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ABSTRACT
The computation of Minimum Spanning Trees (MSTs) is a funda-
mental graph problem with important applications. However, there
has been little study of MSTs for temporal graphs, which is becom-
ing common as time information is collected for many existing net-
works. We define two types of MSTs for temporal graphs,MST a
andMST w, based on the optimization of time and cost, respec-
tively. We propose efficient linear time algorithms for computing
MST a. We show that computing MST w is much harder. We
design efficient approximation algorithms based on a transforma-
tion to the Directed Steiner Tree problem (DST). Our solution also
solves the classical DST problem with a better time complexity and
the same approximation factor compared to the state-of-the-art al-
gorithm. Our experiments on real temporal networks further verify
the effectiveness of our algorithms. For MST w, our solution is
capable of shortening the runtime from 10 hours to 3 seconds.

1. INTRODUCTION
The increasing popularity of social networks and the emergence

of other large scale networks have attracted much related research
interest in recent years. While most works so far focus on static
networks, many networks of interest carry time information, which
can be highly useful and important for network analysis. Such net-
works are termed temporal networks [15]. An important category
of temporal networks is that of communication, including phone
calls, emails, messaging, and social contact networks, where each
edge represents a correspondence between two parties or two indi-
viduals. Another example is a network of airports, with edges la-
beled by the times of flight departures and arrivals. Other temporal
networks include neural and brain networks, ecological networks,
etc. A comprehensive survey of temporal networks is given in [15].

Consider the call detail records (CDR) generated by telecom
companies as a temporal graph example. CDR records the calling
party, the receiving party, the start time, the call duration and billing
information. We thus assume that we are given a directed graph
G = (V,E), where each edge e inE is of the form (u, v, tu, t̂v, w),
e links source vertex u to destination vertex v with start time tu and
end time t̂v , and carries a weight (or cost) of w. A path in G is a
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sequence of edges 〈e1, e2, ..., ek〉 for some k ≤ |V |, where the des-
tination vertex of ei is the source vertex of ei+1. The path is time-
respecting if the start time of ei+1 is not earlier than the end time
of ei [20]. Information flows along a path P in the network only if
P is time respecting. The spread of information, rumor, or disease
(epidemics) can follow only time respecting paths. Therefore, in
a temporal graph, we need to consider time-respecting paths. This
necessity often makes temporal graphs much harder to handle. For
example, computing strongly connected components takes linear
time in a static graph, but is NP-complete in a temporal graph [4].

The computation of minimum spanning trees (MST) is a clas-
sical problem in graph theory. One major application of MST is
network broadcasting. In a social network, this corresponds to in-
formation dissemination, which is important in social campaigns,
viral marketing, study of rumor spreading, etc. In view of this ap-
plication, we define two different optimization problems for span-
ning trees in a temporal graph. The first is a time based optimiza-
tion, which is for the fastest spread from a source vertex to each
reachable vertex. We refer to such an optimal spanning tree as a
MST a. The second is a cost based optimization, assuming each
edge in the graph carries some weight (cost), a spanning tree with
a minimum total weight is aMST w.

Given a non-temporal (static) directed graph G = (V,E), the
MST problem can be solved in O(|E| + |V | log |V |) time [12].
However, the MST problems for temporal graphs behave very dif-
ferently. Our study shows that aMST a can be computed by ef-
ficient algorithms with linear time. However, the problem of com-
puting a MST w is MAX-SNP hard. Hence, there is no poly-
nomial time approximation scheme for computingMST w unless
P = NP . We transform theMST w problem on temporal graphs
to the classical Directed Steiner Tree (DST) problem. The state-of-
the-art approximation algorithm for DST requires O(nik2i) com-
putation time, where n is the number of vertices, k is the number
of terminals, and i is the number of iterations in the algorithm [8].
We derive an improved algorithm that runs in O(niki) time with
the same approximation ratio.

Our main contributions are summarized as follows. (1) We con-
sider MSTs for temporal graphs. Based on the application of in-
formation dissemination, we define two types of MST, namely,
MST a for optimizing time, andMST w for optimizing cost. (2)
For computing aMST a, we propose linear time algorithms which
are optimal and improve on the results in [4]. (3) We show that
computing aMST w is MAX-SNP hard. We transform theMST w
problem to the minimum Directed Steiner Tree problem (DST)
with a conversion of the temporal graph to a static graph. (4) DST is
a classical problem of independent interest. Our result improves on
the best-known approximation algorithm in [8], achieving a better
time complexity while having the same approximation guarantee.



(5) We evaluate our approaches with a comprehensive set of experi-
ments on real temporal networks. We show that our DST algorithm
is up to 5 orders of magnitude faster than the state-of-the-art algo-
rithm.

This paper is organized as follows. Section 2 contains our prob-
lem definitions. Section 3 describes the problem ofMST a and our
algorithms for this problem. Section 4 is about theMST w prob-
lem and its solutions. Our empirical study is reported in Section 5,
related work is discussed in Section 6. We conclude in Section 7.

2. PROBLEM DEFINITION
In this section we introduce some definitions and notations, and

two problems of minimum spanning trees in a temporal graph.

2.1 Notations for Temporal Graphs
Let G = (V,E) be a temporal graph, where V is the vertex

set and E is the temporal edge set. Let |V | = n and |E| = M .
We also denote V by V (G) and E by E(G). Each temporal edge
e ∈ E is labeled with a starting point u, an end point v, a starting
time tu from the starting point, an arrival time t̂v at the end point,
and a weight (or cost) w, denoted as e = (u, v, tu, t̂v, w) where
u, v ∈ V , and tu, t̂v, w are non-negative real numbers. The starting
point, end point, starting time, arrival time, and weight of e are also
denoted by s(e), a(e), ts(e), ta(e), and w(e), respectively, i.e.,
s(e) = u, a(e) = v, ts(e) = tu, ta(e) = t̂v , and w(e) = w.
We assume that ta(e) ≥ ts(e). Also, let d(e) be the duration on
temporal edge e, i.e., d(e) = t̂v − tu, d(e) ≥ 0. We say that e
is an in temporal edge incident to v, and it is an out temporal
edge incident to u. Let No(u) and Ni(u) denote the set of out
temporal edges and the set of in temporal edges incident to vertex
u, respectively, i.e., No(u) = {e|s(e) = u, e ∈ E},Ni(u) =
{e|a(e) = u, e ∈ E}. Note that G can be a cyclic graph.

54

0

1 2

<1,3> <4,5> <3,6><1,5>

<5,8> <7,9> <6,8>

[2] [1] [4] [3]

[3] [2] [2]

3

<4,6>
[2]

<8,9>

[1]

Figure 1: Temporal Graph G
EXAMPLE 1. Figure 1 is a temporal graph. Each temporal

edge is labeled with 〈tu, t̂v〉 and [w]. In this example, we set the
weight on each temporal edge as the duration,i.e., t̂v − tu. How-
ever, note that in general, w can be set as any value. The graph can
represent phone calls. Each vertex is an individual and an edge
from u to v is a phone call from u to v. The temporal edge in red
(bold) refers to e = (0, 1, 1, 3, 2), meaning that there is a phone
call from individual 0 to individual 1 starting from time 1, ending
(arriving) at time 3 and the weight is 2. The graph may also repre-
sent flights, an edge from u to v is a flight from u to v.

A temporal graph can be converted into a static graph by dis-
carding the time information. Given a temporal graphG = (V,E),
let GS = (VS , ES) be the corresponding static graph. Then, VS =
V , ES = {(u, v, w)|(u, v, tu, t̂v, w) ∈ E}. |V | = |VS | = n, let
|ES | = m.
P = {e1, e2, ..., ek} is called a path in a temporal graph if and

only if a(ei) = s(ei+1) and ta(ei) ≤ ts(ei+1), where 1 ≤ i <
k. We say that P is a path from vertex s(e1) to a(ek). We call
“ta(ei) ≤ ts(ei+1)” a time constraint. We call ta(ek) the arrival
time of P , and denote it by A(P ). Given a time interval [tα, tω].
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Figure 2: Minimum Spanning Tree of Figure 1

We say that a path P in G is within [tα, tω] if for each edge ei in
P , tα ≤ ts(ei) and ta(ei) ≤ tω . A vertex v is reachable from u in
G in [tα, tω] if v = u or there is a path from u to v within [tα, tω].

2.2 Two Types of Minimum Spanning Trees
Given a temporal graph G = (V,E), a root r ∈ V , and a time

interval [tα, tω]. Let P(r, v) be the set of paths within [tα, tω] from
r to v, if P ∈ P(r, v) has the earliest arrival time among all paths
in P(r, v), we call the arrival time A(P ) the earliest arrival time
for v, and denote it by Ã(v).

Let Vr be the set of vertices reachable from r in G in [tα, tω]. A
spanning tree ST (r) = (VST , EST ) rooted at r is a subgraph of
G with the following properties: (1) VST = Vr . (2) ∀v ∈ V where
v 6= r, there is exactly one in temporal edge incident to v; r has no
in temporal edge, |EST | = |Vr| − 1. (3) ∀v ∈ V where v 6= r,
there exists a path from root r to v in ST (r) within [tα, tω].

We define the following two types of minimum spanning trees in
G and our problems are the computation of such MSTs.

• MST a (Minimum spanning tree with earliest arrival times). A
spanning tree ST (r) = (VST , EST ) rooted at r is aMST a if
and only if ∀v ∈ VST , v 6= r, the path P from r to v in ST (r)

has the earliest arrival time for v, i.e. A(P ) = Ã(v);

• MST w (Minimum spanning tree with smallest total weight): A
spanning tree ST (r) = (VST , EST ) rooted at r is aMST w if
and only if

∑
e∈EST

w(e) is minimum among all spanning trees
rooted at r. We refer to

∑
e∈EST

w(e) as the weight or cost of
ST (r) and also denote it by ζ(ST (r)).

EXAMPLE 2 (MINIMUM SPANNING TREES). Let us set the
root r as vertex 0 in temporal graph G in Figure 1, we obtain
Vr = {1, 2, 3, 4, 5}. Figure 2(a) is a MST a for G, while Fig-
ure 2(b) is a MST w for G, rooted at vertex 0. In Figure 2(a),
the arrival times for vertices 1, 2, 3, 4, 5 are 3, 5, 6, 8, 8, respec-
tively, which are the corresponding earliest arrival times in G. If
the graph represents phone calls, these are the earliest times for a
message to be transmitted from 0 to the other individuals. In Figure
2(b), the total weight of all edges is 2+3+2+2+2 = 11, which is
the smallest among all possible spanning trees of G rooted at 0. If
the graph represents phone calls, then the minimum cost to trans-
mit a message from 0 to all other individuals is 11. If the graph
represents flights, then 11 is the minimum cost to distribute some
goods from airport 0 to all other airports.

2.3 Motivation forMST a andMST w
Some discussion about our problem definitions is in order. For

non-temporal graphs, a branching is a forest in which each edge is
directed towards a different vertex. Given a directed graph G =
(V,E), a branching G′ = (V ′, E′) in G is a spanning arbores-
cence, or a directed spanning tree (DSPT), ofG iff |E′| = |V |−1.



A minimum DSPT (MDSPT), has the smallest total edge weight
among all DSPTs [10, 11, 25]. Clearly, G contains a DSPT iff all
vertices in G are reachable from some vertex r in G. Hence, pre-
vious studies on MDSPT assume that all vertices in V are reach-
able from some root vertex r in V . Then, either the root vertex is
prescribed or it is not prescribed. In the early work by Edmonds,
application of a least costly way to have a message communicated
from the root to all other nodes is described, where the root is pre-
scribed [11]. To our knowledge, no application is known for the
case where the root is not prescribed. Thus, as in the best known
algorithm for MDSPT in [12], we deal with a prescribed root r.

In real temporal graphs, different vertices may reach different
sets of vertices, and a given vertex r typically cannot reach all ver-
tices. Thus, we ensure the reachability condition by considering
the subgraph induced by all vertices reachable from r.

Our work is motivated by a number of applications. Informa-
tion flows follow time respecting paths in a network, and aMST a
from a source vertex s tells us the earliest time that a piece of in-
formation can be dispatched to other sites. MST a is also useful
for the study of epidemiology, the spread of infectious diseases (or
computer virus), when the network is about individual contacts (or
a computer network) [3, 20]. Another application is the schedule
of transportation. MST a gives a schedule of transports for distri-
bution of goods from a source location with the earliest arrival time
for each destination.

Information dissemination is the major motivating application
for the study of temporal networks in [20]. An important applica-
tion ofMST w is to minimize the cost of message communication
or information propagation, where each edge represents a link of
direct communication from one party to another, with a weight that
indicates the cost of the communication, provided that the cost is
additive. E.g. phone communication involves some cost for each
call. Given a time window [tα, tω],MST w gives us the minimum
information dissemination cost from a person. As the time window
slides forward, we can predict the minimum cost for the future. The
transportation problem cited in [20] is another application. An ex-
ample is a network of airports with edges corresponding to flights,
and each flight involves some cost. AMST w minimizes the total
cost to transport some given resource from a given location r to
all destinations. MST w can also be useful for clustering [2, 33],
which is related to community search in social networks.
MST a bears some resemblance to a shortest path tree in a non-

temporal multi-graph in that the path from the root to each vertex
is optimized. The difference is that for a shortest path tree, the total
length of edges in the path from r to each vertex v is minimized,
while in aMST a, the arrival time at v is minimized.
MST a also solves the problem of minimizing the maximum

arrival time since the arrival time for each vertex is minimized.

3. TIME-MINIMUM SPANNING TREE
We consider the computation of aMST a in a temporal graph.

Given temporal graph G, an interval [tα, tω], and root r, let Ã(v)
be the earliest arrival time from root r to reachable vertex v in Vr .
We can show that there exists aMST a rooted at r which is made
up of paths from r to all reachable vertices with the earliest arrival
times.

LEMMA 1. Given a temporal graph G = (V,E) and the root
r, there must exist a minimum spanning tree (MST a) rooted at r.

In the following we propose two efficient algorithms forMST a
with linear complexity. Let us first present the data format for
the temporal graph. We assume that a temporal edge is of the

Algorithm 1:MST a(r,G, t)
Input : A temporal graph G (chronological edge list), root r, time

interval [tα, tω ];
Output :MST a (given by P())

1 Initialize: A(u) =∞,P(u) = r ∀u 6= r, u ∈ V ;A(r) = tα;
2 for e = (u, v, tu, t̂v , w) ∈ G do
3 if (tu ≥ A(u))&(t̂v < A(v))&(t̂v ≤ tω) then
4 A(v)← t̂v ;
5 P(v)← u;

form e = (u, v, tu, t̂v, w). We are given a list of M temporal
edges, {e1, e2, ..., ei, ..., eM}, as the input raw data. Assume the
edges are ordered by non-decreasing starting time ts(ei). We call
this raw data a chronological edge list input, denoted by G =
[e1, e2, ..., eM ]. The first algorithm is given in Algorithm 1.

EXAMPLE 3. Consider the graph in Figure 1. We set the time
interval of interest as tα = 0, tω = ∞. The first edge in the in-
put is (0, 1, 1, 3, 2), we update A(1) to 3, and P(1) to 0. The next
input is (0, 2, 1, 5, 4), we set A(2) to 5, and P(2) to 0, according
to Lines 4-5 in Algorithm 1. For the next inputs of (0, 2, 3, 6, 3),
(0, 1, 4, 5, 1), the if condition at Line 3 is not met, no update is trig-
gered. Similarly, we process the remaining inputs and theMST a
in Figure 2(a) is generated.

THEOREM 1. Algorithm 1 returns a MST a in O(M) time
given ts(e) 6= ta(e), ∀e ∈ E. (M = |E|)

PROOF. Let ST be the set of earliest arrival time for vertices in
Vr . Let ST = {t1, t2, ...ti, ...t|ST |}, where tj < tj+1, 1 ≤ j ≤
|ST |−1. First we prove thatA(u) in Algorithm 1 correctly records
the earliest arrival time for each vertex u ∈ Vr whose Ã(u) = t1.
Vertex u must be one hop from root r. Suppose {e} is the earliest
arrival path from r to u, where ta(e) = t1, then A(u) must be set
to t1 when processing e in line 2 since ts(e) ≥ tα and A(r) is set
to be tα initially, and note that tα is a lower bound of starting times.

We prove by induction. Assume that the final A(v) in Algo-
rithm 1 correctly records the earliest arrival time for any vertex v
with Ã(v) < ti. We need to prove that A(v′) correctly record
the earliest arrival time for any vertex v′ with Ã(v′) = ti. Let
P = {e1, e2, ..., ek} be a path from r to v′ with earliest arrival
time Ã(v′) = ti; let vj = a(ej), where 1 ≤ j < k. From inequal-
ity ta(ek−1) ≤ ts(ek) < ta(ek) = ti, we have ta(ek−1) < ti.
Also, Ã(vk−1) ≤ ta(ek−1), since Ã(vk−1) is the earliest arrival
time for vertex vk−1 = a(ek−1). Thus, Ã(vk−1) ≤ ti. By the in-
duction hypothesis, the finalA(vk−1) = Ã(vk−1). Note that when
processing ek at Line 2,A(vk−1) has already been set to Ã(vk−1)
since ts(ek) ≥ ta(ek−1) > ts(ek−1) and temporal edges are pro-
cessed in ascending order of ts(e), e ∈ E. According to Line 3,
A(v′) will be set to ti when edge ek is processed. Hence, Algo-
rithm 1 correctly returns aMST a as recorded in {P(v)|v ∈ Vr}.

Finally, Algorithm 1 needs only one scan of the temporal edges,
thus, the time complexity is O(M).

Algorithm 1 also applies when the input temporal graph consists
of edges sorted in ascending order of the arrival time instead of
the starting time. This can be proved by induction, similar to the
proof of Theorem 1, as follows. Following the notations in the
induction in the proof of Theorem 1, let P = {e1, e2, ..ek−1, ek}
be a path from r to v′ with the earliest arrival time Ã(v′) = ti =
ta(ek); let vj = a(ej), where 1 ≤ j < k. According to the
induction hypothesis, A(vk−1) is set to Ã(vk−1) correctly since



ta(ek−1) < ti. Note that A(vk−1) must be set to Ã(vk−1) before
the occurrence of ek since ta(ek) > ta(ek−1) ≥ Ã(vk−1) and
temporal edges are sorted in non-descending order of arrival time
ta(e). Thus, after processing ek in Line 2, A(vk) equals ta(ek),
i.e., A(v′) = Ã(v′). Hence the algorithm is correct.

However, in Theorem 1, we have the constraint that ts(e) 6=
ta(e), ∀e ∈ E. That is, Algorithm 1 requires that the duration at
each edges is non-zero. In some real temporal graphs, such as the
graphs for publications, facebook wall posting, or email commu-
nication, the edge durations are given as zero, in such a case the
algorithm may fail, as shown in the following example.

EXAMPLE 4. The temporal graph G0 in Figure 3 is an exam-
ple where Algorithm 1 cannot correctly return a MST a. Sup-
pose start time is 0, the edges of the input graph are sorted as
follows: (0, 1, 1, 1, 0), (2, 0, 2, 2, 0), (3, 1, 2, 2, 0), (1, 4, 3, 3, 0),
(3, 2, 4, 4, 0), (4, 3, 4, 4, 0). In this case, when (3, 2, 4, 4, 0) is vis-
ited, A(3) = ∞, the condition at Line 3 will fail and edge (3, 2)
will not be added to the MST . Hence, vertex 2 will be missing in
the resulting tree.

Hence, we need another algorithm to deal with the general case
where an edge duration can be zero, i.e., ts(e) ≤ ta(e), ∀e ∈ E.
For this problem, we first transform the input graphG from the raw
stream format into the following sorted adjacency edge list format.
Each input line corresponds to the out temporal edges incident to
one vertex u ∈ V , in the following form: u,< v1, t1, t̂1, w1 >,
..., < vi, ti, t̂i, wi >, ... In each line, edges e ∈ No(u) are sorted
by the start times, ts(e), in non-increasing order, ∀u ∈ V . That
is, ti ≥ ti+1, where 1 ≤ i < |No(u)|. We limit the edges so
that the start time is earliest tα and end time is latest tω , we call the
resulting edge list inputG[tα, tω]. The transformation takesO(M)
time.
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We propose another efficient algorithm, Algorithm 2, with lin-
ear time complexity to solve the general MST a problem. The
input to the algorithm adopts the sorted adjacency edge list format
above. In Algorithm 2, we assume that for each vertex u ∈ V ,
temporal edges incident to u are sorted in non-ascending order of
ts(e) and stored in array No(u). We only need to scan No(u) once
and pos(u) is kept to indicate the current position in No(u). Only
smaller arrival times are recorded as shown in Lines 4 and 5, and
the time constraint for each path is maintained by Line 9. The com-
plexity for Algorithm 2 is bounded by O(M). Our empirical study
also verifies the efficiency of this proposed algorithm.

THEOREM 2. Algorithm 2 returns a MST a in O(M) time,
where M = |E|.

PROOF. We first prove the correctness. That is, given temporal
graph G and root r, the path from r to v inMST a, ∀v ∈ V, v 6=
r, results in earliest arrival time of v in G, where MST a is the
resulting minimum spanning tree from Algorithm 2. Let the path
from r to v inMST a be P = {e1, e2, ...ek}, where v = a(ek).
Note that ta(ek) is the output A(v) of Algorithm 2. We say that
vertex v is at level k ofMST a. We prove by induction on k.

Algorithm 2:MST a(r,G)

Input : A temporal graph G[tα, tω ] (in sorted adjacency edge list
format), root r, time interval [tα, tω ];

Output :MST a (given by P())
1 Initialize: A(u) =∞, pos(u) = 1, ∀u ∈ V ; push < r, r, tα > onto

stack S;
2 while S 6= ∅ do
3 < u, v, t̂v >← top(S), pop(S);
4 if t̂v < A(v) then
5 A(v)← t̂v ;
6 P(v)← u;
7 if pos(v) ≤ |No(v)| then
8 < v, v′, tv , t̂v′ , w

′ >← No(v)[pos(v)];
9 while pos(v) ≤ |No(v)| andA(v) ≤ tv do

10 push < v, v′, t̂v′ > onto stack S;
11 pos(u) + +;
12 < v, v′, tv , t̂v′ , w

′ >← No(v)[pos(v)];

When v is at level 1, i.e., k = 1 and P = {e1}, then ta(e1) must
be the earliest arrival time for a(e1), i.e., ta(e1) = Ã(a(e1)). This
is because all temporal edges meeting the time constraint will be
visited as described in Line 9 of Algorithm 2 and we always keep
the smallest arrival time for each vertex as described in Line 4 of
Algorithm 2.

Assume that when k < i, ta(ek) is the earliest arrival time for
vertex v, i.e., ta(ek) = Ã(v), where v is at level k of MST a.
We want to prove that ta(ei) is the earliest arrival time for ver-
tex v′ = a(ei) when v′ is at level i, i.e., when k = i. Suppose
there exists a path from r to v′ in G, P = {e′1, e′2, ..., e′l}, where
a(e′l) = v′ and ta(e′l) < ta(ei). There must exist one vertex
ũ = s(e′j) such that ũ is at level h ofMST a, where h < i. Then
according to the hypothesis,A(ũ) in Algorithm 2 is equal to Ã(ũ).
Thus, according to Line 9 in Algorithm 2, e′j must be visited since
ts(e

′
j) ≥ ta(e′j−1) ≥ Ã(ũ), and A(a(e′j)) must be no more than

ta(e′j) according to Lines 4-5. Repeat the above analysis, we can
conclude that A(a(e′l)), i.e., A(v′) (or ta(ei)), must be no more
than ta(e′l), which contradicts with ta(e′l) < ta(ei). Hence, ta(ei)
is the earliest arrival time for vertex v′ = a(ei) when v′ is at level
i, i.e., k = i.

Next we analyze the time complexity for Algorithm 2. There are
at most M outer while loops (Line 2), hence, the time required for
Lines 3-8 is bounded byO(M). The inner (Line 9) and outer while
loops (Line 2) together take up one scan of the temporal graph.
Hence, the total complexity is bounded by O(M).

4. WEIGHT-MINIMUM SPANNING TREES
In this section, we study the problem of computing aMST w,

which turns out to be far more difficult than computing aMST a.
In the following we prove the hardness of the MST w problem
even for approximation solutions. Then we show how we can trans-
form the problem to the classical directed Steiner Tree problem
(DST) on non-temporal graphs. While the transformed problem
can be solved by a state-of-the-art approximation algorithm with
some post-processing steps, scalability is a major problem, we pro-
pose an algorithm with better time complexity while preserving the
approximation guarantee.

4.1 Hardness of theMST w Problem
In this section, we discuss the hardness of computing aMST w.

The problem ofMST w is: given a temporal graph G = (V,E),



a root vertex r and an interval [tα, tω], compute a MST w. Our
main results are that the problem is NP-hard and also MAX-SNP
hard. A proof of the following is given in the Appendix.

THEOREM 3. Computing a MSTw is NP-hard.

A polynomial time approximation scheme (PTAS) is an algo-
rithm which takes an instance of an optimization problem and a
parameter ε > 0 and, in polynomial time, produces a solution that
is within a factor 1+ε of being optimal for a minimization problem
(or 1− ε for maximization problems). A MAX-SNP hard problem
does not have a PTAS unless P = NP [1].

THEOREM 4. Computing aMST w is MAX-SNP hard.

Given a (f, g, α, β) L-reduction from problem P to problem
Q1, and a (1 ± ε)-approximation algorithm for Q, we obtain a
polynomial-time (1±δ)-approximation algorithm for P where δ =
αβε [23, 18]. The proof of Theorem 4 first converts the trans-
formation in the proof of Theorem 3 into an L-reduction X from
the maximum leaf spanning tree problem to theMST w problem.
Next we adopt the L-reduction Y in [13], which reduces the MAX-
SNP complete problem of Min Dominating set-B to the problem of
maximum leaf spanning tree. We form an L-reduction by a com-
position of the functions in Y and the corresponding functions in
X. Thus, we obtain an L-reduction from the minimum dominating
set problem to theMST w problem. From Theorem 4, there is no
polynomial time approximation scheme for computing aMST w
in a temporal graph, unless P = NP .

4.2 Problem Transformation
We have shown that computingMST w is a hard problem and

remains hard for approximation algorithms. Here, we aim for an
approximation algorithm with good scalability. In this section, we
show that this problem can be transformed to the minimum directed
Steiner tree problem (DST) on a static graph. Hence, we can ap-
ply the best known DST approximation algorithm for solving the
MST w problem. We first introduce the graph transformation. The
directed Steiner tree problem is defined as follows.

Minimum Directed Steiner Tree (DST) : Let G = (V,E) be a
directed static graph, where V is the vertex set and E is the edge set
with weights (or costs) on edges. Given a set of terminals X ⊂ V
and a root vertex r, the minimum directed Steiner tree problem
(DST) asks for a minimum-cost tree T = (VT , ET ) which contains
a path from root r to each terminal x ∈ X , such that

∑
e∈ET

w(e)

is minimum among all such trees. We refer to
∑
e∈ET

w(e) as the
cost of T and also denote it by ζ(T ).

In the following, we present a graph transformation algorithm.
For clarity, in the remaining discussions aboutMST w, we assume
that [tα, tω] = [0,∞] and Vr = V . It is straightforward to extend
the discussions to the general case.

Graph Transformation: Given a temporal graph G = (V,E),
let Ein(v) be v’s incoming edge set for each vertex v ∈ V . If
v 6= r, let T (v) be the set of v’s arrival time instances, i.e., T (v) =
{t̂v|e = (u, v, tu, t̂v, w) ∈ Ein(v)} = {t̂1v, t̂2v, ..}. For root r,
let T (r) = {0}, and t̂1r = 0. The following steps transform the
temporal graph G = (V,E) into a directed weighted graph G =
(VG, EG), where an edge e from vertex u to v with a weight of w
is given by e = (u, v, w).
1f, g are functions such that if p is an instance of P , then f(p) is an
instance of Q, and if q is a solution to f(p), then g(q) is a solution
to P .
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Figure 4: The Transformed Graph G of Figure 1

Step 1 Construct VG in G. For each vertex v ∈ V ,

(a) Create |T (v)| virtual vertices in G, i.e., {v1, v2, ...v|T (v)|}
with non-decreasing time instances: t̂1v ≤ t̂2v... ≤ t̂

|T (v)|
v .

(b) If v 6= r, create a dummy vertex v in G. Set t̂|T (v)|+1
v =∞

Step 2 Construct EG in G.

(a) For each vertex v ∈ V , create |T (v)| virtual edges (v1, v2, 0),
(v2, v3, 0) ... (v|T (v)|−1, v|T (v)|, 0) and (v|T (v)|, v, 0) in G.

(b) For each edge e = (u, v, tu, t̂v, w) ∈ E
– find virtual vertex ui ∈ VG with time instance t̂iu ≤ tu and
t̂i+1
u > tu; find virtual vertex vj ∈ VG with time instance
t̂jv = t̂v . Create solid edge (ui, vj , w) in G.

EXAMPLE 5 (GRAPH TRANSFORMATION). According to the
2 steps above, temporal graph G in Figure 1 is transformed into
static graph G in Figure 4. [ Step 1 ]: take vertex 1 in G as an ex-
ample, vertices 11 and 12 are created in Figure 4 corresponding to
arrival times of 3 and 5, respectively, according to Step 1(a); at the
same time dummy vertex 1 is created by Step 1(b). [ Step 2 ]: take
vertex 1 inG as an example, virtual edges (11, 12, 0) and (12, 1, 0)
are created in Figure 4, as described in Step 2(a); meanwhile take
temporal edge (1, 3, 4, 6, 2) in G as an example, according to Step
2(b) we find the starting point 11 in G (since 11 corresponds to
time 3, 12 corresponds to time 5 and 3 < 4 < 5); then find the end
point 31 (since 31 corresponds to time 6); we connect 11 to 31 by a
solid edge with weight 2.

LEMMA 2. Given a temporal graph G = (V,E), the trans-
formed graph G contains O(|E|) vertices and O(|E|) edges.

The following theorem says that after the graph transformation,
we can apply a solution for the minimum DST problem and then
we can obtain theMST w result from the DST result.

THEOREM 5 (PROBLEM TRANSFORMATION). AMST w with
root r in a temporal graph G can be derived in linear time from
a minimum Directed Steiner Tree (DST) rooted at r in G’s cor-
responding transformed graph G, where the terminal set is the
dummy vertex set S created in G, i.e., X = S.

In the next subsection, we describe the best-known approxima-
tion algorithm for DST and how to use it for theMST w problem.

4.3 Approximation Algorithm on the Trans-
formed Graph

The best known approximation algorithm for the minimum di-
rected Steiner tree problem in static graph is shown in Algorithm
3 [8], which greedily picks the lowest density subtrees in the com-
putation. Note that the input graph for Algorithm 3 is a transitive
closure. That is, given a directed static graph G = (V,E), we first
need preprocessing to get the transitive closure Gt so that there is



Algorithm 3: Ai(k, r,X)

Input : Terminal set X , number of terminals k to be covered, root r,
level number i, transitive closure Gt;

Output : A tree T with height i rooted at r covering k terminals in X
1 Initialize: T ← ∅;
2 if i = 1 then
3 while k > 0 do
4 (r, v)← arg(r,v) min cost(r, v),∀v ∈ X;
5 T ← T ∪ (r, v); k ← k − 1; X ← X − {v};

6 else
7 while k > 0 do
8 TBEST ← ∅; den(TBEST )←∞;
9 for each vertex v ∈ V and each k′, 1 ≤ k′ ≤ k do

10 T ′ ← Ai−1(k′, v,X) ∪ (r, v);
11 if den(TBEST ) > den(T ′) then
12 TBEST ← T ′;

13 T ← T ∪ TBEST ; k ← k − |X| ∩ V (TBEST );
X ← X − V (TBEST );

14 return T ;

an edge (u, v) whenever v is reachable from u, and the weight of
(u, v) is the weight of the shortest path from u to v.

Algorithm 3 is a recursive function on i, where i is the level num-
ber, r is the root, X refers to the terminal set and k denotes how
many terminals need to be covered in this function. The approxi-
mate result for DST is derived from Ai(|X|, r,X). When i = 1,
k edges from root r to terminals are selected with smallest weights.
Since the input graph is a transitive closure Gt, the selected edges
correspond to k shortest paths from the root to k terminals in G.
When i 6= 1, Algorithm 3 recursively calls Ai−1(k′, v,X) for
different v and k′ as shown in Lines 9-10, picking the v and k′

whose resulting T ′ is of the best density. The density is given by
den(T ′) = cost(T ′)/k(T ′), where cost(T ′) is the total weight
of tree T ′ and k(T ′) is the number of covered terminals in T ′.
As proved in [8], for i > 1 iterations, the approximation ratio of
Ai(k, r,X) is bounded by i2(i − 1)k1/i and the time complexity
is O(|V|ik2i), which is still very costly.2 In the next 2 subsections,
we introduce strategies that lead to a much faster algorithm.

After getting the approximation spanning tree from Algorithm
3, we need the following two postprocessing steps to get the cor-
responding spanning tree in the original temporal graph G to ap-
proximateMST w. We should point out that the first step is also
required for the minimum DST problem in G.

Step 1 Get corresponding spanning tree T in transformed graph G:

(a) Replace edges in the resulting spanning tree of Algorithm 3
with shortest paths in G.

(b) Each vertex keeps only one incoming edge. If there are mul-
tiple incoming edges, choose one with the smallest weight.

Step 2 Get corresponding spanning tree in temporal graph G:

(a) For T from Step 1, delete virtual edges by merging all virtual
and dummy vertices for each vertex inG into one vertex. Ac-
cording to the transformation scheme in Section 4.2, restore
the corresponding temporal edges and vertices in G.

(b) Each vertex keeps only one incoming temporal edge, the one
with the smallest arrival time among such edges.

2In [8], when i = log k, an approximation ratio of O(log2 k) is
derived based on an erroneous result in [32], with a corrected result
in [14], the ratio is given by O(log3 k).
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Figure 5: Resulting Approximation Tree in Algorithm 3
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Figure 7: Postprocess Step 2

EXAMPLE 6 (ALGORITHM 3). Take the graph in Figure 4 as
the given static graph G before preprocessing for Algorithm 3 with
X = {1, 2, 3, 4, 5}, k = 5 and r = 0. Figure 5(a) is the result-
ing spanning tree for i = 1 with total weight 17. That is, pick the
shortest path from root 0 to each terminal vertex in G. Figure 5(b)
is the resulting spanning tree for i = 2 with total weight 12. For
each 1 ≤ k′ ≤ 5 and each vertex in Figure 4, we calculate the den-
sity for T ′ in Lines 9-12, and pick v = 0, k′ = 1 whose resulting
T ′ has the smallest density den(T ′) = 1

1
= 1. Then, update T ,

k and X according to Line 13 and go to the next while iteration,
where v = 22, k

′ = 3 are chosen with density den(T ′) = 3+2+2
3

.
Finally v = 0, k′ = 1 are chosen with density den(T ′) = 4

1
= 4.

Postprocess: Figure 6 is the resulting spanning tree after Step 1
in G (Figure 4). Figure 7 is the resulting temporal spanning tree
after Step 2 inG (Figure 1). Take vertex 1 inG as an example, there
are two incoming temporal edges after Step2(a) and temporal edge
(0, 1, 1, 3, 2) is chosen according to Step 2(b).

Though we have a guarantee on the approximation for the DST
problem, it does not translate to theMST w problem directly since
the postprocessing changes the cost or weight of the final spanning
tree. The following theorem guarantees that the approximation ra-
tio still holds.

THEOREM 6. Given a temporal graph G = (V,E), the DST-
based method with Algorithm 4 provides an i2(i− 1)k1/i approxi-
mation to theMST w problem in O(|E|iki) time, where k < |V |.

Clearly the postprocessing steps can be executed in linear time.
With the graph transformation steps in Section 4.2, the DST algo-
rithm and the postprocessing steps above, we can solve theMST w
problem. The time complexity is dominated by Algorithm 3, which
is still high and severely limits the number of levels it can process.
We are interested in reducing the runtime while preserving the an-
swer and hence the approximation guarantee. This problem will be
studied in the next subsection.



4.4 An Improved DST Algorithm
We begin with some observations about Algorithm 3. Consider

Ai(k, r,X), in order to find TBEST in Lines 7 − 10, we need to
process each Ai−1(k′, v,X) ∪ (r, v), ∀v ∈ V, 1 ≤ k′ ≤ k. Some
further analysis can help to greatly reduce this complexity. First we
need some definitions.

DEFINITION 1. The process tree of Algorithm 3 is defined as
follows. For each node v in the tree, v is the root of the tree returned
by a recursive call with r = v, the children are the roots of the
returned trees for the recursive calls at the next level, arranged in
the order of the function calls. For each subtree Tv rooted at v, we
call an edge from v to a child w a branch of Tv . We also refer to
the subtree rooted at the child as a branch of Tv .

In Algorithm 3, let us call an execution of the while loop at Lines
3-5 or Lines 7-13 a w-iteration. In the following, let T i−1(k′) be
the tree returned by Ai−1(k′, v,X), for simplicity, we may also
overload the term Ai−1(k′, v,X) to refer to T i−1(k′).

LEMMA 3 (PROPERTY 1). Let l be the smaller number of w-
iterations in Ai−1(k′, v,X) and Ai−1(j′, v,X). Ai−1(j′, v,X)
andAi−1(k′, v,X) must share the same outcomes for the first (l−
1) w-iterations. That is, T i−1(k′) and T i−1(j′) have the same first
(l − 1) branches in the process tree.

DEFINITION 2 (L, pi−1
l ). Denote by L the total number of w-

iterations in Ai−1(k, v,X). Let pi−1
l be the number of covered

terminals (terminals in T ) after l w-iterations in Ai−1(k, v,X),
where 0 ≤ l ≤ L. pi−1

0 = 0, pi−1
L = k.

LEMMA 4 (PROPERTY 2). For v ∈ V, Ai−1(pi−1
l , v,X) ∪

(r, v) has the smallest density among all Ai−1(k′, v,X) ∪ (r, v),
∀k′ ∈ (pi−1

l−1, p
i−1
l ], where 1 ≤ l ≤ L.

PROOF. Let T i−1(k′) be the returned tree ofAi−1(k′, v,X) for
a given k′ and vertex v. Note that when k′ ≥ pi−1

l−1 , there are at least
l subtrees in T i−1(k′) and from Lemma 3, the first l−1 branches in
T i−1(k′) are the same for all such k′. For k′ ≥ pi−1

l−1 , let T i−1
l (k′)

be the lth branch in T i−1(k′). T i−1
l (k′) is obtained in the lth w-

iteration (in the function call at Line 10) in Ai−1(k′, v,X).
First we show that den(T i−1

l (k′)) ≥ den(T i−1
l (pi−1

l )) ∀k′ ∈
(pi−1
l−1, p

i−1
l ]. If there exists a k′′ such that den(T i−1

l (k′′)) <

den(T i−1
l (pi−1

l )), then k′′ should be the number of covered ter-
minals after l w-iterations inAi−1(k, v,X), instead of pi−1

l . From
Lemma 3, the first l− 1 branches in T i−1(k′) are exactly the same
∀k′ ∈ (pi−1

l−1, p
i−1
l ]. Note that T i−1(k′), where pi−1

l−1 < k′ <

pi−1
l , may have more than l branches while T i−1(pi−1

l ) has ex-
act l branches. According to the greedy selection in Algorithm
3, the density of the `th branch should be greater than that of the
lth branch in T i−1(k′) when ` > l. Hence den(T i−1(pi−1

l )) ≤
den(T i−1(k′)).

Let α be the cost of (r, v). The density ofAi−1(k′, v,X)∪(r, v)
is α/k′ + den(T i−1(k′)), ∀k′ ∈ (pi−1

l−1, p
i−1
l ]. Since α/pi−1

l ≤
α/k′ and den(T i−1(pi−1

l )) ≤ den(T i−1(k′)), we can conclude
that the density of Ai−1(pi−1

l , v,X)∪ (r, v) is the smallest among
all Ai−1(k′, v,X) ∪ (r, v), ∀k′ ∈ (pi−1

l−1, p
i−1
l ] and a specific

v.

Property 1 indicates repeated computations in trying different
k′, 1 ≤ k′ ≤ k, for each v ∈ V. Property 2 further confirms
the possible saving by skipping certain k′ values for a specific
v. It reveals that one only need to consider Ai−1(pi−1

l , v,X),
where 1 ≤ l ≤ L. What is more, according to Property 1, we

only need to try Ai−1(k, v,X) since each of Ai−1(pi−1
l , v,X)

(1 ≤ l < L) is already covered in the process of Ai−1(k, v,X).
It remains to work out the design of an improved algorithm that
can make use of these two properties. For our design, another cru-
cial observation is the following. Let α be the cost of (r, v). As
l increases, pi−1

l increases, and the covered terminals increases,
α/pi−1

l decreases, while den(T i−1(pi−1
l )) increases. Hence the

density α/pi−1
l + den(T i−1(pi−1

l )) can increase or decrease as l
increases. This means that we need to keep track of the smallest
density with increasing l.

Algorithm 4: Ãi(k, r,X)

Input : Terminal set X , covered number of terminals k, root r, level
number i, transitive closure Gt;

Output : A tree T with height i rooted at r covering k terminals in X
1 Initialize: T ← ∅;
2 if i = 1 then
3 while k > 0 do
4 (r, v)← arg(r,v) min cost(r, v),∀v ∈ X;
5 T ← T ∪ (r, v); k ← k − 1; X ← X − {v};

6 else
7 while k > 0 do
8 TBEST ← ∅; den(TBEST )←∞;
9 for each vertex v ∈ V do

10 T ′ ← Bi−1(k, v,X, (r, v)) ∪ (r, v);
11 if den(TBEST ) > den(T ′) then
12 TBEST ← T ′;

13 T ← T ∪ TBEST ; k ← k − |X| ∩ V (TBEST );
X ← X − V (TBEST );

14 return T ;

Algorithm 4 is our improved algorithm. Within Algorithm 4, Al-
gorithm 5 is called at Line 10. The main improvement in Algorithm
4 is that for each v, recursive call (Algorithm 5) is triggered only
once instead of k times when compared to Line 9 in Algorithm 3.
Algorithm 5 replaces the checking of different k′ in Line 9 in Al-
gorithm 3 according to the analysis above and we will show that
it returns the T i−1(pi−1

l ) where the density (denoted by den()) of
T i−1(pi−1

l ) ∪ (r, v) is the smallest (the best) for ∀1 ≤ l ≤ L.
Note that the number of covered terminals in the returned tree of
Bi(k, r,X, e) is not necessarily k, instead it should be pi−1

l for
some l so that the density of T i−1(pi−1

l ) ∪ (r, v) is the smallest.
From Lines 16-17, the best density T i−1(pi−1

l ) ∪ (r, v) is always
tracked in Algorithm 5. Before we prove the correctness, let us first
compare our algorithm with Algorithm 3 with an example.

EXAMPLE 7 (ALGORITHM 4 ). Compared to Algorithm 3, Al-
gorithm 4 only calls functionBi−1(k, v,X, (r, v)) once for each v
while Algorithm 3 calls functionAi−1(k′, v,X) k times for each v.
Given the graph in Figure 4. Compare Ã2(5, 0, X) withA2(5, 0, X)
whereX = {1, 2, 3, 4, 5}, taking vertex 0 as r. B1(5, 0, X, (0, 0))

is called in Ã2(5, 0, X) and T = {(0, 3)} is found, where T ∪
{(0, 0)} is of the best density. While in A2(5, 0, X), A2(5, k′, X)
is called for different k′ values, so that the resulting T ∪{(0, 0)} is
of the best density. Here i = 2, the cases of i ≥ 3 work in a similar
way according to Lines 9-17 instead of Lines 3-7 in Algorithm 5.

For our proof of correctness, let us also call an execution of the
while iteration at Lines 3-5 or Lines 7-13 of Algorithm 4; or at
Lines 3-5, or Lines 9-17 of Algorithm 5 a w-iteration.

THEOREM 7. [Correctness] Given k, r and X , Algorithm 4
(Ãi(k, r,X)) and Algorithm 3 (Ai(k, r,X)) return the same tree.



Algorithm 5: Bi(k, r,X, e)
Input : Terminal set X , maximum number of available terminals k,

root r, level number i, the incoming edge e of r, Gt;
Output : A tree T with height i rooted at r covering at most k

terminals in X so that the density of T ∪ e is the smallest
1 Initialize: T ← ∅; Tc ← ∅, where den(T ∪ e) = den(Tc ∪ e) =∞;
2 if i = 1 then
3 while k > 0 do
4 (r, v)← arg(r,v) min cost(r, v),∀v ∈ X;
5 Tc ← Tc ∪ (r, v); k ← k − 1; X ← X − {v};
6 if den(T ∪ e) > den(Tc ∪ e) then
7 T = Tc;

8 else
9 while k > 0 do

10 TBEST ← ∅; den(TBEST )←∞;
11 for each vertex v ∈ V do
12 T ′ ← Bi−1(k, v,X, (r, v)) ∪ (r, v);
13 if den(TBEST ) > den(T ′) then
14 TBEST ← T ′;

15 Tc ← Tc ∪ TBEST ; k ← k − |X| ∩ V (TBEST );
X ← X − V (TBEST );

16 if den(T ∪ e) > den(Tc ∪ e) then
17 T = Tc;

18 return T ;

PROOF. Algorithm 4 differs from Algorithm 3 only at Lines 9-
10. Hence, to prove that Ãi(k, r,X) equals Ai(k, r,X), it suffices
to prove that T ′ returned by Bi−1(k, v,X, (r, v)) ∪ (r, v) (Line
10) in Algorithm 4 has the smallest density among all T ′ returned
byAi−1(k′, v,X)∪(r, v) for different 1 ≤ k′ ≤ k (Lines 9-10) in
Algorithm 3. According to Lemma 4, we only need to consider the
density of Ai−1(k′, v,X) ∪ (r, v), where k′ = pi−1

l , 1 ≤ l ≤ L.
Thus, the problem is reduced to proving that the tree T ′ returned by
Bi−1(k, v,X, (r, v)) ∪ (r, v) in Algorithm 4 has the best density
among all T ′ returned byAi−1(k′, v,X)∪(r, v) for different k′ =
pi−1
l , 1 ≤ l ≤ L in Algorithm 3. Hence, it remains to prove the

following:
For a given k and a vertex u ∈ V, Tc in the lth w-iteration of

Bi−1(k, u,X, (r, u)) is equal to T returned by Ai−1(pi−1
l , u,X),

where 1 ≤ l ≤ L. Recall that pi−1
l refers to the number of covered

terminals (in T ) after l w-iterations in Ai−1(k, v,X).
We prove by induction on i. For the base case where i = 2, con-

sider Lines 3-5 in Algorithm 3 and Algorithm 5, where one termi-
nal is chosen in each while iteration. Hence pi−1

l = l and L = k.
In the lth w-iteration of Bi−1(k, u,X, (r, u)), Tc consists of the
shortest paths to l closest terminals. While in Ai−1(pi−1

l , u,X),
the resulting T also consists of the shortest paths to l closest termi-
nals.

The induction hypothesis states that given k and v ∈ V, when
i ≤ j, Tc in the lth w-iteration of Bi−1(k, v,X, (r, v)) is equiva-
lent to T returned by Ai−1(pi−1

l , v,X), where 1 ≤ l ≤ L.
Consider i = j + 1. We first note that the tree T ′ returned by

Bj−1(k, v,X, (r, v)) ∪ (r, v) (Line 12) ∀v ∈ V in Bj(k, r,X, e)
has the smallest density among all trees T ′ that are returned by
Aj−1(pj−1

l , v,X) ∪ (r, v) (Line 10), ∀v ∈ V and 1 ≤ l ≤ L in
Aj(k, r,X), due to the induction hypothesis and Lines 16-17 in
Algorithm 5. According to Lemma 4, for each v ∈ V, the tree T ′

returned byBj−1(k, v,X, (r, v))∪ (r, v) inBj(k, r,X, e) has the
best density among all T ′ returned by Aj−1(k′, v,X) ∪ (r, v) in
Aj(k, r,X), where 1 ≤ k′ ≤ k. Hence, TBEST in the first w-
iteration ofBj(k, r,X, e) is the same as that in the first w-iteration

of Aj(k, r,X). That is, Tc in the first w-iteration of Bj(k, r,X, e)
is the same as T in the first w-iteration of Aj(k, r,X). In addition,
the tree returned by Aj(pj1, r,X) is the T in the first w-iteration of
Aj(k, r,X). Thus, Tc in the first iteration of Bj(k, r,X, e) is the
same as T in Aj(pj1, r,X).

In the first w-iteration of Aj(k, r,X) and Bj(k, r,X, e), k and
X are updated according to Line 13 in Algorithm 3 and Line 15
Algorithm 5, respectively. The updates are the same since the
TBEST ’s are the same. Let kl and Xl be the updated k and X
values, respectively, at the end of the lth w-iteration inAj(k, r,X)
and Bj(k, r,X, e). In the second w-iteration of Aj(k, r,X) and
Bj(k, r,X, e), the above analysis on Bi−1(k1, v,X1, (r, v)) and
Ai−1(k1, v,X1) also applies. That is, the TBEST trees in the sec-
ond w-iteration of Bj(k, r,X, e) and that of Aj(k, r,X) are the
same. Hence, Tc in this w-iteration ofBj(k, r,X, e) is the same as
T returned by Aj(pj2, r,X). Similarly, the argument applies to the
remaining w-iterations. Thus, the tree Tc in the lth w-iteration of
Bj(k, r,X, e) is equivalent to the tree T returned byAj(pjl , r,X).
This completes the proof by induction.

With the above correspondence of Tc and T , and according to
Lines 16-17, Bi−1(k, v,X, (r, v)) returns T such that T ∪ (r, v)
has the best density among all w-iterations, we conclude that the
density of Bi−1(k, v,X, (r, v)) ∪ (r, v) (Line 10) in Algorithm 4
is the best among allAi−1(k′, v,X)∪(r, v), where k′ = pi−1

l , 1 ≤
l ≤ L (Lines 9-10) in Algorithm 3.

Thus, given k, r and X , Algorithm 4 (Ãi(k, r,X)) and Algo-
rithm 3 (Ai(k, r,X)) return the same tree.

THEOREM 8. Given a static graph G = (V,E), Algorithm 4
provides an i2(i − 1)k1/i approximation to the optimal DST in
time O(|V|iki).

PROOF. For the approximation bound, the analysis is the same
as Theorem 3.1 in [8], except that the corrected result in [14] re-
places that of Lemma 2.2 in [8]. Next consider the time complexity
analysis. First, Ãi(k, r,X, e) invokes at most nk Bi−1(k, r,X, e)
and each Bi−1(k, r,X, e) invokes at most nk Bi−2(k, r,X, e).
Recursively, we have that the time complexity for Ãi(k, r,X, e) is
bounded by O(|V|iki).

From Theorem 8, if we choose i = logn, then Algorithm 4
attains anO(log3 n) approximation for the optimal directed Steiner
Tree problem in O(nlognklogn) time. Algorithm 3 achieves the
same approximation guarantee but requires O(nlognk2 logn) time.
From our experimental study, we show that the improvement in
time complexity translates into significantly faster runtime.

4.5 Enhancement by Density Based Ordering
In Section 4.4, we discuss the pruning of different k′ (1 ≤ k′ <

k), but still we need to process all different v ∈ V at Line 9 of
Algorithm 3. In this section, we introduce a pruning strategy so that
we may explore only a subset of V instead. This pruning strategy
is based on vertex ordering.

Consider the improved Ai(k, r,X) in Algorithm 4, the function
Bi−1(k, v,X, e) is called for each vertex v ∈ V in the first while
iteration. Let τ(v) be the density of Bi−1(k, v,X, (r, v)) ∪ (r, v),
∀v ∈ V. That is, τ(v) records the best density of all possible
T i−1(k′), 1 ≤ k′ ≤ k, for ∀v ∈ V. Let us sort the vertices
in non-descending order of τ(). In the next while iteration, we
call Bi−1(kr, v,Xr, e) according to this vertex order. We keep
updating τ(v) and record the best τbest so far in this while iteration.
We can substantially reduce the computation ofBi−1(kr, v,Xr, e)
for some v, whose τ(v) is bigger than the current best τbest as
shown in Line 3* of Algorithm 6. This pruning strategy is also
applied to Bi(k, r,X, e).



Algorithm 6: FinalAi(k, r,X)

1* Same as Algorithm 4 except for replacing Lines 9-12 by the following:
2* for each vertex v ∈ V (in sorted order) do
3* if τ(v) < τbest then
4* T ′ ← FinalBi−1(k, v,X, (r, v)) ∪ (r, v);
5* if den(TBEST ) > den(T ′) then
6* TBEST ← T ′;

7* τ(v)← den(T ′);
8* if τ(v) < τbest then
9* τbest ← τ(v);

10* else
11* sort V according to τ(v), ∀v ∈ V;
12* break;

13* /* FinalBi−1(k, v,X, (r, v)) is the same as Algorithm 5 except for
replacing Lines 11-14 by the same for-loop replacement (Lines
2*-12*) as in the above. */

THEOREM 9. Given k, r andX , Algorithm 6 (FinalAi(k, r,X))
and Algorithm 3 (Ai(k, r,X)) return the same tree.

PROOF. (Sketch) Line 3* in Algorithm 6 is where pruning oc-
curs. Assume we are now starting the for loop execution for a spe-
cific vertex v in the lth w-iteration (Line 2* in Algorithm 6), τ(v)
in Line 3* records the best density for v in the (l−1)th w-iteration.
The best density for v in the lth iteration cannot exceed that in the
(l − 1)th w-iteration, due to less available terminals in X . Hence
we can use τ(v) in the previous iteration for possible pruning of
vertices in the for loop.

Though Algorithm 6 has the same time complexity as Algorithm
4, since in the worst case there may be no pruning, in our experi-
ments, pruning by density ordering is shown to be highly effective,
and the runtime is improved by more than an order of magnitude in
most cases.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed al-

gorithms for computing MST a and MST w. We also evaluate
the quality of the results of our approximation algorithm on DST
for datasets with known solutions. We run all experiments on a
machine with a 3.4Ghz Intel Core i7-4770 CPU and 16 GB RAM,
running Ubuntu 12.04 LTS Linux OS. All algorithms were imple-
mented in C++ and compiled with GNU c++ compiler.

5.1 Datasets
We tested on datasets downloaded from the Koblenz Large Net-

work Collection ( http://konect.uni-koblenz.de/ ). Slashdot is a
network of user replies collected from technology website Slash-
dot. Epinions records online product ratings, where edges are trust
or distrust links between users. Facebook is a graph representing
posts to other users’ walls on Facebook. Enron records emails sent
among employees of Enron between 1999 and 2003. arXiv HepPh
is a collaboration network of authors of scientific papers from High
Energy Physics, in which vertices are authors and edges are com-
mon publications between two authors. DBLP is a graph of coau-
thors from DBLP computer science bibliography. Phone is based
on anonymized records of Orange phone calls and SMS exchanges
in Ivory Coast for five months from Dec, 2011 [5].

All datasets are temporal graphs, each time stamp is either a
physical time (for Phone) or a Unix time. For the Phone dataset,
each edge has a weight given by the duration_voice_calls attribute.

|V | |E| |Es| deg degs π |ΓG|
Slashdot 51K 140K 130K 313 249 17 89862
Epinions 114K 717K 717K 2070 2070 1 939
Facebook 46K 855K 264K 1430 157 742 846858
Enron 87K 1135K 320K 32552 1566 1074 213218
HepPh 28K 9193K 6291K 11134 4909 262 2337
DBLP 1101K 11957K 8451K 1433 1189 38 70
Phone 1192 10766K 512K 9031 429 317 2991

Table 1: Datasets: sizes of temporal graph G = (V,E) and
static graph Gs = (Vs, Es), distinct time instances (ΓG), and π

The other networks are unweighted, we assign weights to the edges
based on the weight cascade model in [19], in which the propaga-
tion probability for an edge (u, v) is given by pp(u, v) = 1/d(v),
where d(v) is the in-degree of v. We use the out-degree instead
since it represents better the graph properties. As noted in [9], if
we convert this to a weight of − log pp(u, v) on (u, v), then we
have a maximum influence path when the total edge weight is min-
imum. Hence we adopt − log pp(u, v) as the weight (or cost) for
each edge (u, v).

Next, we describe how to set the window of [tα, tω], the time
span of interest. For each of the six datasets, we compute the total
time range [tA, tΩ] from the time units attached to all edges. Then
we set the range [tα, tω] so that it covers the middle one tenth of the
total range, i.e. (tω − tα) ≈ 0.1(tΩ − tA). We extract a subgraph
G′ of the given graph G by limiting edges to within [tα, tω]. For
the root vertex for the MST, we require that it can reach at least one
tenth of the set of vertices in G′. We simply scan the vertices until
one such vertex is found.

We show some statistics of the datasets in Table 1. In Table 1, π
is the maximum number of temporal edges from u to v, for any u
and v in V (G). Note that for π = 1, G can still be very different
from Gs since paths must be time respecting.

5.2 Efficiency of the Algorithms forMST a
Here we evaluate the performance of our twoMSTa algorithms,

Algorithm 1, denoted by Alg1, and Algorithm 2, denoted by Alg2.
We compare with the existing algorithm in [4], denoted by Bhadra,
which utilizes a modified Prim-Dijkstra algorithm. The time com-
plexity of Bhadra given in [4] is O(n2D log T ), where n is the
number of vertices, D is the maximum out degree of a vertex and
T is the number of time points in G. With more careful analysis,
the time can be bounded byO(m logn+m log π), wherem is the
number of edges in the corresponding static graphGS = (VS , ES),
and π is the maximum number of time instances incident to each
static edge es ∈ ES , which is bounded by T .

For the window of [tα, tω], since the computation time is very
short for MST a, other than the default range giving rise to G′

as described above, we also consider the range of [0,∞], where
MST a spans Vr(G). Our first set of experiment ensures that the
durations in the edges are non-zero in the given temporal graphs.
As in [27], the durations are set to 1. The results are shown in Table
2. Alg1 outperforms Bhadra by a large margin in all cases.

Our next set of experiment is to compare Alg2 with Bhadra, for
networks that may contain zero edge durations. Since Alg1 can-
not handle zero duration, it is not included. Following the given
datasets, the edge durations are set as zero. The results are shown
in Table 3. Alg2 outperforms Bhadra in almost all cases. The root
in Table 2 and 3 is set as the first vertex in the input order, which can
reach more than one tenth of the total vertex size. Compared with
Table 2, the numbers of reachable vertices are similar, except for
DBLP. DBLP is about collaboration of coauthors, there exist paths
from an author to other authors in the same year, and not across dif-



Slashdot Epinions Facebook Enron HepPh DBLP

|Vr(G)| 8601 13563 32593 43642 27756 791009
Bhadra 6.97 24.86 16.75 20.57 176.60 666.61
Alg2 0.95 4.00 18.82 15.84 94.45 336.25
Alg1 0.48 1.32 2.74 2.95 13.68 64.67

|Vr(G′)| 898 795 1430 722 283 −
Bhadra 0.467 0.468 0.682 0.264 0.272 −
Alg2 0.036 0.088 0.110 0.059 0.036 −
Alg1 0.032 0.042 0.125 0.024 0.022 −

Table 2: Number of reachable vertices, |Vr(G)|, and runtime
(in ms) forMST a with non-zero edge durations

Slashdot Epinions Facebook Enron HepPh DBLP

|Vr(G)| 8607 55117 32593 43642 27914 849944
Bhadra 5.95 32.61 16.97 20.82 176.95 707.76
Alg2 1.08 17.29 19.08 15.69 123.50 461.72

|Vr(G′)| 898 863 1430 722 295 4412
Bhadra 0.441 0.473 0.665 0.215 0.360 4.897
Alg2 0.036 0.169 0.103 0.056 0.066 0.603

Table 3: |Vr(G)| and runtime (in ms) forMST a with zero edge
duration

ferent years. If duration is set to non-zero, co-authors in the same
paper cannot reach each other. Hence, the number of reachable ver-
tices is much smaller than that when duration is zero. ”−” in Table
2 indicates that no vertex in DBLP can reach more than one tenth
of the total vertex set.

5.3 Efficiency of the Algorithms forMST w
For MST w, we evaluate our DST -based mechanisms. The

preprocessing time includes the time for extracting the graph G′

within [tα, tω] from the given temporal graph G, transforming the
temporal graph G′ into a static graph G according to Section 4.2,
and computing the transitive closure GT . Table 4 shows the sizes
of G′ and G, and the preprocessing time. Note that |Vr(G′)| is the
number of terminals for the DST problem on G. Since the size of
GT is |V (G)|2, the preprocessing time is mostly dominated by its
computation and grows quickly with |V (G)|.

In Table 5, we compare the runtime for the 3 algorithms: the al-
gorithm proposed by Charikar et al. in [8] (Charik), our proposed
Algorithm 4 (Alg4), and Algorithm 6 (Alg6). Here, ’–’ indicates
a runtime of over 3 days. The results confirm that Charik is not
scalable when the number of iterations is two or more. Our first
proposed algorithm, Alg4, improves the runtime by up to 4 orders
of magnitude. The second proposed algorithm (Alg6) further im-
proves the runtime by up to 5 orders of magnitude speedup. Note
that the time taken for one iteration (i = 1) for all algorithms is the
same since all algorithms involve finding the edges from the root to
all vertices in the transitive closure.

5.4 Quality of the DST Results
The algorithms of Charik, Alg4, and Alg6 for the DST problem

are significant because they have the best known approximation
guarantee, and they typically exhibit much better quality than the

|V (G′)| |E(G′)| |Vr| |V (G)| |E(G)| Tprep

Slashdot 8,336 15,374 898 3815 338K 29.0s
Epinions 6,127 15,859 1,901 11K 22,721K 684.5s
Facebook 7,294 42,675 1,430 15,949 10,508K 2,095.1s
Enron 2,053 10,000 722 5,642 4,182K 96.4s
HepPh 873 19,532 295 1,848 986K 4.2s
DBLP 43,176 152,736 4,412 13,030 51,097K 1,184.0s
Phone 916 284,596 903 1,829 253K 31s

Table 4: Datasets: sizes of extracted graph G′, transformed
graph G, and Vr , and preprocessing time (Tprep)

Alg-i Slashdot Epinions Facebook Enron HepPh DBLP Phone

Charik-1 0.3 2.2 5.4 0.7 0.2 9.4 0.3
Charik-2 4468.6 238401 38396.4 4516.7 64.2 – 10469
Charik-3 – – – – – – –

Alg4-1 0.3 2.3 5.4 0.7 0.2 9.4 0.3
Alg4-2 7.7 227.2 47.1 11.6 0.6 966.5 40.4
Alg4-3 6585.1 – 116780 64720 404.5 – –

Alg6-1 0.3 2.2 5.4 0.7 0.2 9.4 0.3
Alg6-2 0.3 5.0 3.3 1.5 0.1 11.0 0.5
Alg6-3 40.1 21237.2 436.2 1028.1 7.8 85720 88.8

Table 5: Runtime (in sec) for Algorithm 3, Algorithm 4, and
Algorithm 6, i is the number of iterations.

i Slashdot Epinions Facebook Enron HepPh DBLP Phone

1 2002.05 6148.46 3948.07 3644.21 972.22 7584.11 1397.00
2 1999.78 6079.16 3916.39 3453.88 864.13 7384.38 1202.00
3 1974.14 5926.04 3908.11 3433.87 828.50 7206.16 1193.00

Table 6: Weights ofMST w solutions for i iterations

guarantee in actual results. We illustrate the latter point here with
some datasets available at http://steinlib.zib/de/showset.php, which
are prepared by Zentrum fur Informationstechnik Berlin (ZIB). The
datasets consist of randomly generated sparse graphs with edge
weights between 1 and 10. The DST problems in these datasets
are solved and we can determine the accuracy of our algorithms by
comparing with the optimum solution.

G |V | |E| |X| opt Charik-3 Alg6-3 Alg6-4 Al6-5

b01 50 63 9 82 2.2 0.018 1.40 102.0
b03 50 63 25 138 54.8 0.059 5.92 545.8
b05 50 100 13 61 6.5 0.028 2.34 186.1
b07 75 94 13 111 15.6 0.049 5.84 668.8
b09 75 94 38 220 1061.0 0.217 31.2 4626.8
b11 75 150 19 88 41.3 0.064 9.32 1110.2
b13 100 125 17 165 80.6 0.140 23.45 3620.5
b15 100 125 50 318 4567.5 0.408 96.21 18846.6
b17 100 200 25 131 283.1 0.228 43.73 9227.5

Table 7: Runtime (in sec) for small datasets with known results.

b01 b03 b05 b07 b09 b11 b13 b15 b17

i=1 0.02 0.07 0.05 0.17 0.13 0.44 0.24 0.08 0.31
i=2 0.00 0.00 0.05 0.16 0.01 0.21 0.09 0.02 0.09
i=3 0.00 0.00 0.05 0.02 0.00 0.14 0.09 0.02 0.03
i=4 0.00 0.00 0.05 0.01 0.00 0.11 0.05 0.02 0.03
i=5 0.00 0.00 0.05 0.01 0.00 0.11 0.05 0.02 0.02

Table 8: Result Quality: relative error in total weight
Table 7 shows the graph sizes, the number of terminals (|X|), the

cost (total weight) of the optimum solution (Opt), and the runtime
(in sec) for the algorithm Charik for i = 3 and Alg6 for i = 3, 4, 5.
As in our previous results, the difference in runtime shows up to 4
orders of magnitude improvement of Alg6 over Charik. For the ap-
proximation accuracy, we show the relative error in Table 8. That
is, we show the values of (Approx − Opt)/Opt, where Approx
is the total weight of the DST tree returned by our approximation
algorithm, and Opt is the weight of an optimum DST. The results
show that the accuracy of our algorithms is much better than the
theoretical approximation bound in all the test cases, which indi-
cates that the bound may not be tight. The approximation results
are very close to the optimum results when i = 3.

5.5 Impact of Graph Sizes and Other Studies
Figure 8 shows the runtime of our algorithms for datasets with

different |V | and |E|/|V | values. Datasets from the Steinlib collec-
tion at http://steinlib.zib.de/showset.php?I320 and http://steinlib.zib
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Figure 8: Runtime with varying |E|/|V | and |V |

.de/showset.php?WRP4 are used in this experiment. Figure 8(a) il-
lustrates the runtime for Alg-6 when |V | is fixed and |E|/|V | is
varied. As |E|/|V | increases, the execution time remains stable.
The reason is that the input to Alg-6 is a transitive closure we get
after preprocessing, thus, the average degree of the given graph
has no effect on the runtime. Figure 8(b) shows the runtime of
Alg-4 and Alg-6 for different |V | values when |E|/|V | and k/|V |
are fixed. The experiment results reflect the complexity bound of
O(|V |iki) for Alg-4 and Alg-6.

We have conducted some further empirical studies which show
that graph sizes do not affect the quality of results, and varying the
edge weights also has no impact on both the runtime and quality.
From Tables 6 and 8, the quality of the results is mainly affected by
the number of iterations of the algorithms.

6. RELATED WORK
Given a non-temporal undirected weighted graph G = (V,E),

the MST problem can be solved inO(|E| log |V |) time by a greedy
algorithm [24, 22]. Given a non-temporal (static) directed weighted
graph G = (V,E), a MST can be computed in O(|E||V |) time
using the Chu -Liu / Edmonds algorithm [10, 11], a faster imple-
mentation of which takes O(|E| log |V |) time for sparse graphs
and O(|V |2) for dense graphs [25, 6]. The implementation in [12]
further improves the runtime to O(|E|+ |V | log |V |).

Bhadra et al. in [4] introduces a similar concept asMST a, com-
puting directed MSTs in a strongly connected evolving digraph and
utilizing a modification of the Prim-Dijkstra algorithm. MST a
andMST w are related to paths from the root to other vertices. An
early work on temporal graphs computes disjoint paths between
any two vertices [20]. Different kinds of paths in a temporal graph
are defined in [29], among them paths with earliest arrival times
are called foremost paths. The first linear time algorithms for com-
puting different kinds of paths in temporal graphs are proposed in
[16]. The idea of time ordered edges in [16] is adopted in [27] for
a different input format. Note that the algorithm for earliest-arrival
paths in [27] has a similar problem as Algorithm 1 with zero du-
rations, and our technique in Algorithm 2 can provide a solution.
Some recent studies have explored the use of temporal information
in different applications. In [21], temporal paths are studied for an-
alyzing the information latency among vertices in a social network.
In [28], long term and short term preferences of users over time are
modeled based on the temporal graph and temporal information for
recommendation purpose. Surveys of research on temporal graphs
are found in [7] and [15].

Other than information dissemination, MSTs are also useful in
the problem of clustering [31, 17, 33, 30, 2]. MSTs play a signif-
icant role in other graph problems. They are used in solving the
traveling salesman problem, the multi-terminal minimum cut prob-
lem, single terminal maximum flow problem, and the minimum
cost weighted perfect matching problem.

Steiner tree problems have been found useful in different appli-
cations, see [26] for a general survey. The DST problem is also
interesting from a theoretical perspective since a variety of prob-
lems can be reduced to it while preserving the approximation [8].
The DST algorithm in [8] is based on a result in [32].

7. CONCLUSION
We study the problem of minimum spanning trees in temporal

networks, for which we have proposed two meaningful definitions
and derived efficient exact and approximation algorithms, respec-
tively. For future work we plan to extend our results to the problem
of minimum directed Steiner tree in a temporal graph. This will
be useful for targeted information dissemination such as content
delivery networks for delivering web-based contents to target sites.
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9. APPENDIX
This appendix contains our proofs for some theorems.

9.1 Proof of Theorem 3 for hardness ofMST w
PROOF. We prove that computingMST w in a temporal graph

is NP-hard by a reduction from the maximum leaf spanning tree
problem in static graphs, which is known to be NP-complete. The
decision problem for maximum leaf spanning tree is defined as fol-
lows: Given an undirected static graph Gs = (Vs, Es); |Vs| =
n, |Es| = m; is there a spanning tree Ts of Gs with k or more
leaves (vertices with degree 1)? The corresponding decision prob-
lem forMST w is: given a temporal graph G, is there a spanning
tree with a total weight of no more than 2(n+ 1)− k?

We transform the given undirected static graph Gs into a tempo-
ral directed graph G in the following way:

For each edge (u, v) in the given static graph Gs, (1) create 2n
temporal edges of the form (u, v, 2i, 2i + 2, 2) and (v, u, 2i, 2i +
2, 2), for 0 ≤ i < n; (2) create 2 temporal edges of the form
(u, v, 2n+ 1, 2n+ 2, 1) and (v, u, 2n+ 1, 2n+ 2, 1).

That is, for each edge (u, v) in the static graph, we have n + 1
edges from u to v in the temporal graph, with starting times of
0, 2, 4, ..., 2n − 2, 2n + 1. We prove that finding a spanning tree
Ts in Gs with k or more leaves is equivalent to the corresponding
decision problem forMST w in the constructed temporal graphG.

Firstly, given spanning tree Ts in Gs, we can always construct a
corresponding temporal spanning tree T in G as follows: Let l(u)
be the distance (level number) of vertex u from root r in Ts, where
l(r) = 0. Create an empty tree T . For each edge (u, v) in Ts, if
v is an leaf node, then add temporal edge (u, v, 2n+ 1, 2n+ 2, 1)
to T ; otherwise, add edge (u, v, 2 ∗ l(u), 2 ∗ l(u) + 2, 2) to T .
We observe that if there are k leaves in Ts, the total weight in T is
2(n− 1)− k.

Conversely, given a MSTw, T for G, if there are k leaves in T ,
then the weight of T is 2(n− 1)− k, since the smallest weight of
an edge from a vertex u to a leaf v in T is 1 (by picking the edge
from u to v with start time 2n+1), while the remaining edges have
weights of 2. Obviously, if we ignore the time information, T is
also a spanning tree for Gs with k leaves. Hence, if there exists
a spanning tree for G with weight 2(n − 1) − k, there exists a
spanning tree for Gs with k leaves.

9.2 Proof of Theorem 5 for problem transfor-
mation fromMST w to DST

PROOF. Given a temporal graph G = (V,E) and root r, let G
be the corresponding transformed graph and X be the terminal set.

Firstly, we show how a minimum directed Steiner tree TG rooted
at r with terminal setX in G corresponds to a spanning tree T with
root r in G. For each dummy vertex v ∈ X , there is only one in-
neighbor, v|T (v)|, in G. Hence, for each v ∈ X , v|T (v)| ∈ VG must
be in the Steiner tree TG. Suppose multiple copies of v, namely,
{vi, .., vj}, are covered in TG, where i < j. Then, there exists a
minimum DST where the incoming edges for {vi, .., vj} must be
(uk, vi, w), (vi, vi+1, 0), ..., (vj−1, vj , 0), respectively, where uk
is a copy of u ∈ V . This can be ensured as follows. Without
loss of generality, we consider the case where the in-neighbors of
vi and vj’s are uk and xl, respectively, where i < j. Then w in
(xl, vj , w) must be 0, for otherwise, we can replace (xl, vj , w) by
(vj−1, vj , 0) and get a smaller cost. Since w = 0, we can preserve
the cost of ζ(TG) by replacing edge (xl, vj , 0) by (vj−1, vj , 0). In
this way we can form a DST where for each v ∈ V in G, there is
a single incoming solid edge in G which corresponds to an edge in
G. Thus, a minimum DST TG in G corresponds to a spanning tree
T rooted at r in G, and ζ(T ) = ζ(TG).

Secondly, we show that T in the above is aMST w with root r
in G. We prove by contradiction. Suppose there exists a spanning
tree T ′ in G with ζ(T ′) < ζ(T ). Then we can construct a DST T ′G
with ζ(T ′G) < ζ(TG) as follows. For each vertex v ∈ V and v 6= r,
there is one incoming edge e in T ′. Include in T ′G the solid edge
created for e. Let vi be the corresponding vertex for end vertex v in
G in step 2(b). Include the edges (vi, vi+1, 0), .., (v|T (v)|, v, 0) in
T ′G. Obviously, ζ(T ′G) < ζ(TG), and we arrive at a contradiction.

From the above, a MST w in G can be derived in linear time
from a minimum DST in the transformed graph G.

9.3 Proof of Theorem 6 for the guarantees of
Algorithm 4 forMST w

PROOF. From the proof of Theorem 5, the minimum directed
Steiner tree TG in G corresponds to a spanning tree T rooted at r in
G, and ζ(T ) = ζ(TG). For the DST problem, the Postprocessing
Step 1 in Section 4.3 gives the approximation solution. Thus, if we
show that Postprocessing Step 2 in Section 4.3 does not increase the
cost or weight, then the theorem is proved. This is trivial since in
Step 2, we only merge multiple solid edges from u to v, if any. The
merging can only reduce the total weight so that the final spanning
tree has no more weight than that of the tree from Step 1. The time
complexity follows from Lemma 2 since |V| = O(|E|).
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