anonymous, then the table
T generalized with the generalization domain G′ with respect to Q is also (α, k)-
anonymous.

For example, consider generalization of the data set in Table 5, let us set k=2
and α = 0.5. Table 6(a), the table generalized with generalization domain < G0,

B1, P1 >, satisfies (α, k)-anonymous. As < G0, B1, P2 > is more general than
< G0, B1, P1 >, we know that the table generalized with domain < G0,

B1, P2 > is also (α, k)-anonymous (as shown in Table 6(b)).

Lemma 3 (SUBSET CLOSURE) Let T be a table. Let P and Q be attribute sets in T,
where P ⊂ Q. If the table T generalized with the generalization domain G with respect
to Q (e.g. < G0, B1, P1 >) is (α, k)-anonymous, then the table T generalized with the

Table 6 Illustration of generalization property

(a) (b)
Gender Birth Postcode Sens

male 1965 435* n
male 1965 435* c
male 1965 436* n
male 1965 436* n

Gender Birth Post code Sens
male 1965 43** n
male 1965 43** c
male 1965 43** n
male 1965 43** n

J Intell Inf Syst (2009) 33:209–234 219

Table 7 Illustration of subset property

(a) (b) (c)
Gender Sens

male n
male c
male n
male n

Gender Birth Sens
male 1965 n
male 1965 c
male 1965 n
male 1965 n

Birth Postcode Sens
1965 435* n
1965 435* c
1965 436* n
1965 436* n

generalization domain projected from G with respect to P (e.g. < G0, B1 >) is also
(α, k)-anonymous.

For example, we set k = 2 and α = 0.5. Table 6(a), the table that generalizes
Table 5 with generalization domain < G0, B1, P1 >, satisfies (α, k)-anonymous. We
note that generalization domains < G0 >, < G0, B1 > and < B1, P1 > all are subset
of generalization domain < G0, B1, P1 >. It is obvious that Table 7(a) (the table
generalized with < G0 >), Table 7(b) (the table generalized with < G0, B1 >) and
Table 7(c) (the table generalized with < B1, P1 >) also satisfy (α, k)-anonymous.

Algorithm: The algorithm is similar to LeFevre et al. (2005), Machanavajjhala et al.
(2006). The difference is in the testing criteria of each candidate. LeFevre et al. (2005)
tests for the k-anonymity property and Machanavajjhala et al. (2006) tests the k-
anonymity and l-diversity properties. Here, we check the (α, k)-anonymity property.

Initially, for each attribute A, we consider all possible generalization domains with
respect to A. For example, if A = Postcode, we consider the generalization domains
< P0 >, < P1 >, < P2 >, < P3 > and < P4 >. For each generalization domain G,
we test whether the table projected with attribute A and then generalized with G
is (α, k)-anonymity. If so, we mark the generalization domain. In this step, we can
make use of the generalization property as shown in Lemma 2 so that we do not
need to test all candidates. For example, if < P1 > is tested and the corresponding
table satisfies (α, k)-anonymity, then we do not need to test < P2 >, < P3 > and
< P4 >. This is because, by Lemma 2, < P2 >, < P3 > and < P4 > will also satisfy
(α, k)-anonymity.

After the initial step, we obtain all generalization domains of each attribute which
satisfy (α, k)-anonymity. The second step is to generate all possible generalization
domains with respect to the attribute set of size 2, instead of a single attribute (e.g.
< G0, B0 >). This step is also similar to the candidate generation in the typical
Apriori algorithm (Agrawal and Srikant 1994) (which mines the frequent itemsets).
In this algorithm, we make use of the subset property as shown in Lemma 3 for the
generation of candidates of generalization domains of size 2. After the candidate gen-
eration, for each candidate, the algorithm tests whether the generalization domain is
(α, k)-anonymity. If so, we mark the generalization domain. Similar to the first step,
the second step can also make use of the generalization property for pruning.

The step repeats until all generalization domains of size |Q| is reached, where Q
is the quasi-identifier. Then, among all these domains of size |Q|, we choose one with
the minimum distortion as the final generalization domain G of the table. Next G is
applied to the given table to obtain an (α, k)-anonymous table, which is our output.

220 J Intell Inf Syst (2009) 33:209–234

4 Local-recoding

The extended Incognito algorithm is an exhaustive global recoding algorithm
which is not scalable and may generate excessive distortions to the data set. Here
we propose two scalable heuristic algorithms called Progressive Local Recoding
(Section 4.1) and Top-Down Approach (Section 4.2) for (α, k)-anonymization by
local recoding.

4.1 Progressive local recoding

In this section, we present a scalable progressive local-recoding method for (α, k)-
anonymization. The first local-recoding method we propose is progressive because
we shall repeatedly pick an attribute and generalize the data set by going one level up
its taxonomy. The choice of the next attribute to be generalized is based on a heuristic
criterion. This process repeats until the table satisfies (α, k)-anonymity. In the process
of the generalization, some tuples will satisfy (α, k)-anonymity earlier than others.
We do not repeatedly generalize the chosen attribute of all tuples. Instead, we will
remove some tuples satisfying (α, k)-anonymity from the data set being processed in
order to avoid further distortion to these tuples, and to advance to a smaller data set
in the processing. In our method, there are two kinds of removal. The first removal
is called α-deassociated removal while the second removal is called further removal.

Criteria of Choosing Attribute—Entropy: A simple heuristic of choosing the next
attribute for generalization is choosing one with the most values. Among those
attributes with a similar number of values, one whose values are more evenly
distributed is chosen. It is intuitive that a generalization domain with more values
is typically at a lower level in the taxonomy and it is reasonable to move up the
taxonomy. If the values are skewed, then the attribute is close to a generalized state
since most values are already identical. Therefore we can gain more in terms of
uniformity by picking an attribute with values that are more evenly distributed.

Interestingly, entropy is a measurement that can capture both of the above
criteria. Let E be the entropy of an attribute Ai. E = ∑

∀v∈Ai
[−P(v) log2 P(v)], where

P(v) is the probability of value v occurring in attribute Ai. For example, for an
attribute with ten evenly distributed values, E = 10 × (−(1/10) log2(1/10)) = 3.32.
For an attribute with two evenly distributed values, E = 2 × (−(1/2) log2(1/2)) = 1.
For an attribute with two unevenly distributed values, one has the frequency of
0.8 and the other has the frequency of 0.2. E = −(4/5) log2(4/5) − (1/5) log2(1/5) =
0.722. We choose the attribute with the highest entropy among all attributes to be
generalized first.

α-Deassociated Removal: At each iteration, we remove some tuples from the
data set under processing. The first type of tuple removal is based on precise
α-deassociation.

Definition 8 (Precise α-deassociation) A set of p tuples is precisely α-deassociated if
p ≥ k and the number of sensitive values in the set is equal to �α × p�.

J Intell Inf Syst (2009) 33:209–234 221

Table 8 A full-domain generalization solution

(a) (b)
Gender Birth Post code Sens

male May 1965 4351 n
male Jun 1965 4351 c
male Jul 1965 4351 n
male Aug 1965 4352 n

Gender Birth Post code Sens
male 1965 435* n
male 1965 435* c
male 1965 435* n
male 1965 435* n

For example, {t1, t2} in Table 9(b) is precisely 0.5-deassociated with respect to the
sensitive value s. The idea here is to remove the precise α-deassociation tuples from
the data set and to proceed with the generalization for the remaining data set. There
are a few objectives: (1) We avoid further distortion to the removed tuples. (2) We
achieve objective (1) without compromising on the proportion of sensitive values in
the remaining data set - they remain rare, if not rarer. (3) We reduce the data set size
for the remaining processing. According to the above definition, we partition each
equivalence class satisfying the (α, k)-anonymity into two parts - a trunk and a stub
(defined as follows). A trunk should be removed from the processing data set and a
stub is kept in the data set for further processing.

Definition 9 (Stub and Trunk of Equivalent Class) An equivalent class is split into
two parts—a trunk and a stub. A trunk contains a set of tuples which is precisely
α-deassociated. A stub contains the remaining tuples.

For example, in Table 9(b), for equivalent class {t1, t2, t3}, a trunk contains tuples
t1 and t2 and a stub contains tuple t3. Let us show with an example the advantage of
this method over global recoding. Table 8(a) is a table to be anonymized. Table 8(b)
is a (0.5, 2)-anonymous table by full-domain generalization. Our approach is shown
in Table 9(a)–(c). The first generalization of Birth Detailed postcode information in
trunk {t1, t2} of Table 9(b) is preserved after we remove them from processing. We
leave a stub to join other tuples to form an equivalent class in a more generalized
form, such as t3 in Table 9(c).

Table 9 An illustration of our approach

(a) (b)
Gender Birth Post code Sens

male May 1965 4351 n
male Jun 1965 4351 c
male Jul 1965 4351 n
male Aug 1965 4352 n

Gender Birth Post code Sens
male 1965 4351 n
male 1965 4351 c

male 1965 4351 n
male 1965 4352 n

(c)
Gender Birth Post code Sens

male 1965 4351 n
male 1965 4351 c

male 1965 435* n
male 1965 435* n

222 J Intell Inf Syst (2009) 33:209–234

Lemma 4 Suppose data set D satisfies the basic requirement for an α-deassociated
data set described in Lemma 1. If one or more precisely α-deassociated trunks are
removed from D, the resulting data set will also satisfy the requirement.

The proof of this lemma is trivial and is omitted here.
This lemma enables us to separate precisely α-deassociated trunks from a data set

knowing that the remaining data set can still be α-deassociated.

Further Removal: So far our algorithm removes precisely α-deassociated trunks
from the data set being processed. Sometimes, the remaining data set does not
contain any precisely α-deassociated trunks but we can still further remove some
tuples in the remaining data set. Moreover, we can determine the greatest number of
tuples which can be further removed other than the precisely α-deassociated tuples
for each iteration. Let us consider a larger example in Table 10(a) for the problem
(0.5, 2)-anonymization. Tuples t1 and t2 form a trunk and are removed from the data
set for processing. Then, the remaining data set Dr contains tuples t3, t4, t5 and t6.
Suppose we generalize the Postcode of tuples t3, t4, t5 and t6. We obtain the table in
Table 10(b). It is easy to see that we can further remove tuples t3 and t4. After this
further removal, the postcode of tuples t5 and t6 can be generalized and the resulting
tuples satisfy (α, k)-anonymity. A question is raised here: How can we know we are
able to remove the two tuples t3 and t4 in Dr?

Let |Dr| be the number of tuples in the remaining data set Dr after the removal
of precisely α-deassociated tuples. Let |(Dr, s)| be the number of sensitive tuples in
Dr. Suppose we can further remove q tuples from Dr. After the further removal,
|Dr| − q tuples remain. Let Df be the data set after the further removal. Let |(Df , s)|
be the number of sensitive tuples in Df . As |(Df , s)| ≤ |(Dr, s)|, an upper bound on
the proportion of the sensitive tuples in Df is equal to |(Dr,s)|

|Dr |−q . As our objective is to
ensure that after the further removal of tuples, the proportion of the sensitive tuples
is at most α, we have the following inequality

|(Dr, s)|
|Dr| − q

≤ α (1)

From the above inequality, we get q ≤ �|Dr| − |(Dr,s)|
α

�.

Lemma 5 Let Dr be the data set containing the remaining tuples after the removal
of precisely α-deassociated tuples. Let (Dr, s) be data set containing the remaining

Table 10 An illustration of further removal

(a) (b)
Gender Birth Post code Sens

male 1965 4351 n
male 1965 4351 c

male 1965 4351 n
male 1965 4352 n
male 1965 4363 n
male 1965 4374 c

Gender Birth Post code Sens
male 1965 4351 n
male 1965 4351 c

male 1965 435* n
male 1965 435* n
male 1965 436* n
male 1965 437* c

J Intell Inf Syst (2009) 33:209–234 223

tuples with sensitive values in Dr. We can further remove at most �|Dr| − |(Dr,s)|
α

� tuples
in Dr.

Algorithm 1 Progressive Local Recoding (α, k)-Anonymization
1: Input: data set D, quasi-identifier Q, a sensitive attribute S or a sensitive value in S,

an integer k, and a fraction α

2: Output: (α, k)-anonymous view V

3: test if D has an (α, k)-anonymous table and return FALSE if not
4: V ← ∅
5: while D �= ∅ do
6: let D′ contain all precisely α-deassociated trunks
7: Dr ← D − D′
8: V ← V ∪ D′
9: qmax ← �|Dr| − |(Dr,s)|

α
�

10: choose a set of at most qmax tuples in Dr satisfying (α, k)-anonymity
11: let D′′ be the set of chosen tuples
12: D ← Dr − D′′
13: V ← V ∪ D′′
14: if D �= ∅ then
15: choose one attribute A in Q with the highest entropy
16: generalize D according to attribute A
17: end if
18: end while
19: return V

For example, in Table 10, as Dr contains t3, t4, t5 and t6. |Dr| = 4. Since only tuple
t6 contains the sensitive value, |(Dr, s)| = 1. �|Dr| − |(Dr,s)|

α
� = 4 − 1

0.5 = 2. Thus, we
can further remove at most 2 tuples from Dr (if there are any tuples which satisfy
(α, k)-anonymity).

Algorithm: The overall algorithm is given by Algorithm 1. Let us consider the time
complexity of the algorithm. The test of satisfaction of (α, k)-anonymity takes O(m)

time, where m is the number of tuples, after the data set is sorted by the quasi-
identifier.

Let D be a data set and Q be its quasi-identifier. Let Q = {Q1, Q2, . . . , Qn},
where Q1, Q2, ..., Qn are the attributes in D. Let height(Qi) be the height of the
generalization hierarchy. For example, height(Postcode) = 4.

Lemma 6 The number of loops in the progressive algorithm is bounded by∑n
i=1 height(Qi).

Let p be the average depth of attribute hierarchies of the quasi-identifier, n be the
number of attributes in the quasi-identifier, and m be the number of tuples in data
set D. The number of loops is bounded by

∑n
i=1 height(Qi) = pn. For each loop, we

have to find the equivalence classes, find the precisely α-deassociated trunks, find
the tuples for the further removal, scan the remaining tuples, calculate the entropy

224 J Intell Inf Syst (2009) 33:209–234

of each attribute and generalize the remaining tuples. For each iteration, the most
time-consuming step is sorting all tuples according to quasi-identifier values (which
takes O(mlog m) time) in order to find equivalent classes efficiently.2 Therefore, the
total running time is O(pnm log(m)).

Theorem 2 If there exists a solution in this problem, then Algorithm 1 can terminate
and find a solution.

Proof Sketch Suppose there exists a solution in this problem. That means the
proportion of sensitive tuples is smaller than or equal to α. In the algorithm, there
are two kinds of tuple removal for each iteration. We first remove the precisely α-
deassociated trunks. It is easy to see that after this removal, the proportion of the
sensitive tuples in the remaining data set Dr is still bounded by α. Secondly, we
further remove tuples according to Lemma 5. Let Df be the remaining data set after
the further removal. Lemma 5 guarantees that the proportion of sensitive tuples in
Df is at most α. Therefore, we can still proceed with the anonymization with the
data set Df . By induction on the number of iterations, it is easy to verify that Df

in the last iteration has a solution satisfying (α, k)-anonymity. Thus, the algorithm
terminates with a feasible solution. �	

4.2 Top-down approach

In this section, we present a top-down approach to tackle the problem. For ease of
illustration, we first present the approach for a quasi-identifier of size 1. Then, the
method is extended to handle quasi-identifiers of size greater than 1. The idea of
the algorithm is to first generalize all tuples completely so that, initially, all tuples
are generalized into one equivalence class. Then, tuples are specialized in iterations.
During the specialization, we must maintain (α, k)-anonymity. The process continues
until we cannot specialize the tuples anymore.

Let us illustrate with an example in Table 8(a). Suppose the quasi-identifer
contains Postcode only. Assume that α = 0.5 and k = 2. Initially, we generalize all
four tuples completely to an equivalence class with Postcode = **** (Fig. 2a). Then,
we specialize each tuple one level down in the generalization hierarchy. We obtain
the branch with Postcode = 4*** in Fig. 2b. In the next iterations, we obtain the
branch with Postcode = 43** and the branch with Postcode = 435* in Fig. 2c and
Fig. 2d, respectively. As the Postcode of all four tuples starts with the prefix “435”,
there is only one branch for each specialization of the postcode with prefix “435”.
Next, we can further specialize the tuples into the two branches as shown Fig. 2e.
Hence the specialization processing can be seen as the growth of a tree.

If each leaf node satisfies (α, k)-anonymity, then the specialization will be success-
ful. However, we may encounter some problematic leaf nodes that do not satisfy
(α, k)-anonymity. Then, all tuples in such leaf nodes will be pushed upwards in the
generalization hierarchy. In other words, those tuples cannot be specialized in this
process. They should be kept unspecialized in the parent node. For example, in
Fig. 2e, the leaf node with Postcode = 4352 contains only one tuple, which violates

2After sorting, a set of contiguous tuples forms an equivalence class.

J Intell Inf Syst (2009) 33:209–234 225

Fig. 2 Top-down algorithm
for quasi-identifier of size 1
(a–g)

Po
st

co
de

=*
**

*

T
up

le
s=

1,
2,

3,
4

Po
st

co
de

=*
**

*

T
up

le
s=

-

Po
st

co
de

=4
**

*

T
up

le
s=

1,
2,

3,
4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=*
**

*

T
up

le
s=

-

Po
st

co
de

=4
**

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
3*

*

T
up

le
s=

1,
2,

3,
4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=*
**

*

T
up

le
s=

-

Po
st

co
de

=4
**

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
3*

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

*

T
up

le
s=

1,
2,

3,
4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=*
**

*

T
up

le
s=

-

Po
st

co
de

=4
**

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
3*

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

1

T
up

le
s=

1,
2,

3

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

2

T
up

le
s=

4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=*
**

*

Tu
pl

es
=-

Po
st

co
de

=4
**

*

Tu
pl

es
=-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
3*

*

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

*

T
up

le
s=

4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

1

T
up

le
s=

1,
2,

3

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

2

T
up

le
s=

-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=*
**

*

Tu
pl

es
=-

Po
st

co
de

=4
**

*

Tu
pl

es
=-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
3*

*

Tu
pl

es
=-

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

*

Tu
pl

es
=3

,4

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

1

Tu
pl

es
=1

,2

Sp
ec

ia
lis

at
io

n

Po
st

co
de

=4
35

2

Tu
pl

es
=-Sp

ec
ia

lis
at

io
n

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

226 J Intell Inf Syst (2009) 33:209–234

Table 11 Projected table with
quasi-identifier = postcode: (a)
Original table and (b)
Generalized table

(a) (b)
No Post code Sens
1 4351 n
2 4351 c
3 4351 n
4 4352 n

No Post code Sens
1 4351 n
2 4351 c
3 435* n
4 435* n

(α, k)-anonymity, where k = 2. Thus, we have to move this tuple back to the parent
node with Postcode = 435*. See Fig. 2f.

After the previous step, we move all tuples in problematic leaf nodes to the
parent node. However, if the collected tuples in the parent node do not satisfy
(α, k)-anonymity, we should further move some tuples from other leaf nodes L to
the parent node so that the parent node can satisfy (α, k)-anonymity while L also
maintain the (α, k)-anonymity. For instance, in Fig. 2f, the parent node with Postcode
= 435* violates (α, k)-anonymity, where k = 2. Thus, we should move one tuples
upwards in the node B with Postcode = 4351 (which satisfies (α, k)-anonymity). In
this example, we move tuple 3 upwards to the parent node so that both the parent
node and the node B satisfy the (α, k)-anonymity.

Finally, in Fig. 2g, we obtain a data set where the Postcode of tuples 3 and 4 are
generalized to 435* and the Postcode of tuples 1 and 2 remains 4351. We call the final
allocation of tuples in Fig. 2g the final distribution of tuples after the specialization.
The results can be found in Table 11(b).

The pseudo-code of the algorithm is shown in Algorithm 2. In line 10 of Algorithm
2, we have to un-specialize some tuples which have already satisfied the (α, k)-
anonymity. Which tuples should we select in order to produce a generalized data set
with less distortion? We tackle this issue by the following additional steps. We further
specializing all tuples in all candidate nodes. We repeat the specialization process
until we cannot further specialize the tuples. Then, for each tuple t, we record the
number of times of specializations. If the tuple t has fewer times of specializations, it
should be considered as a good choice for un-specialization since it is evident that it
cannot be specialized deeply in later steps.

Quasi-identifier of Size More Than 1: Next we extend the top-down algorithm to
handle the case where the quasi-identifier has a size greater than one. Again, all
attributes of the tuples are generalized fully in the first step. Then, for each iteration,
we find the “best” attribute for specialization and perform the specialization for the
“best” attribute. The iteration continues until no further specialization is available.

Consider a group P. We will specialize the group P by specializing with one
attribute. We have to find the “best” attribute for specialization. For each attribute
in the quasi-identifer, our approach “tries” to specialize P. Then, among those
specializations, we find the “best” attribute for final specialization. Our criteria of
choosing the “best” attributes are described as follows.

Criteria 1 (Greatest No of Tuples Specialized): During the specialization of P,
we obtain a final distribution of the tuples. Some are specialized and some may
still remain in P. The “best” specialization yields the greatest number of tuples
specialized because that corresponds to the least overall distortion. For example,
Fig. 3a and Fig. 3b show the final distribution of tuples of the specialization with

J Intell Inf Syst (2009) 33:209–234 227

Algorithm 2 Top-Down Approach for Single Attribute
1: fully generalize all tuples such that all tuples are equal
2: let P be a set containing all these generalized tuples
3: S {P}; O
4: repeat
5: S
6: for all P S do
7: specialize all tuples in P one level down in the generalization hierarchy such that

a number of specialized child nodes are formed
8: unspecialize the nodes which do not satisfy (, k)-anonymity by moving the

tuples back to the parent node
9: if the parent P does not satisfy (, k)-anonymity then

10: unspecialize some tuples in the remaining child nodes so that the parent P
satisfies (, k)-anonymity

11: end if
12: for all non-empty branches B of P, do S S {B}
13: S S
14: if P is non-empty then O O {P}
15: end for
16: until S
17:
18: return O

attributes Postcode and Birth, respectively. If the data set has these two quasi-
identifiers only, we should choose attribute Postcode for specialization because it
yields the greatest number of tuples specialized.

Criterion 2 (Smallest No of Branching Specialized): In case there is a tie when
we consider the first criterion, we will further consider the number of branches
specialized (i.e. non-empty branches). The “best” specialization yields the smallest
number of branches specialized. The rationale is that smallest number of branches
can be an indicator of more generalized domain and it is a good choice compared to a
less generalized domain. For example, Fig. 4a and Fig. 4b shows the final distribution
of tuples of the specialization with attribute Postcode and Birth, respectively. If the

Postcode=****

Tuples=-

Postcode=4***

Tuples=1,2

Specialisation

Postcode=5***

Tuples=3,4

Specialisation

Birth=*

Tuples=3,4

Birth=1965

Tuples=1,2

Specialisation

Birth=1966

Tuples=-

Specialisation

(a) (b)

Fig. 3 Illustration for criteria of choosing the “Best” attribute: greatest no of tuples specialized
(a, b)

228 J Intell Inf Syst (2009) 33:209–234

Postcode=****

Tuples=-

Postcode=4***

Tuples=1,2

Specialisation

Postcode=5***

Tuples=3,4

Specialisation

Birth=*

Tuples=-

Birth=1965

Tuples=1,2,3,4

Specialisation

(a) (b)

Fig. 4 Illustration for criteria of choosing the “Best” attribute: smallest no of branches specialized
(a, b)

data set has these two quasi-identifiers only, we should choose attribute Birth for
specialization because it yields the smallest number of branches specialized.

5 Empirical study

Pentium IV 2.2 GHz PC with 1 GM RAM was used to conduct our experiment. The
algorithm was implemented in C/C++. In our experiment, we adopted the publicly
available data set, Adult Database, at the UCIrvine Machine Learning Repository
(Blake and Merz 1998). This data set (5.5 MB) was also adopted by LeFevre et al.
(2005), Machanavajjhala et al. (2006), Wang et al. (2004), Fung et al. (2005). We
used a configuration similar to LeFevre et al. (2005), Machanavajjhala et al. (2006).
We eliminated the records with unknown values. The resulting data set contains
45,222 tuples. Nine of the attributes were chosen as the quasi-identifier, as shown in
Table 12. On default, we set k = 2 and α = 0.5, and we chose the first eight attributes
and the last attribute in Table 12 as the quasi-identifer and the sensitive attribute,
respectively.

We evaluated the proposed algorithm in terms of two measurements: execution
time and distortion ratio (see Section 2). We conducted the experiments five times
and took the average execution time.

Table 12 Description of adult data set

Attribute Distinct Values Generalizations Height
1 Age 74 5-,10-,20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Education 16 Taxonomy Tree 4
4 Martial Status 7 Taxonomy Tree 3
5 Occupation 14 Taxonomy Tree 2
6 Race 5 Taxonomy Tree 2
7 Sex 2 Suppression 1
8 Native Country 41 Taxonomy Tree 3
9 Salary Class 2 Suppression 1

J Intell Inf Syst (2009) 33:209–234 229

We denote the proposed algorithms by Progressive, Top Down and eIncognito.
eIncognito denotes the extended Incognito algorithm while Progressive and Top
Down denote the local-recoding based progressive approach and the local-recoding
based top-down approach, respectively.

Figure 5 shows the graphs of the execution time and the distortion ratio against
quasi-identifier size and α when k = 2. In Fig. 5a, when α varies, different algo-
rithms change differently. The execution time of eIncognito Algorithm increases
with α. This is because, when α increases, the number of candidates (representing
the generalization domain) increases, and thus the execution time increases. The
execution time of Top Down Algorithm decreases when α increases. In lines 9–10
of Algorithm 2, we may have to unspecialize some tuples in the branches satisfying
(α, k)-anonymity so that the parent P satisfies (α, k)-anonymity. When α is small, it is
more likely that the parent P cannot satisfy (α, k)-anonymity, triggering this step of
un-specialization. As the un-specialization step is more complex, the execution time
is larger when α is smaller. The execution time of Progressive Algorithm is quite
smaller. It remains nearly unchanged when α increases.

In Fig. 5b, when the quasi-identifer size increases, the execution time of the
algorithm increases because the complexity of the algorithms is increased with the
quasi-identifier size. However, when k is larger, the execution time of Progressive
Algorithm is smaller. This is because each iteration of the algorithm can remove
not only more tuples in precisely α-deassociated trunks but also more tuples in the
further removal in the algorithm. Thus, the number of iterations is smaller, yielding
a shorter execution time.

On average, among these three algorithms, eIncognito Algorithm requires the
greatest execution time and Progressive Algorithm has the smallest execution time.

(a) (b)

(c) (d)

Fig. 5 Execution time and distortion ratio versus quasi-identifier size and α (k = 2) (a–d)

230 J Intell Inf Syst (2009) 33:209–234

This shows that eIncognito performs much slower compared with local-recoding
based algorithms.

In Fig. 5c, when α increases, the distortion ratio decreases. Intuitively, if α is
greater, there is less requirement of α-deassociation, yielding fewer operations of
generalization of the values in the data set. Thus, the distortion ratio is smaller.

In Fig. 5d, it is easy to see why the distortion ratio increases with the quasi-
identifier size. When the quasi-identifier contains more attributes, there is more
chance that the quasi-identifier of two tuples are different. In other words, there is
more chance that the tuples will be generalized. Thus, the distortion ratio is greater.
When k is larger, it is also obvious that the distortion ratio is greater because it is less
likely that the quasi-identifer of two tuples are equal.

On average, the local-recoding based algorithms (Progressive Algorithm and Top
Down Algorithm) result in about 3 times smaller distortion ratio compared with
eIncognito Algorithm. Also, the Progressive Algorithm and Top Down Algorithm
generate similar distortion ratio.

We have also conducted the experiments for k = 10, which is shown in Fig. 6.
The results are also similar to the graphs for k = 2 (as in Fig. 5). When k = 10 and
quasi-identifier size is large, the Top Down Algorithm gives a larger distortion ratio
than Progressive Algorithm. This can be explained by the fact that the Top Down
Algorithm considers the “best” attributes independently among all attributes without
considering the relationship among attributes. Thus, when the quasi-identifier size
(i.e. the number of attributes) is larger, the performance is worse.

(a) (b)

(c) (d)

Fig. 6 Execution time and distortion ratio versus quasi-identifier size and α (k = 10) (a–d)

J Intell Inf Syst (2009) 33:209–234 231

6 General (α, k)-anonymity model

In this section, we will extend the simple (α, k)-model to two different cases: (1)
multiple sensitive values in a single sensitive attribute (Section 6.1) and (2) multiple
sensitive values in multiple sensitive attributes (Section 6.2).

6.1 Multiple sensitive values

When there are two or more sensitive values and they are rare cases in a data set
(e.g. HIV and prostate cancer). We may combine them into one combined sensitive
class and the simple (α, k)-anonymity model is applicable. The inference confidence
to each individual sensitive value is smaller than or equal to the confidence to the
combined value, which is controlled by α.

Next we consider the case when all values in an attribute are sensitive and require
protection. It is possible to have an (α, k)-anonymity model to protect a sensitive
attribute when the attribute contains many values and no single value dominates
the attribute (which will be explained later). The salary attribute in employer table
is an example. When each equivalent class contains three salary scales with even
distribution, we have about 33% confidence to infer the salary scale of an individual
in the equivalent class.

Definition 10 (α-rare) Given an equivalence class E, an attribute X and an attribute
value x ∈ X. Let (E, x) be the set of tuples containing x in E and α be a user-specified
threshold, where 0 ≤ α ≤ 1. Equivalence class E is α-rare with respect to attribute set
X if the proportion of every attribute value of X in the data set is not greater than α,
i.e. |(E, x)|/|E| ≤ α for x ∈ X.

For example, in Table 3, if X = Illness, equivalent class {t3, t4} is 0.5-rare because
“flu” and “fever” occur evenly in the equivalent class. If every equivalent class is
α-rare in the class, the data set is called α-deassociated.

Definition 11 (General α-deassociation property) Given a data set D, an attribute
set Q and a sensitive class attribute S. Let α be a user-specified threshold, where
0 ≤ α ≤ 1. Data set D is said to satisfy general α-deassociation with respect to an
attribute set Q and a sensitive attribute S if, for any equivalent classes E ⊂ D, E is
α-rare with respect to S.

For example, Table 3 is 0.5-deassociated since all three equivalent classes, {t1, t6},
{t2, t5} and {t3, t4}, are 0.5-rare with respect to attribute set Illness. When a data set is
α-deassociated with respect to a sensitive attribute, it is α-deassociated with respect
to every value in the attribute. Therefore, the upper bound of inference confidence
from the quasi-identifier to the sensitive attribute is α.

Definition 12 (General (α, k)-anonymity) Given an attribute set Q and a sensitive
class attribute S, a view of a table is said to be a general (α, k)-anonymization of the
table if the view modifies the table such that the view satisfies both k-anonymity and
general α-deassociation with respect to an attribute set Q and a sensitive attribute S.

232 J Intell Inf Syst (2009) 33:209–234

The proposed algorithms in Sections 3 and 4 can be extended to the general (α, k)-
anonymity model. The global-recoding based algorithm depends on two major prop-
erties - the generalization property (Lemma 2) and the subset property (Lemma 3).
Both propoerties hold for the general (α, k)-anonymity. Thus, the global-recoding
based algorithm can be extended by modifying the step of testing of candidates with
the general model.

The progressive local-recoding algorithm contains three major components -
(1) Criteria of Choosing Attributes, (2) α-Deassociated Removal and (3) Further
Removal. (1) As the measurement for the criteria of choosing attribute is based
on the quasi-identifier but no sensitive attribute, this component can still be used
directly. Although we cannot apply (2), we can continue to use step (3), by modifying
the bound of the number of removal. Recall that we can further remove at most
�|Dr| − |(Dr,s)|

α
� (Lemma 5) in the mode for a single sensitive value s. In the general

mode, all sensitive values should satisfy Eq. 1. That is, the formula in Lemma 5
becomes �|Dr| − |(Dr,s)|

α
� for all s ∈ S, where S is the sensitive attribute. As we make

sure that all the sensitive values in the sensitive attribute should satisfy the general
(α, k)-anonymity, we should remove at most mins∈S{�|Dr| − |(Dr,s)|

α
�}. After these

modifications, the progressive algorithm can handle the general model.
The top-down local-recoding algorithm can also be easily extended to the general

model by modifying the condition when testing the candidates.

6.2 Multiple sensitive attributes

In some cases, the table may contain multiple sensitive attributes. For example, in
addition to attribute Illness, there are some other sensitive attributes like Income in
the table. We can also easily extend our (α, k)-anonymity model in this case. Let S
be the set of sensitive attributes in the table. We can refine Definition 11 as follows.

Definition 13 (S-General α-deassociation property) Given a data set D, an attribute
set Q and a set S of sensitive attributes. Let α be a user-specified threshold, where
0 ≤ α ≤ 1. Data set D is said to satisfy S-general α-deassociation with respect to an
attribute set Q and a set S if, for each S ∈ S , D satisfies general α-deassociation with
respect to Q and S.

Definition 14 (S-General (α, k)-anonymity) Given an attribute set Q and a set S of
sensitive attributes, a view of a table is said to be a S-general (α, k)-anonymization of
the table if the view modifies the table such that the view satisfies both k-anonymity
and S-general α-deassociation with respect to an attribute set Q and a set S .

Similarly, we can also adapt our algorithms as follows. Since the generalization
property and the subset property hold for the S-general (α, k)-anonymity, we can
modify the step of testing of candidates with this general model.

Similar to Section 6.1, in the progressive local-recoding algorithm, the first step
for “Criteria of Choosing Attributes” can still be used. For the third step, we should
remove at most mins∈S and S∈S{�|Dr| − |(Dr,s)|

α
�}.

Similarly, the top-down local-recoding algorithm can also be easily extended to
the general model by modifying the condition when testing the candidates.

J Intell Inf Syst (2009) 33:209–234 233

7 Conclusion

The k-anonymity model protects identification information, but does not protect
sensitive relationships in a data set. In this paper, we propose the (α, k)-anonymity
model to protect both identifications and relationships in data. We discuss the
properties of the model. We prove that achieving optimal (α, k)-anonymity by
local recoding is NP-hard. We present an optimal global-recoding method and
two efficient local-encoding based algorithms to transform a data set to satisfy
(α, k)-anonymity property. The experiment shows that, on average, the two local-
encoding based algorithms performs about 4 times faster and gives about 3 times less
distortions of the data set compared with the global-recoding algorithm.

Acknowledgements We are grateful to the anonymous reviewers for their constructive comments
on this paper. This research was supported in part by HKSAR RGC Direct Allocation Grant
DAG08/09.EG01 to Raymond Chi-Wing Wong, This research was supported by ARC discovery
grant DP0774450 to Jiuyong Li.

References

Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., et al. (2005).
Anonymizing tables. In ICDT (pp. 246–258).

Agrawal, D., & Aggarwal, C. C. (2001). On the design and quantification of privacy preserving
data mining algorithms. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (pp. 247–255). New York: ACM.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In VLDB.
Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In Proc. of the ACM SIGMOD

conference on management of data (pp. 439–450). New York: ACM.
Bayardo, R., & Agrawal, R. (2005). Data privacy through optimal k-anonymization. In ICDE

(pp. 217–228).
Blake, E. K. C., & Merz, C. J. (1998). UCI repository of machine learning databases.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Bu, Y., Fu, A. W.-C., Wong, R. C.-W., Chen, L., & Li, J. (2008). Privacy preserving serial data

publishing by role composition. In VLDB.
Cox, L. (1980). Suppression methodology and statistical disclosure control. Journal of the American

Statistical Association, 75, 377–385.
Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for

classification learning. In Proceedings of the thirteenth international joint conference on artificial
intelligence (IJCAI-93) (pp. 1022–1027). San Francisco: Morgan Kaufmann.

Fung, B. C. M., Wang, K., & Yu, P. S. (2005). Top-down specialization for information and privacy
preservation. In ICDE (pp. 205–216).

Holyer, I. (1981). The np-completeness of some edge-partition problems. SIAM Journal on Comput-
ing, 10(4), 713–717.

Hundepool, A. (2004). The argus software in the casc-project: Casc project international workshop.
In Privacy in statistical databases. Lecture notes in computer science (Vol. 3050, pp. 323–335).
Barcelona: Springer.

Hundepool, A., & Willenborg, L. (1996). μ-and τ - argus: Software for statistical disclosure control.
In Third international seminar on statsitcal confidentiality, Bled.

Iyengar, V. S. (2002). Transforming data to satisfy privacy constraints. In KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining
(pp. 279–288).

LeFevre, K., DeWitt, D. J., & Ramakrishnan, R. (2005). Incognito: Efficient full-domain
k-anonymity. In SIGMOD conference (pp. 49–60).

Li, J., Wong, R. C.-W., Fu, A. W.-C., & Pei, J. (2006). Achieving k-anonymity by clustering in
attribute hierarchical structures. In DaWaK.

Li, N., & Li, T. (2007). t-closeness: Privacy beyond k-anonymity and l-diversity. In ICDE.

http://www.ics.uci.edu/~mlearn/MLRepository.html

234 J Intell Inf Syst (2009) 33:209–234

Machanavajjhala, A., Gehrke, J., & Kifer, D. (2006). l-diversity: Privacy beyond k-anonymity. In
ICDE06.

Meyerson, A., & Williams, R. (2004). On the complexity of optimal k-anonymity. In PODS
(pp. 223–228).

Rizvi, S., & Haritsa, J. (2002). Maintaining data privacy in association rule mining. In Proceedings of
the 28th conference on very large data base (VLDB02) (pp. 682–693). VLDB Endowment.

Samarati, P. (2001). Protecting respondents’ identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering, 13(6), 1010–1027.

Sweeney, L. (2002a). Achieving k-anonymity privacy protection using generalization and suppres-
sion. International Journal on Uncertainty, Fuzziness and Knowldege Based Systems, 10(5),
571–588.

Sweeney, L. (2002b). k-anonymity: A model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowldeg Based Systems, 10(5), 557–570.

Verykios, V. S., Elmagarmid, A. K., Bertino, E., Saygin, Y., & Dasseni, E. (2004). Association rule
hiding. IEEE Transactions on Knowledge and Data Engineering, 16(4), 434–447.

Wang, K., Fung, B. C. M., & Yu, P. S. (2005). Template-based privacy preservation in classification
problems. In ICDM05.

Wang, K., Fung, B., & Yu, P. (2007). Handicapping attacker’s confidence: An alternative to
k-anonymization. Knowledge and Information Systems: An International Journal, 11(3), 345–368.

Wang, K., Yu, P. S., & Chakraborty, S. (2004). Bottom-up generalization: A data mining solution to
privacy protection. In ICDM (pp. 249–256).

Willenborg, L., & de Waal, T. (1996). Statistical disclosure control in practice. Lecture Notes in
Statistics, 111.

Xiao, X., & Tao, Y. (2006). Personalized privacy preservation. In SIGMOD.
Xiao, X., & Tao, Y. (2007). m-invariance: Towards privacy preserving re-publication of dynamic

datasets. In SIGMOD.
Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., & Fu, A. (2006). Utility-based anonymization using local

recoding. In KDD.

	(α, k)-anonymous data publishing
	Abstract
	Introduction
	Problem definition
	Global-recoding
	Local-recoding
	Progressive local recoding
	Top-down approach

	Empirical study
	General (α, k)-anonymity model
	Multiple sensitive values
	Multiple sensitive attributes

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

