
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 35 (2010) 315–334
0306-43

doi:10.1

� Cor

E-m

adafu@
1 Te
journal homepage: www.elsevier.com/locate/infosys
Query rewritings using views for XPath queries, framework,
and methodologies
Jian Tang a,�, Ada Waichee Fu b,1

a Department of Computer Science, Memorial University of Newfoundland, Elizabeth Ave, St. John’s NL, Canada A1B 3X5
b Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
a r t i c l e i n f o

Article history:

Received 9 September 2006

Received in revised form

26 January 2009

Accepted 26 October 2009
Recommended by: Y. Ioannidis
data, however, the work is inadequate. Recently, several frameworks have been
Keywords:

XML

Query

View

Rewriting

Pattern

Containment

Embedding

Maximality
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.10.006

responding author. Tel.: +1 7097374580; fax:

ail addresses: jian@mun.ca (J. Tang),

cse.cuhk.edu.hk (A.W. Fu).

l.: +852 26098432; fax: +852 26035024.
a b s t r a c t

Query rewriting using views is a technique that allows a query to be answered

efficiently by using pre-computed materialized views. It has many applications, such as

data caching, query optimization, schema integration, etc. This issue has been studied

extensively for relational databases and, as a result, the technology is maturing. For XML

proposed for query rewriting using views for XPath queries, with the requirement that a

rewriting must be complete. In this paper, we study the problem of query rewriting

using views for XPath queries without requiring that the rewriting be complete. This

will increase its applicability since in many cases, complete rewritings using views do

not exist. We give formal definitions for various concepts to formulate the problem, and

then propose solutions. Our solutions are built under the framework for query

containment. We look into the problem from both theoretic perspectives, and

algorithmic approaches. Two methods to generate rewritings using views are proposed,

with different characteristics in terms of generalities and efficiencies. The maximality

properties of the rewritings generated by these methods are discussed.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Since it emerged as a language for information transfer
and storage late last century, XML has caught increasing
attentions from the research communities across different
disciplines for its flexible encoding schemes and expres-
sive power. Recently, due to the near completion of the
standardization of XQuery language [25], the usage of
XML has reached far beyond the simple information-
encoding domain. Such a broad adoption has led not only
to the developments of new paradigms, but also the
reformulations of some existing theories and methodol-
ogies in relational databases. One of the areas in which
ll rights reserved.

+1 7097372009.
such a reformulation is in a pressing need is in query
processing. Due to the relatively complex structure of
XML documents compared with relation tables, efficiency
in querying XML documents has become one of the most
widely investigated topics in recent years.

XQuery employs XPath as its core sub-language for
navigating XML documents. In the query processing
literature for XML documents, therefore, a lot of attentions
have been in XPath processing. One approach is query
rewriting. It is a technique that allows a query to be
answered efficiently by using pre-computed materialized
views. It has many applications, such as data caching, query
optimization, schema integration, etc. This issue has been
studied extensively, in both theoretical and algorithmic
aspects, for relational databases. As a result, sound theories
and methodologies have been proposed in that context. For
XML data, however, the work is inadequate. Recently,
several frameworks have been proposed for query rewriting
using views for XPath queries, with the requirement that a
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rewriting must be complete, being that all the answers to
the query running on the original database must be
generated by the rewriting running on the materialized
views [2,3,22]. Requiring a complete rewriting using views,
however, is not always realistic. The most prominent
scenario is in the area of schema integration. Local-as-view
(LAV) is an important strategy for schema integration in
database systems [8]. In the LAV model, queries are written
over a global schema (also called a mediated schema). Views
are queries that describe the contents of the local data
sources, and are also written over the global schema. The
model does not assume the existence of a separate ‘original’
data source. The direct goal of a query is to retrieve
information from the local data sources. To accomplish this,
it must be rewritten into some query that can run on the
local data sources and produce the answer it needs. Since
there is no original data source, ‘completeness’ of the query
results generated from the local data sources is not required.
Incomplete rewriting may also be useful in the case where
the original data are not conveniently accessible but a
materialized view is available. In this case, a user has an
option to use the materialized view to obtain an answer
which is only a proper subset of the answer he/she has
expected from the original data.

It is well known that if a rewriting using view is
complete, then the query and its rewritten version are
equivalent. Such an equivalence provides valuable in-
formation to guide an algorithm to generate the rewriting.
If the completeness requirement is removed, however, the
aforementioned information will not be available. This
makes generating a rewriting using views with desirable
properties a challenging task. In this paper, we study the
problem of query rewriting using views for XPath queries
without requiring the rewriting be equivalent to the
original query. We give formal definitions for various
concepts to formulate the problem. We look into the
problem from both theoretic perspectives, and algorith-
mic approaches, and then propose solutions. Our solution
is built on top of the theories for query containment. We
introduce the concept of ‘trap’, based on which two
methods to generate rewritings using views are proposed.
These methods have different characteristics in terms of
generalities and efficiencies. We describe conditions
under which our generated rewritings are optimal. The
class of the XPath queries that we consider in this paper
uses four kinds of symbols, /, //, [ � ], and *, which,
respectively, denote child axis, descendant axis, branches,
and wildcard. We denote this class by XP[/, //, [ ], *]. The
query in this class can be described in a condensed
grammar as follows:

X ¼ X=XjXJXjX½X�jLj�

where L denotes labels from an infinite symbol set. We
will omit tagging templates that normally accompany
XPath queries, and concentrate only on the navigation
scripts. This is because, technically, tagging templates and
navigation scripts are orthogonal, and the navigation
scripts are where the most technical sophistications arise
in the query rewriting.

The rest of the paper is organized as follows. In Section 2,
we propose a model, and introduce related concepts, and
then precisely define the problem. In Section 3, we
introduce two alternative solutions to the problem, and
discuss their strengths and limitations. In Section 4, we
describe the conditions under which the rewritings using
views generated by our methods are optimal. Section 5
concludes the paper by summarizing the main results,
and suggesting some issues for further study.

1.1. A motivating example

If the information required by a query has already been
included in the result of a materialized view, and there is a
way to retrieve it, then this usually will make the query
processing more efficient. Consider the XPath query /

publication/book[@review_id]//author/name. This query re-
quires the names of the authors of the books which belong
to the publication category and have a review_id attribute.
Let us consider three cases: (1) The view is /publication/

book. In this case the answer of the query is retrievable
from the result of the view. It is because, according to the
execution semantics, this query will return the entire sub-
tree rooted at each book node in the input document
tree. (2) The view is /publication[@permit_no]/book. In this
case, we cannot retrieve a complete answer to the query
from the view result. This incompleteness is due to the lack
of data, and is intrinsic to the way the queries are
formulated. (3) The view is the same as that in the first
case, but the query is /publication[@permit_no]/book[@-

review_id]//author/name. In this case, the required informa-
tion is not retrievable. This is not due to the lack of data,
but due to the lack of knowledge: we do not know which
book in the view result is a child of a publication with
permit_no attribute. Obviously, the first case is most
preferable. However, given the way the queries are
formulated in the second case, if we can get everything
contained in the result that fits the user’s requirement, it
may still be useful if sufficient data is difficult to obtain.
Note that the problem arising in the third situation is
worse than that in the second case: we cannot retrieve any
answer without risking an error.

2. Concepts and definitions

In this paper, we will use the following notations. For
any tree or path t, |t| denotes the number of nodes in t. We
use /a,y,bS to denote a generic path which can be of any
length (in nodes), where a and b are the start and the end
nodes of the path, respectively, while /aS and /a, bS
denote a path with a length of one and two, respectively.
For two graphs, in particular, trees, we use the terms
‘isomorphic’, ‘equal’, ‘same’ interchangeably. Sometimes,
for easy presentation and notations, we will allow same
nodes (and associated edges) to belong to multiple trees,
and therefore avoid using isomorphism symbols on them.

2.1. Pattern tree and input tree

An XPath query can be denoted as a tree, called a
pattern tree (or simply pattern). Each node is attached
with a label, except for the root. The tree may contain
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branches, and can contain two kinds of edges, parent/
child and ancestor/descendent, called C_edges and
D_edges, respectively. (A C_edge and a D_edge are
denoted by a single line and a double line, respectively,
in a pattern tree.) If there is a C_edge or a D_edge from n1

to n2, we say n2 is, respectively, a C_child or D_child of n1.
(Or n1 is a C_parent or D_parent of n2.)

Each node in the pattern tree is labeled, and there is a
special label ‘*’, which is a wildcard meaning that the node
label can be any label. Among all the nodes in a query,
there is a distinguished node, called the return node. A
return node will be matched to a data node as the output of
the query. XPath queries execute on XML documents,
which can be modeled as labeled trees. In this paper, we
call them input trees (or simply trees). The execution
proceeds by matching the nodes in the pattern tree to the
nodes in the input tree, as explained in the next subsection.

2.2. Embedding and query containment

The concepts and notations in this subsection are from
[12]. Let q be a pattern and t be an input tree.

An embedding is a mapping e: nodes(q)- nodes(t) such
that
(1)
 e(root(q))=root(t),

(2)
 For any non-root node n A nodes(q), either la-

bel(n)=‘*’, or label(n)=label(e(n)), and

(3)
 For any n1, n2 A nodes(q), if n1 is a C_parent of n2, then

there is an edge from e(n1) to e(n2); and if n1 is a
D_parent of n2, then there is a path from e(n1) to e(n2).
2 The original work in [12] has not given a name to this concept.
For easy reference, we call condition 1 the root

condition, condition 2 the node condition and condition 3
the edge condition. For each n A nodes(q), we say e
matches n to e(n).

Let r be the return node in a pattern tree p. The set
anws(p, t)={e(r)|e: nodes(p)- nodes(t) is an embedding}
is called the answer to p on t. We say that pattern q is

contained in p, denoted as qD# p, if anws(q, t)D anws(p, t)
for all t. (To avoid confusing pattern containment from set
containment, unless otherwise mentioned, the expression
‘p contains q’ always refers to pattern containment for any
patterns p and q in this paper.)
Let q1 and q2 be patterns, and q2 contains m D_edges.
Let ~u ¼/u1; . . . ;umS, where for all 1rirm, ui is a non-
negative integer. The ~u-extension of q2 for q1 is a tree
formed as follows. First, make an identical copy of q2.
Then, select a symbol, say z, which is not labeled by any
node in q1. Finally, in the copy of q2, replace the label *
with symbol z, and replace the ith D_edge, say ab, by a
path alb where l contains ui nodes, all labeled z. We call
alb a rubber path,2 signifying that it can have different
lengths for different ~u-extensions, the nodes in l rubber

nodes, and the number of rubber nodes in alb the degree

of alb.
Given any ~u-extension t of q2 for q1, we use pt to denote

the canonical model mapping that maps each node in q2 to
its copy in t. Thus, pt is a one-to-one onto mapping from
the nodal set of q2 to the set of non-rubber nodes in t.
(Obviously, pt is an embedding.) If in t, for all 1rirm,
ui=c, then t is referred as a c-extension. Call a path a star-

path in a pattern if all its nodes are labeled *, and incident
only with C_edges. A ~u-extension of q2 for q1 is referred as
a canonical model of q2 for q1 if ~u ¼/u1; . . . ;umS where for
all 1rirm, 0ruirL+1 and L is the length, in nodes, of the
longest star-path in q1. Thus, there are (L+2)m canonical
models of q2 for q1.

Consider the example in Fig. 1, where t1 and t2 are two
of the canonical models of q2 for q1. The dotted lines,
indicated by pt1

and pt2
, are the canonical model

mappings. There are two rubber paths in t1, /10, 11S
and /12,y,16S, with degrees 0 and 2, respectively.
Nodes 14 and 15 are the rubber nodes in t1. Note that
path /2S, the longest star-path in q1, has a length of 1.
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Thus there are totally 9 canonical models of q2 for q1.
From the figure, it is clear that a canonical model mapping
maps any node only to its copy, and therefore will never
map nodes to rubber nodes. This point is crucial for some
derivations in later sections.

2.3. Specification of the problem

Throughout this paper, we assume that when an XPath
expression returns a node from an input tree, it actually
returns the entire sub-tree rooted at that node, which
includes both the structure and the labeling. Thus, the
following statements are equivalent: ‘a return node
matches a sub-tree’ and ‘a return node matches the root
of a sub-tree’. Also, we assume that no other information
in addition to the result itself, such as the information
about the path, is returned. We believe this makes
practical sense since at the time when a query is run, a
user probably has no interest in obtaining extra informa-
tion that is unnecessary for his/her jobs.

Definition 2.1. Let v be a pattern and t be an input tree.
Let e: nodes(v)- nodes(t) be an embedding. Let rv be the
return node in v. The result of v on t under e, is result[v, t,
e]=e(rv).

The result of v on t under e denotes the output of rv under
e on t. Here, we treat the result of a pattern as part of the
input tree, not a separate document. In general there can be
multiple embeddings for v and t, and hence there can be
multiple results. We call the set of all such results the result
set. Given a query q, and the result set S of a view v from an
input tree t, we would like to find a set of queries Q to run
on result set S, such that the execution will generate the
maximal subset of the output set that the query would also
be able to generate should it run on the input tree t.

Forming the set of queries Q above is a rewriting
problem of q based on v. In our solution, we use the
concept of concatenation introduced in [22]. Let rv be the
return node in v, and c be a separate pattern from v. Assume
either label(root(c))=* or label(root(c))=label(rv). Then we
can concatenate c with v by merging root(c) with rv. The
merged node will have the same label as that for rv. If rv has
a child prior to the merge, it will keep the child after the
merge. The return node in c will be the return node in the
new pattern. We call the new pattern a concatenated pattern

for c and v, and denote it by c�v. (Note that rv will no longer
be the return node in c�v, unless root(c) is the return node
in c.) Shown in Fig. 2 is an example of concatenation, where
nodes 3 and 5 are merged.

Given an embedding e1: nodes(v)- nodes(t) and e2:
nodes(c)- nodes(e1(rv)), (Recall e1(rv)=result(v, t, e1)) we
can merge e1 and e2 into a single embedding e:
nodes(c�v)-nodes(t) in the following way: e(n)=e1(n) if
nA nodes(v), and e(n)=e2(n) if n A nodes(c)–root(c). Thus
e has the same effects as e1 and e2 combined. This is the
key point for using concatenation. An example is shown in
Fig. 3, where we duplicate the patterns and
concatenations from Fig. 2. The two embeddings
(denoted by broken lines) e1 and e2 are merged into
embedding e. Note that e1(3) denotes the sub-tree rooted
at 10, which is the result of pattern v running on tree t.
From the figure, we can see that since e2 matches node 6
in pattern c to node 12 in tree e1(3), e matches node 6 in
pattern c�v to node 12 in t also, and vice versa.

What does a concatenation have to do with rewriting?
Let us consider Fig. 4, where rc is the return node in both c

and c�v. If for all t, and all embedding from c�v to t, there
is an embedding from q to t, such that rc and rq are
matched to the same node in t, then c�v is contained in q.
Under this condition, we view c�v as a rewriting of q

using v. We will formalize this idea shortly.
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Definition 2.2. Let Q1 and Q2 be two sets of patterns, and t

be an input tree. Then
1.
 Q1 contains Q2 on t if: 8q2AQ2, 8e2: nodes(q2)-
nodes(t), (q1AQ1, (e1: node(q1)-node(t), [e1(return_-
node(q1))=e2(return_nodes(q2))].
2.
 If Q1 contains Q2 on all t, then Q1 contains Q2.

3.
 If Q1 contains Q2 and Q2 contains Q1, then Q1 is

equivalent to Q2.

The above definitions simply extend the traditional
pattern containment in [12] to sets of patterns.

Definition 2.3. Let q and v be patterns, and C be a set of
patterns. Let R={c�v|cAC}. Then
1.
 R is a rewriting for q using v if {q} contains R. In this
case, for each c�vAR, c is called a compensation for q

using v.

2.
 R is a complete rewriting for q using v if {q} is equivalent

to R.

3.
 R is a maximal rewriting for q using v if for all rewriting

R0 for q using v, R contains R0.

Informally, R is a rewriting for q using v if q generates all
the results that R generates. This captures the soundness
property. For a rewriting R, it is a complete rewriting if it
can generate all the results that q generates. It is maximal
if it can generate all the results that any other rewriting
generates. Clearly, if a complete rewriting exists, then the
maximal rewriting is necessarily complete.

Consider the example shown in Fig. 5. We duplicate
the concatenation from Fig. 3. We can see that f and e both
map the corresponding return nodes to the same node in
t. Since e is the only embedding from c�v to t, by
Definition 2.2, {q} contains {c�v} on t. We now prove that
{q} contains {c�v}} on any tree t’. This result will establish
that {q} contains {c�v}, and therefore, {c�v} is a rewriting
for q using v. Let e0: nodes(c�v)- nodes(t0) be any
embedding. We must have the following: (1) e0(1) is the
root of t0, and e0(3) is labeled b and is a descendant of e0(1)
in t0, (2) e0(4) is labeled c, and is a child of e0(3) in t0, (3)
e0(6) is labeled d, and is a child of e0(3) in t0. Consider the
mapping f0: nodes(q)- nodes(t0) defined as: f0(16)=e0(1),
f0(17)=e0(3), f0(18)=e0(6) and f0(19)=e0(4). Clearly, f0 is an
embedding. Since 18 is the return node in q, and 6 is the
return node in c�v, by Definition 2.2.1, our claim follows.

Note that in this example, the rewriting contains only a
single pattern. In more complex case, however, it may
contain multiple patterns. (Refer to the examples in later
sections.)

Now, we can formally describe the problem: given
patterns q and v, how do we find a rewriting R for q using
v, and under what conditions R is maximal? In the
subsequent sections, we introduce our solutions.

3. Trap-based search methods

Let q and v be patterns. Searching for a rewriting for q

using v essentially requires searching for compensation
patterns. As shown in Fig. 4, a compensation pattern c is
the lower part, while v is the upper part, in concatenation
c�v. Since q must contain c�v, we can partition q into a
lower and an upper portion in such a way that they
contain c and v, respectively. The question is how we do
the partition. This motivates the trap-based search
method.

3.1. Trap embeddings

3.1.1. Concepts

We now define a new kind of embedding, where a
distinguished symbol, #, is attached to some input tree. A
node labeled # in an input tree can be matched by any
node in the pattern.

Definition 3.1. Let q and t be a pattern and an input tree,
respectively. An embedding e: nodes(q)- nodes(t) is a
trap embedding if the following conditions hold true:
1
 e(root(q))=root(t)

2
 For any nAnodes(q), either label(n)=*, or label(n)=

label(e(n)), or label(e(n))=#, and

3
 For any n1, n2Anodes(q)

a. If there is a C_edge from n1 to n2, then
if label(e(n1))=#, then e(n2)=e(n1)
else there is an edge from e(n1) to e(n2)

b. If there is a D_edge from n1 to n2, then
if label(e(n1)=#, then e(n2)=e(n1)
else there is a path from e(n1) to e(n2)
The definition differs from that of a normal embedding
only when a node is matched to a # node, in which case all
its descendants are matched also to that # node. For the
nodes in q not matched to the node labeled # in t, a trap
embedding is just a normal embedding defined at the
beginning of Section 2.2. Similar to the definition for a
normal embedding, we call conditions 1, 2 and 3 root,
node and edge conditions, respectively. Throughout the
remaining of the paper, we will use ‘embedding’ without a
preceding ‘trap’ to mean a normal embedding.

Example 3.1. Shown in Fig. 6a and b are a pattern and an
input tree, respectively. Note node 9 is labeled #. Define e1
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as e1(0)=5, e1(1)=7, and e1(2)=e1(3)=e1(4)=9, and define
e2 as e2(0)=5, e2(1)=e2(2)=e2(3)=e2(4)=9. Both e1 and e2

are trap embeddings. They are shown as the dotted
arrows on the left and right boxes in Fig. 6, respectively.
(Ignore the bold arrows for now.)

A node labeled # in t behaves like a trap, which absorbs
all the descendents of the node that is first trapped to it.
Thus, we call the node labeled # a trapping node, and the
parent of a trapping node a trap attach point (or simply an
attach point). We call the nodes that are mapped to a
trapping node trapped nodes. Trapping nodes and the
attach points are independent of embeddings, while the
trapped nodes may vary under different trap embeddings.
It is always the case that an input tree initially does not
contain any trapping node. If it is necessary to do a trap
embedding to it, we attach a trapping node to a pre-
determined attach point. We will use the notation t[n�#]
to denote input tree t in which a trapping node has been
attached to node n. For a convenient abuse of symbols,
when confusion is not possible, we will use # to denote
both the label for a trapping node and the trapping node
itself.
3.1.2. Induced patterns

If a node is trapped and its parent (either C_parent or
D_parent) is not, then the entire sub-tree rooted at that
node is a maximal sub-tree that has been trapped. For
example, for the embedding in Example 3.1, {2, 3, 4} is a
maximal sub-tree in q that is trapped to node 9 under e1.
In the general case, there may be multiple maximal sub-
trees trapped to a single trapping node under any
particular trap embedding.

Let q be a pattern and t be an input tree. Let r be the
return node in q, and n be an attach point in t. Let e be a
trap embedding from q to t[n�#]. We now extract from q

a pattern, d, as follows. First, if e(r)a# and e(r)an, let
d=F, otherwise, create a root for d, and let label(root(-
d))=label(n). Then for each maximal sub-tree a trapped,
let root(a)=w. If w is a D_child of its parent in q, then let w
be a D_child of root(d), otherwise, let it be a C_child of
root(d), in d.3 If e(r)=#, then let r be the return node of d,
and if e(r)=n, let root(d) be the return node of d. We call
pattern d so constructed an induced pattern for e w.r.t. n,
and denote it by induced[e, n].
3 Recall that we allow a node to belong to multiple trees to avoid

using isomorphism symbols.
Example 3.2. Shown in Fig. 6c and f are two induced
patterns, where e1 and e2 are defined in Example 3.1. In c,
since sub-tree {2, 3, 4} is the maximal trapped sub-tree in
q under e1, it has been made also a sub-tree of node 10,
the root of induced[e1, 7]=d0. Note that since 2 is a C_child
in q, we let it be a C_child also in d0. Similarly, in f, sub-
tree {1, 2, 3, 4} is the maximal trapped sub-tree in q under
e2, it becomes also a sub-tree of induced[e2, 7]=d1. Since
node 1 is a D_child in q, it is also a D_child in d1.

3.1.3. Trap embedding for query rewriting

Query rewriting is defined by the containment of two
sets of patterns, and containment in turns is defined based
on checking embeddings for all possible input trees.
Obviously it is not possible to follow the definition
directly and check all possible trees. Instead, we can
check a set of representative trees, which should together
replace the set of all possible trees. This is the set of
canonical models, which is defined based on the view v

and query q. In particular we make use of the following
Lemma 3.1, which is a theorem from [12]. We rewrite it
here for ease of reference.

Lemma 3.1. Let q1 and q2 be patterns, in which r1 and r2 are

return nodes, respectively. Let M be the set of canonical

models of q2 for q1. Then q1 contains q2 iff for all tAM, there is

an embedding e: nodes(q1)- nodes(t), such that e(r1)=pt (r2).

The following lemma will make use of the concept of
concatenation of trees. Let s and t be labeled trees, and
nAnodes(t). Assume label(root(s))=label(n), we use s�nt

to denote the tree formed by merging root(s) with n,
where all the children of n before the merging remain. We
call the new tree the concatenation of s and t at node n. This
concept is very similar to the concept of concatenation of
patterns, except that here we need to mention explicitly
the node in t that will be merged with root(s), while in the
case of concatenating patterns, c�v always means the
root of c is merged with the return node of v.

Lemma 3.2. Let q be a pattern, where rq is the return node.

Let t and s be trees, and bAnodes(t). Then it is true that:
1.
 If there is a trap embedding f: nodes(q)- nodes(t[b�#])

and an embedding g: nodes(d)- nodes(s) where d=in-

duced[f, b], then e: nodes(q)-nodes(s�bt), defined as:

e(n)=f(n) if f(n)a#, and e(n)=g(n) otherwise, is an

embedding such that e(rq)=g(rd).
2.
 If there is an embedding e: nodes(q)-nodes(s�bt) such

that e(rq)Anodes(s), then f: nodes(q)-nodes(t[b�#])
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defined as: f(n)=e(n) if e(n) A nodes(t), and f(n)=#

otherwise, is a trap embedding. Let d=induced[f, b] be its

induced pattern. Define g: nodes(d)- nodes(s) as:

g(root(d))=root(s) (=b), and g(n)=e(n) for naroot(d),

then g is an embedding, and g(rd)=e(rq).

Idea of Proof. From the definition, a trap embedding
separates q into two portions, an embedded portion and a
trapped portion. The embedded portion is targeted to t,
and the trapped portion is targeted to #. From the
definition, the induced pattern contains the trapped
portion as its first level sub-pattern. For condition 1, the
trap embedding is given. Also given is an embedding from
the induced pattern. We can create a normal embedding
from q to s�bt by retaining the embeddings from the
embedded portion and the first level sub-pattern of the
induced pattern. For condition 2, a normal embedding
from q to s�bt is given. We can separate it into an upper
and a lower part in such a way that the upper part is
embedded to t and the lower part is embedded to s. We
then create a trap embedding by retaining the embedding
from the upper part, and letting the lower part be trapped.
The given normal embedding from the lower part to s can
be copied to the induced pattern. The detail of the proof is
mainly based on the definitions. (Refer to Appendix A for a
formal proof.) &

Lemma 3.2 underlines a crucial theorem later in this
section. Its idea is further explained in the following
example.

Example 3.3. Shown in Fig. 7 is a pictorial explanation of
Lemma 3.2. On the left-hand side of the two-head arrow
are two embeddings. The dotted lines denote a trap
embedding from pattern q to tree t0[7�#] (i.e., f in the
lemma). The broken lines denote an embedding from the
induced pattern to tree s (i.e., g in the lemma). The trap
embedding generates an embedded portion /0, 1S, and a
trapped portion, which is the sub-pattern rooted at node 2.
On the right-hand side is a normal embedding from q to
s�7t0 (i.e., e in the lemma). Suppose the embeddings on
the left are given. We can obtain the embedding on the
right by retaining the embedding from /0, 1S, i.e., the top
two dotted lines, and the embedding from the first level
sub-pattern of the induced pattern, i.e., the bottom three
broken lines. Now suppose the embedding on the right is
given. We can obtain the embeddings on the left as follows.
We first separate q into an upper part, /0, 1S, which is
embedded to t0, and a lower part, the sub-pattern rooted at 2,
which is embedded to s. Then we create the trap
embedding on the left by retaining the embedding from
/0, 1S, and letting the sub-pattern rooted at 2 be trapped.
The embedding from the induced pattern on the left is
formed by copying the bottom four lines on the right.

Until this point, we have required that the root of an
induced pattern be labeled the same as that for the attach
point, i.e., label(root(induced[e, n]))=label(n). This is
appropriate for the purpose of illustrating the concept,
i.e., the root of the induced pattern must match the attach
point. For a canonical model, however, we need to relax
this requirement. This is because, for a view pattern v, the
attach point in its canonical model for query pattern q is
labeled z if the return node of v is labeled *, where z is a
symbol that no node in q has been labeled. Our goal is not
just match the symbol. What we actually need is that if a
node in our pattern can match z, it can match any symbol.
This is also the original motivation for introducing symbol
z in [12]. Thus, from now on, if the attach point in the
canonical model is labeled symbol z, we will label the root
of the induced pattern asterisk.

Theorem 3.3. Let q and v be patterns, and rq and rv be the

return nodes in q and v, respectively. Let M be the canonical

model set of v for q. Let c be any pattern. Then c�v

is a rewriting for q using v, if and only if, for all t A M,

{c}D#Pt, where Pt={induced[e, pt(rv)]|e: nodes(q)-

nodes(t[pt(rv)�#]) is a trap embedding}.

Proof. only if: We must prove Pt+#{c} for all tAM, given
that q+# c�v. Let rc be the return node in c, s be any tree
and e: nodes(c)- nodes(s) be any embedding. Recall pt:
nodes(v)- nodes(t) is an embedding that maps each node
in v to its copy in t. Thus, e[pt: nodes(c�v)-
nodes(s�pt ðrvÞt) is an embedding. So there is an embedding
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y: nodes(q)- nodes(s�pt ðrvÞt) such that y(rq)=e(rc) A
nodes(s). By part 2 of Lemma 3.2, there is a trap
embedding f: nodes(q)-nodes(t[pt(rv)�#]) and an em-
bedding g: nodes(d)- nodes(s), where d=induced[f,
pt(rv)]. Furthermore, y(rq)=g(rd), where rd is the return
node in d. This implies e(rc)=g(rd). Note dAPt. By
Definition 2.2, Pt+#{c}.

if: We need to prove that q+#c�v, given {Pt}+#{c} for

all tAM. Let O be the canonical model set of c for q and N

be the canonical model set of c�v for q. Let hAN be an

arbitrary canonical model. Then it must be the case that

h¼ s�pt ðrvÞt, for some sAO and tAM. Since {Pt}+#{c},

there is a trap embedding f: nodes(q)- nodes(t[pt(rv)�#])

and a g: nodes(d)-nodes(s) such that g(rd)=ps(rc), where

d=induced[f, pt(rv)]. By part 1 of Lemma 3.2, there is an

embedding e: nodes(q)- nodes(h), such that

e(rq)=g(rd)=ps(rc). Recall that rc is also the return node

in c�v and, clearly, ph(rc)=ps(rc). Thus e(rq)=ph(rc). By

Lemma 3.1, q+#c�v. &

Theorem 3.3 is crucial for the following discussions. It
tells us that, for the given patterns q and v, if we can find a
set of patterns that is contained by every set of the
induced patterns for the canonical models of v, then that
set of patterns is necessarily a set of compensation
patterns. On the other hand, any compensation pattern
must be contained by every set of the induced patterns.
(Note that ‘any’ here necessarily includes maximal
compensation pattern.) Thus, Theorem 3.3 has the full
power for the existence of (maximal) rewriting. However,
a direct implementation of the theorem for the purpose of
searching for rewriting may not be realistic, since there
are (L+2)m ~u-extensions of the view, and for each of them
we need to test the containment. Nonetheless, the
theorem provides a theoretic basis on which other
schemes can be built. In the subsequent sections, we will
introduce two such schemes, with varying degrees of
powers and efficiencies. We first introduce a corollary that
imposes a stronger condition than Theorem 3.3 to avoid
checking for containment.

Corollary. Let c, q and v be patterns, and rv be the return

node in v. Let M be the canonical model set of v for q. If for all

tAM, there is a trap embedding et nodes(q)-
nodes(t[pt(rv)�#]), such that c=induced[et,pt(rv)], then

c�rv v is a rewriting for q using v.

Proof. The condition implies, for all t, cAPt. This in turn
implies {c}D#Pt. &

The corollary states that if a pattern is a member of
every set of the induced patterns, then it is a compensa-
tion pattern. Since checking the membership for patterns
is easier than checking pattern containment, the corollary
provides a simple way to search for compensation
patterns in a restricted context.

Example 3.4. Shown in Fig. 8a and b are patterns q and v,
respectively. There are three ~u-extensions in the canonical
model set of v, t0, t1, and t2, where t0 is depicted in Fig. 6b,
and t1 and t2 are in Fig. 8c and e. (Note that the diagrams
are the ~u-extensions plus an extra # node.) All these three
~u-extensions have the induced patterns, d0 and d1 shown
in Fig. 6c and f, respectively. Furthermore, t1 and t2 both
have an additional induced pattern, as shown in Fig. 8d and
f. By the above corollary, {d0�v, d1�v} is a rewriting for q

using v, which are, respectively, shown in Fig. 8g and h.

3.1.4. Algorithms

In this subsection, we introduce a method that searches
for rewritings. The method is based directly on Theorem
3.3. We first introduce two functions, GenEmbC( � ) and
GenEmbD( � ). The former generates trap embeddings from
a pattern to a tree, and the latter generates those from a
pattern to the tree as well as all its descendant sub-trees.
This is necessary due to different requirements on C_edges
and D_edges in the definition. The main data structure is a
two-dimensional array E, with each entry corresponding to
a pair of pattern and tree nodes. For a pattern node x and
tree node y, E[x, y] is initially undef, and will contain a set of
trap embeddings from sub-pattern x to sub-tree y or
its descendant. We also use two one-dimensional arrays
B[x] and D[x] as working variables. For pattern node x, B[x]
contains a set of trap embeddings from sub-pattern x. D[x]
is a set of sequences of trap embeddings. Each such
sequence contains exactly one trap embedding from each
child of x. We assume the following initializations:

E[x, y]=undef for all pattern node x and tree node y.
B[x]=F for all pattern node x.
D[x]={e} for all pattern node x.
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GenEmbC(PatternNode x, TreeNode y, Embeddings
E[x, y])
1.
 if (label(x)a* and label(x)alabel(y) and label(y)a#)
then
2.
 E[x, y]’F; return

3.
 if label(y)=# then

4.
 define a new embedding e as: e(x)=y, and e(z)=y

for all the descendents z of x, insert e into E[x, y], and
return
5.
 for each child x0 of x

6.
 for each child y0 of y

7.
 if E[x0, y0]=undef
8.
 if x0 is a C_child then GenEmbC(x0,y0, E[x0, y0])

9.
 else GenEmbD(x0, y0, E[x0, y0])
10.
 insert all members of E[x0, y0] into B[x0]

11.
 D[x]’D[x]�B[x0] // the result will be F if an

operand is F

12.
 if D[x]=F then E[x, y]’F, and return

13.
 for each e1,y,enSAD[x] //1,y,n are the ids of the

children of x

14.
 define a new embedding ex as: ex(x)=y, and

ex(z)=ei(z) if z is in sub-pattern rooted at i

15.
 insert ex into E[x, y]

16.
 return
GenEmbD(PatternNode x, TreeNode y, Embeddings E[x,
y])
1.
 if (label(x)a* and label(x)alabel(y) and label(y)a#)

2.
 then go to 16

3.
 if label(y)=# then

4.
 define a new embedding e as: e(x)=y, and e(z)=y

for all the descendents z of x, insert e into E[x, y], and
return
5.
 for each child x0 of x

6.
 for each child y0 of y

7.
 if E[x0, y0]=undef
8.
 if x0 is a C_child then GenEmbC(x0,y0, E[x0, y0])

9.
 else GenEmbD(x0, y0, E[x0, y0])
10.
 insert all members of E[x0, y0] into B[x]

11.
 D’D�B[x0]//the result will be F if an operand is

F

12.
 if D=F then go to 16

13.
 for each e1,y,enSAD

14.
 define a new embedding ex as: ex(x)=y, and

ex(z)=ei(z) if z is in sub-pattern rooted at i

15.
 insert e into E[x, y]

16.
 for each child y0 of y

17.
 if E[x, y0]=undef then GenEmbD(x, y0, E[x, y0])

18.
 insert a copy of E[x, y0] into E[x, y]

19.
 return
Upon return, GenEmbC(x, y, E[x, y]) stores into E[x, y] all
the trap embeddings from sub-pattern x to sub-tree y, and
GenEmbD(x, y, E[x, y]) stores in the entry all the trap
embeddings from sub-pattern x to sub-tree y or its
descendant sub-trees. Line 11 assembles the sequences
of the trap embeddings from the children of x. When the
control reaches line 12, D[x] contains all possible
sequences of trap embeddings from one child of x each.
If the test in line 12 evaluates to true, at least one child of
x cannot be embedded, and therefore no trap embedding
exists from x to y. When the control reaches line 18 in
GenEmbD( � ), E[x, y0] is defined (possibly F). Note that an
insertion into an undefined array entry always overwrites
undef. Also note that a recursive call is made only when
the corresponding array entry is undefined, indicating no
earlier calls have been made to the corresponding pattern
and tree nodes. Thus, all the calls are made on different
pairs. Let x=root(q) and y=root(t). The total number is
|q| � |t|. Assuming ko |q|, where k is the total number of
trap embeddings from q to t, the time it takes to execute
GenEmbC( � ) is O(|q| � |t|).

After the trap embeddings are generated, we must
create the induced pattern for each of them. This is done
by the following algorithm.

Induced(Pattern q, Input t, TrapEmbedding e)
{Let rq be the return node in q, and s be the attach

point in t, where a trapping node has been attached.}
1.
 if (e(rq)as and e(rq)a#) then return F

2.
 get a node r and let label(r)=label(s)

3.
 for each n in pre-order traversal of q

4.
 if e(n)=# then

5.
 if n is a C_child of its parent then

6.
 let n be a C_child of r

7.
 else let n be a D_child of r

8.
 skip all the descendants of n from traversal

9.
 return pattern rooted at r
The algorithm is just a rephrase of the definition for an
induced pattern. (Refer to Section 3.1.2.) Since we traverse
q only once, the complexity is O(|q|).

Based on the previous functions, the following top
level function retrieves all the rewritings for q using v. The
following notations are used. M is the set of canonical
models of v for q, rootq and roott denote the roots of q and
t, respectively, and r is the return node in v. For each
canonical model t of v, we assume # has been attached to
pt(r). Variable Pt has been initialized to F for all t.

GenRewriting
1.
 for each tAM

2.
 GenEmbC(rootq, roott, Et[rootq, roott])

3.
 for each eAEt[rootq, roott]

4.
 Pt’Pt[Induced(q, t, e)

T

5.
 C tAMPt
6.
 for each cAC

7.
 insert c�rv into R

8.
 return R
The correctness of the above algorithm is easy to see. Pt

contains all the induced patterns for each canonical model
tAM, and C contains all the induced patterns common to
all Pt, tAM. By the corollary of Theorem 3.3, R is a
rewriting for q using v.

For the time complexity, we consider the loop only,
since it dominates asymptotically. First note that
|M|=(L+2)m, where m is the number of D_edges in v and
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L is the length of the longest star-path in q. This is the
number of calls for GenEmbC( � ) in line 2. Each call to
GenEmbC( � ) takes a time of O(|q| � |t|). For each such call,
line 4 is executed k times, where k is the number of trap
embeddings generated by the call. Each execution of line 4
takes a time of O(|q|). Thus, the total time complexity is
O((L+2)m

� (|q| � |t|+k|q|)). Assuming k5|q|, the total time is
O((L+2)m

� |q| � |t|).

3.2. Trap relay

3.2.1. F_segment and prefix–suffix matching

A trap embedding is a mapping from a pattern to a tree
that allows us to extract a compensation pattern. The
exponential overhead results from the need to consider all
the canonical models of the view. Does there exist a
mapping directly between two patterns that allows
extracting compensation patterns? We consider this issue
in this subsection. We first discuss the issue for patterns
that are paths. We then extend the results to the general
case. The following notations and conventions will be
used. Greek letters denote paths, and English letters
denote nodes. (An exception is q and v, which we will
still use for patterns, in order to be consistent with the
previous sections.) Let l and m be path patterns. We use
the notation e(l)=m to denote mapping e: nodes(l)-
nodes(m) such that e(start(l))=start(m) and e(end(-
l))=end(m). We define an operator precede join, denoted
by E, as follows. If end(l)=start(m), then lEm=g where g
is a concatenation of l and m, but contains only one
occurrence of end(l) or start(m), otherwise it is undefined.
We use the expression of the form (condition A) except

(condition B) to mean that condition A is true with some
exception specified by condition B.

Any path pattern is a sequence of C_edges and
D_edges. If the two end points of a D_edge are both
labeled *, then it can be matched to any tree path. It turns
out that a similar property also holds for certain kinds of
paths. This implies that there is a need to distinguish
different kinds of paths.

Definition 3.2. Let l be a path pattern. It is called a
C_segment if it does not contain D_edges, and it is called
an F_segment if 8nAnodes(l): [(na(start(l) &
naend(l)) label(n)=*], and (n1, n2 A nodes(l): [/n1,
n2S is a D_edge].

An F_segement has an interesting property. Before we
describe it, we first introduce a concept.

Definition 3.3. Let l=/a1,y,amS be a path pattern, and
t=/b1,y,bnS be a tree path. Let e be an embedding from l
to t. We say e is a prefix–suffix matching with separating

edge /ai, ai +1S, where 1riom, if 8k,
[(1rkri) e(ak)=bk) and (i+1rkrm) e(ak)=bn�m +k)].

A prefix–suffix matching must first of all be an
embedding. It maps the nodes preceding the separating
edge to the prefix and those following the separating edge
to the suffix, from the path pattern to the tree path. Note a
prefix–suffix matching may not always exist. For example,
it cannot possibly exist if |l|4 |t|. If |l|o |t| and /ai, ai + 1S
is a C_edge, then no prefix–suffix embedding exists with
/ai, ai +1S as the separating edge.

Theorem 3.4. Let l=/a1,y,amS be an F_segment, and /ai,

ai +1S be a D_edge, where 1riom. Let t=/b1,y,bnS be a

tree path. If label(a1)a*) label(a1)=label(b1), labe-

l(am)a*) label(am)=label(bn), and mrn, then there is a

prefix–suffix matching with separating edge /ai, ai + 1S from

l to t.

Proof. Define e: nodes(l)- nodes(t) as: for all 1rkri,
e(ak)=bk, and for all i+1rkrm, e(ak)=bn�m+k. We now
show e is an embedding. Since e(a1)=b1, e(am=bn) and 8k,
[1okom) label(ak)=*], the root and node conditions are
satisfied. Let /n1, n2S A edges(l). If n1=ak for some 1rkoi,
or i+1rkom, then e(/n1, n2S)=/bk, bk+1S A edges(t), or
e(/n1, n2S)=/bn�m+k, bn�m+k+1S A edges(t). If n1=ai, then
e(/n1, n2S=/bi, bn�m+ i+1S. Since n�m+i+1Zi+1, /bi,
bn�m+ i+1S is a path in t. Thus, e is an embedding. By
definition, it is s prefix–suffix embedding. &

Theorem 3.4 states that, for any F-segment, as long as it
is not longer than a tree path, and its start and end nodes
can be embedded, then any D-edge in it is a separating
edge for a prefix–suffix matching.

Example 3.5. Consider Fig. 9. The left most diagram
shows a prefix–suffix matching with separating edge
/1,2S. It is clear that the nodes preceding and following
that edge are mapped to the prefix and suffix of the tree
path, respectively. In addition, the mapping is an
embedding. In Fig. 9.b, no prefix–suffix matching exists,
since the path pattern is longer than the tree path. (In this
case, there does not even exist an embedding.) In Fig. 9c,
the mapping is not prefix–suffix matching since the
separating edge is not a D_edge. Thus, when we map
the nodes preceding and following /2, 3S to the prefix
and suffix of the tree path, respectively, we do not have an
embedding.

Corollary. Let l be an F_segment, m be a path pattern,

and t be a tree path. Assume label(start(l))a*)

label(start(l))=label(start(m)), and label(end(l))a*)

label(end(l))=label(end(m)). If there is a mapping e1(l)=m,

such that 8n1, n2 Anodes(l), [n1!n2) e1(n1)!e1(n2)],4
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and an embedding e2(m)=t. Then there is a prefix–suffix

matching from l to t.

Proof. For our convention mentioned earlier in this
subsection, e1(start(l))=start(m) and e1(end(l))=end(m).
Since e1 preserves the order of the nodes in l, |l|r|m|.
Since e2 is an embedding, surely we have |m|r|t|. Thus
|l|r|t|. In addition, label(start(m))a*) label(-
start(m))=label(start(t)), and label(end(m))a*) labe-
l(end(m))=label(end(t)). Combining this with the
assumption in the corollary, we have label(start(l))a*)
label(start(l))=label(start(t)), and label(end(l))a*) la-
bel(end(l))=label(end(t)). By Theorem 3.4, the claim
follows. &

Note that the mapping e1 in the above corollary is
required to preserve the node order, but is not required to
preserve the structural information of l. On the other
hand, e2 is required to be an embedding.

Example 3.6. Consider Fig. 10. There is an F_segment
/1,y,4S in path pattern l1. (Ignore the other segments
for now.) In the figure, g1 is a mapping, g1(/1,y,4S)=
/8,y,12S, which preserves the node order. Also, e is an
embedding e(/8,y,12S)=/15,y,20S. This meets the
conditions in the above corollary. It is easy to see
that there is a prefix–suffix matching from /1,y,4S to
/15,y,20S, i.e., nodes 1 and 2 are matched to 15 and 16,
respectively, and nodes 3 and 4 are matched to 19 and 20,
respectively. Note that g1 does not preserve the
edge structures. For example, both /1, 2S and /3, 4S
are C_edges, but /g1(1), g1(2)S is a D_edge, and
/g1(3),y,g1(4)S is a path, and this does not affect the
existence of the prefix–suffix matching mentioned above.
On the other hand, /1,y,4S in l2 is not an F_segment.
Thus, although g2 also preserves the node order, there is
no prefix–suffix matching from /1,y,4S to /15,y,20S
in this case. However, /2,y,4S is an F_segment in l2,
and there is a prefix–suffix matching from /2,y,4S to
/17,y,20S, i.e., 2 matches 17, and 3 and 4 match 19 and
20, respectively.

Since a prefix–suffix mapping is also an embedding, and
t is an arbitrary tree path, the above corollary implies l
contains m. (View end(l) and end(m) as return nodes.)
A crucial point here is, this containment is ensured without

requiring the structural information of l to be preserved in m.
This property of an F_segment plays a pivotal role in the
method for rewriting to be introduced in the next section.

3.2.2. Definition of trap relay

Our intention is to have a kind of mapping defined
directly between a query and view that allows us to
extract compensation patterns, and at the same time
imposes as weak a requirement as possible. As such, a
mechanism like homomorphism is not appropriate, since
it has a strong requirement that the edge structures of the
query be preserved. On the other hand, with the concept
of F_segment, we can attain our goal by incorporating it
into such a mapping.

Definition 3.4. Let l be a path pattern where |l|Z2, and m
be a path pattern, such that 8n A nodes(l) [ nodes
(m): [naend(m))) label(n)a#]. Then e(l) is a trap relay,
if e(l)=m, and 8n A nodes(l): [label(n)=* or
label(n)=label(e(n)) or label(e(n))=#], and
1.
 start(m)=end(m)=#, or

2.
 start(m)a#, l and m are C_segments, |l|=|m|, and 8n1,

n2 A nodes(l): [/n1, n2S is an edge /e(n1), e(n2)S is an
edge], or
3.
 start(m))a#, l is an F_segment, and 8n1, n2 A nodes(l):
[n1!n2) e(n1)!e(n2)], or
4.
 l=a1l1a2l2a3 and m=b1m1b2m2b3 where l1, l2, m1, and
m2 are path patterns, and ai and bi are nodes, such that
e(a1l1a2)=b1m1b2, e(a2l2a3)=b2m2b3, and both e(a1l1a2)
and e(a2l2a3) are trap relays

Call base cases 1, 2, and 3 trap matching, C_segment
matching and F_segment matching, respectively.

For trap matching, m is degenerated to a single node,
which is labeled #. For C_segment matching, each C_edge
in l is mapped to a C_edge in m. For F_segment matching,
we only require the mapping to preserve the order of the
source nodes. Case 4 is a recursive statement, which
essentially states that l is composed of sub-paths that fall
into the three base cases. We exclude the case where
|l|=1 from the definition only for purpose of simplifying
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presentation. (A query pattern containing only a singleton
root is uninteresting, while including this into our model
requires a separate, but non-sophisticated, treatment.)

Note that since any path pattern in XP[/, //, [ � ], *] is a
sequence of C_edges and D_edges, which are just special
cases of C_segments and D_segments, respectively, for
any pair of path patterns l, mAXP[/, //, [ � ], *] (where only the
last node in m can possibly be labeled #), and mapping
e(l)=m, e is either a relay or is not a relay. Thus, Definition
3.4 is applicable for path patterns in the entire class XP[/, //,

[ � ], *]. This definition will be extended to the tree patterns
in Definition 3.5.

Example 3.7. In Fig. 10, g1 is a trap relay from l1 to m1. To
see why, we decompose l1 into /0, 1S, /1,y,4S, /4, 5S
and /5, 6S. We have g1(/0, 1S)=/7, 8S, g1(/1,y,4S)=/
8,y,12S, g1(/4, 5S)=/12, 13S, and g1(/5, 6S)=/13S.
These four sub-mappings meet respectively conditions 2,
3, 2 and 1 in Definition 3.4. On the other hand, g2 is not a
trap relay, since we cannot decompose l2 in the way
specified by Condition 4. Note that decomposing l2 in the
same way as decomposing l1 does not work, since /
1,y,4S is not an F_segment any more here. On the other
hand, decomposing it into /0,y,2S, /2,y,4S, /4, 5S,
and /5, 6S does not work either. Although /2,y,4S is an
F_segment in l2, /1, 2S now is part of a C_segment, and
therefore should meet condition 2, which it does not.
5 By our convention, this is a normal embedding. Thus, it should

treat # as a normal label, rather than a trapping label.
3.2.3. A characterization of trap relay

Abstractly, trap relay is similar to the matching
proposed in [2], but in an opposite direction. The
matching there is designed to test the existence of a
complete rewriting using view. Thus, it requires each
component in the view to contain its target in the query.
This is necessary since otherwise we would not be able to
retrieve a complete answer from the view. In our context,
we require each edge pattern, i.e., C_segment or F_seg-
ment in the query to contain its target in the view. This
will make it possible to extract compensation pattern
from using trap relay. The main differences are as follows:
(1) The matching introduced in [2] does not contain a
mechanism that can generate a pattern directly for
rewriting purpose. An entirely separate algorithm must
be developed to deduce such a pattern. On the other hand,
trap relay can automatically generate a compensation
pattern directly for rewriting purpose, thanks to
its trapping capability. (Refer to the discussion below.)
(2) The matching in [2] is based on homomorphism,
which requires the edge structures in the view to be
matched by the query. In trap relay, an F_segement
requires only the relative orders of its nodes to be
preserved in the target, which is a strictly weaker
requirement than homomorphism.

We will show how we extract compensation patterns
from a trap relay. We use the same notations as those for
the trap embeddings, such as trapping node, trapped
node, attach point, etc. Also, the notion of induced pattern
is defined similarly as that for trap embedding. The main
result we will establish is: any induced pattern from a trap

relay is a compensation pattern.
In the following, we assume any path initially does not
contain a trapping node. For path m (i.e., either path
pattern or tree path), we use m[b�#] to denote that a
trapping node has been attached to the last node b in m.
For example, in Fig. 10, 13 is a trapping node, and 12 is the
attach point for m1. Nodes 5 and 6 are trapped nodes,
m1=/7,y,12S and m1[12�#]=/7,y,13S. The induced
pattern for g1 is the path pattern /4, 5, 6S.

Lemma 3.5. Let l and m be two path patterns. Assume

e(l)=m[b�#], and e(l) is a trap relay. Let t be a tree path,

and e(m[b�#])=t[c�#] be an embedding.5 Then (1) there

is a trap embedding f(l)=t[c�#], and (2) let d1=induced[e,
b] and d2=induced[f, c]. Then (d1=d2) except (label

(root(d1))a*) label(root(d1))=label(root(d1))).

The above lemma states that for any tree path t[c�#] to
which m[b�#] has an embedding, l also has an embed-
ding to it whose induced pattern is identical to that
induced by the trap relay. This lemma establishes a basis
for the correctness of trap relay, i.e., the induced pattern
from a trap relay is indeed a compensation pattern.

Idea of Proof. If e(l) is either a C_segment matching, or a
trap matching, then let f=e1e. If e(l) is an F_segment
matching, then let f be the prefix–suffix matching. If e(l) is
a sequence of the above three kinds of matching, then let f

be the union of the trap embedding formed for each
individual kind of matching as outlined above. (Note a
trap matching can occur only at the end of this sequence.)
(A formal proof is found in Appendix B.) &

Example 3.8. We have seen from Example 3.7 that g1 is a
trap relay from l1 to m1. It consists of two C_segment
matching: g1(/0,1S)=/7,8S and g1(/4,5S)=/12,13S,
one F_segment matching: g1(/1,y,4S)=/8,y,12S, and
one trap matching: g1(/5,6S)=/13S. Observe e is an
embedding from m1 to t. We can then construct a trap
embedding f:(l1)=t as follows. For nodes 0, 1, 4, 5, 6, let
f=g13e. For nodes 1, 2, 3, 4, let f be the prefix–suffix
matching from /1,y,4S to /15,y,20S with separating
edge /2,3S, i.e., f(1)=15, f(2)=16, f(3)=19, and f(4)=20.
Clearly, f so defined is a trap embedding from l1 to t.
Furthermore, the induced pattern for g1 and that for f are
identical, i.e., both are the path pattern /4, 5, 6S. Now,
consider g2. We have shown that it is not a trap relay.
Note m2 is identical to m1. Thus e is also an embedding
from m2 to t. But we cannot claim that there is a trap
embedding from l2 to t. (In fact, none exists.)

We will establish our central result, i.e., the induced
pattern for a trap relay is a compensation pattern, in a
more general setting to be introduced below.

A trap relay is defined over paths. To apply the concept
to a general tree pattern, we can view a pattern as a
collection of blocks. A block is a path delimited by two fork
nodes, or a fork node and a leaf node. Thus, any node in a
block does not branch, except for possibly its start and the
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6 pt here should be understood as also mapping the # node in

v[r�#] to the # node in t[p(r)�#].
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end nodes. For any given tree pattern, the collection of the
blocks is uniquely determined.

Definition 3.5. Let q and v be patterns, r be the return
node in v, and S be the set of the blocks in q. Let g:
nodes(q)- nodes(v[r�#]) be a mapping such that
g(root(q))=root(v[r�#]). Then g is a trap relay from q to

v[r�#] if for all s A S, g(s) is a trap relay.

Let g: nodes(q)- nodes(v[r�#]) be a trap relay. Its
induced pattern, denoted as induced[g, r] is formed in
exactly the same way in which an induced pattern for a
trap embedding is formed. (Refer to Section 3.1.2.) For the
induced pattern for the trap relay on full tree patterns, we
have similar results to Lemma 3.5.

Lemma 3.6. Let q and v be patterns, where vaF. Let r1 be

the return node in v. Assume g: nodes(q)- nodes(v[r1�#]) is

a trap relay. Let t be a tree and e: nodes(v[r1�#])-

nodes(t[r2�#]) be an embedding. Then there is a trap

embedding f: nodes(q)- nodes(t[r2�#]) such that (1) for

each block l in q, f(l)=e(g(l)), and (2) let induced[g, r1]=d1,

and induced[f, r2]=d2, then (d1=d2) except

(label(root(d1))a*) label(root(d1))=label(root(d2))).

Idea of Proof. By Lemma 3.5, for each block l in q, there
exists a trap embedding fl(l)=e(g(l)). Let f be the union of
the embeddings for all the individual blocks. We can show
f is a trap embedding from q to t[r2�#]. Condition 1 is
trivial. For condition 2, we show that a path a belongs to
induced[g, r1] if and only if a path b belongs to induced[f,
r2] such that (a=b) except (label(root(a))a*)
label(root(a))=label(root(b))). (For a formal proof, see
Appendix B.) &

Based on Lemma 3.6, we have our main result in the
following theorem.

Theorem 3.7. Let q and v be patterns, and r be the return

node in v. Assume g: nodes(q)- nodes(v[r�#]) is a trap

relay, and c=induced[g, r]. Then c � v is a rewriting for q

using v.

Proof. Let M be the canonical model set of v for q, and
tAM be an arbitrary ~u-extension. Since pt:
nodes(v[r�#])- nodes(t[pt(r)�#]) is an embedding, by
Lemma 3.6, there is a trap embedding f: nodes(q)-
nodes(t[pt(r)�#]). Let induced[f, pt(r)]=d. Then (c=d)
except (label(root(c))a*) label(root(c))=label(root(d))).
Note that label(root(c))=* implies label(r)=*, implying
label(pt(r))=z. This means label(root(d))=*. (Refer to the
illustration preceding Theorem 3.3.) Thus c=d. Since dAPt,
and t is any canonical model, cA

T
tAMPt. By the corollary

of Theorem 3.3, the claim follows. &

Example 3.9. Consider pattern q in Fig. 11a. There are
three blocks in q: /0, 1, 2S, /2, 3S, and /2, 4S. Fig. 11b is
a view pattern, with a # node attached to 7. We define
e(0)=5, e(1)=7, and e(2)=e(3)=e(4)=#. We have e(/0, 1,
2S) is an F_segment matching, and e(/2, 3S) and e(/2,
4S) are trap matching. (Refer to Definition 3.4.) Thus,
e is a trap relay from q to v[7�#]. Its induced pattern
is d0, depicted in Fig. 11.c. Similarly, there is another
trap relay e0 from q to v[7�#]: e0(0)=5, and
e0(1)=e0(2)=e0(3)=e0(4)=#, with induced pattern d1 in
Fig. 11d. We have already seen that both d0�7v and
d1�7v are rewritings for q using v. (Refer to Example 3.4.)

3.2.4. Searching for trap relays

Theorem 3.7 in the previous section implies that, if we
can find a trap relay, then its induced pattern is
necessarily a compensation pattern, and therefore we
can concatenate it with the view to form a rewriting. The
question now is, how we can find a trap relay in the first
place. The following theorem provides a simple approach.

Theorem 3.8. Let q and v be query patterns, and t be any ~u-
extension of v for q. Let r be the return node in v. If g:

nodes(q)- nodes(v[r�#]) is a trap relay, then there is a trap

embedding f: nodes(q)- nodes(t[pt(r)�#]) such that for all

block l in q, f(l)=pt(g(l)).6

Proof. Recall pt is a trivial embedding that maps each
node in v to its copy in t. The claim follows directly from
condition 1 in Lemma 3.6 by setting e there to pt. &

The above theorem suggests that, to search for all the
trap relays from q to v[r�#], we can first find the set of all
the trap embeddings from q to any given ~u-extension of
v[r�#]. We therefore use the simplest one, the 0-
extension. For each such trap embedding f, we keep track
of f(l) for each block l in q. Then we identify p0

�1(f(l)),
which is simply a copy of f(l) in v[r�#]. We can
then check if this mapping meets the conditions in
Definition 3.3.

Since any pattern and its 0-extension are identical in
shape, in the physical implementation, we can conveni-
ently use a single tree for both the view and its
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0-extension. Initially, the tree plays the role of the
0-extension, to which we search for trap embeddings
from q. This task is fuled by using function GenEmbC( � ) in
Section 3.1.4. Then for each embedding found, we test if it
is a trap relay from q to the view. It is a trap relay if and
only if for all the blocks of q, it is a trap relay. For each trap
relay, we generate its induced pattern, which is then
concatenated with the view to form a rewriting. The
following is the pseudo-code for the function described
above.

UseRelay(Query q, View v)
1.
 GenEmbC(rootq, rootv, E)

2.
 for each e A E

3.
 if for all block a of q, IsRelay(a, e)=true
4.
 then insert e to R

5.
 for each eAR

6.
 insert Induced(q, t0, e) to I

7.
 for each cAI

8.
 insert c�v into W

9.
 return (W)
In the above function, IsRelay(a, e) is true if and only if e

is a trap relay when it is restricted to a. Its pseudo-code is
shown below.

IsRelay(Block a, TrapEmb e)
1.
 /n1, n2S’next edge from a

2.
 if /n1, n2S=NULL then return yes
3.
 if e(n1)=# then return yes
4.
 find the longest segment l starting from n1 in which
all the inner nodes are labeled *
5.
 if (nAnodes(l): [e(n)=#] then n’ first node in l such
that e(n)=#
6.
 else n’end(l)

7.
 if /n1,y, nS is a C_segment & (/a1, a2SAedges(/

n1,y,nS): [oe(/a1, a2) is a D_edge] then return no
8.
 else /n1, n2S’ the edge following n; go to 2

We scan block a and check if it can be decomposed in a
way specified in condition 4 of Definition 3.3. In line 3, if
the test evaluates to true, then all the following nodes will
be mapped to # by e. Thus condition 1 is true, and e(a) is a
trap relay. If the test in line 7 evaluates to true,
e(/n1,y,nS) contradicts all three conditions 1, 2, and 3
in Definition 3.3. When control reaches line 8, /n1,y,nS
is either an F_segment, or a C_segment in which no edge
is matched to a D_edge. The former corresponds to
condition 3, and the latter corresponds to condition 2.
Thus we continue the process for the suffix of a following
/n1,y,nS.

For the time complexity of UseRelay(*), with
O(|q| � |E| � |v|), we can obtain the set E of all the trap
embeddings from q to the 0-extension of v. With O(|q|),
we can retrieve the set of all the blocks in q. By storing
necessary information while scanning, lines 4–7 can be
implemented with a single scanning. Thus the amount of
time for each call to IsRelay(.) is O(|a| � |e(a)|). This means
determining whether or not e is a relay for pattern q takes
O(|q| � |v|), and hence checking all the trap embeddings for
relays takes a total of O(|q| � |v| � |E|). Thus, the total time
complexity for finding all trap relays from q to v[r�#] is
O(|q|)+O(|q| � |v|)+O(|q| � |v| � |E|)=O(|q| � |v| � |E|). Clearly,
this performance is superior to that for GenRewriting(*),
since its complexity depends mainly on |E|, the number of
trap embeddings from q to a single canonical model (i.e.,
the 0-extension) of v, while the complexity of GenRe-

writing(*) depends not only on the number of canonical
models of v, but also on the number of trap embeddings
from q to all these canonical models. As mentioned in
Section 2.2, the number of canonical models of v is an
exponential in the number of D-edges in v, which in the
worse case can be |v|�1 (i.e., all the edges in v are
D-edges). The price paid for that performance for
UseRelay(*), however, is the stronger condition used by
trap relay than that in the corollary of Theorem 3.3. This
point follows directly from Theorem 3.8. For any ~u-
extension t of v, for each trap relay g from q to v, there is a
trap embedding f from q to t whose target nodes are
copies of the target nodes of the trap relay. This implies
the induced pattern of g is also the induced pattern of f.
Since t is an arbitrary ~u-extension of v, the condition in
the corollary of Theorem 3.3 is true. However, the reverse
is not always true, i.e., an induced pattern shared by all
the ~u-extensions of v is not necessarily an induced pattern
of any trap relay from q to v. (It is worth noting here that,
although it is more efficient than the GenRewriting(*), the
algorithm UseRelay(*) is an exponential algorithm in
nature. This is because, in the general case, |E| is
exponential.)

3.3. Maximality

The methods we have discussed so far consider how to
generate rewritings. In the general case these are not
necessarily maximal. However, under some conditions,
the maximality holds. In this section, we introduce these
conditions. We use the phrase ‘selection path’ to refer to
the path that starts from the root and ends at a return
node in any pattern. Note that, for any pattern, there is a
unique selection path.

Theorem 3.9. Let M be the set of canonical models of v for q,

and r be the return node in v. If there is a t0AM, such that

there is a unique trap embedding e: nodes(q)-

nodes(t0[pt(r)�#]), then any non-empty rewriting generated

by the corollary of Theorem 3.3 is maximal.

Proof. The ‘if’ clause implies jPt0
j ¼ 1 where Pt is defined

in Theorem 3.3. Let Pt0
¼ fc0g. Let c�v be a rewriting

generated by the corollary, i.e., for all tAM, cAPt. Since
c 2 Pt0

, c=c0. Now, let c0�v be any rewriting. By Theorem
3.3, for all tAM, {c}D#Pt. Thus, {c0}D#{c0}. This means
c0�v is maximal. &

The condition in Theorem 3.9 does not constrain the
structures of the patterns, and hence has some degree of
flexibility. However, if the corollary returns an empty set,
this does not necessarily mean there does not exist a
rewriting. The following theorem is motivated by the
observation that the asterisk symbols and descendant
edges are the two most flexible structures for a pattern. If
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Fig. 12. Generating maximal rewriting.

J. Tang, A.W. Fu / Information Systems 35 (2010) 315–334 329
we can somehow separate them from forming structurally
a joint-force, then they can become more manageable.

Theorem 3.10. The set of rewritings generated by the

corollary of Theorem 3.3 is maximal if the following

conditions hold true for pattern q: (1) any node labeled * is

not incident with a D_edge, and (2) if a leaf is labeled *, then

its parent is not.

Idea of Proof. We consider a special canonical model of v

for q, tL+ 1, where L is the length (in nodes) of the longest
star-path in q. We can show that for any trap embedding e
from q to tL+ 1, every node in q must be matched to a non-
rubber node in tL+ 1, except for some leaf node, which may
be matched to a rubber node. Note that non-rubber nodes
in tL + 1 are copies of the nodes in v. Based on this fact, for
any other canonical model t of v for q, we can form a trap
embedding f from q to t by simulating e, i.e., we map each
node of q to the node in t that is the copy of the same node
in v for e. Then we can show that the induced pattern for
tL+ 1 under e is also an induced pattern for t under f. By the
corollary of Theorem 3.3, PtLþ 1

, the set of all the induced
patterns for tL+ 1, is a set of compensations. Then by the
theorem itself, any other compensation is contained (i.e.,
pattern containment) by PtLþ 1

. Thus, the compensations in
PtLþ 1

correspond to a maximal rewriting. (Refer to Appen-
dix C for a formal proof.) &

The above theorem is true whether the corollary returns
an empty set or not. That is, if no pattern meets the
condition of the corollary, then there does not exist a
rewriting. Also, from the proof of the theorem, to obtain a
maximal rewriting, we need to consider a single canonical
model of v for q only, i.e., tL+ 1. This can be done in
polynomial time. Note that if no nodes in q are labeled *,
then the two conditions in the theorem are trivially true.
Thus we immediately have the following.

Corollary. If q belongs to the sub-class XP[/, //, []], then the

rewriting generated by the corollary of Theorem 3.3 is

maximal.

The result stated by the corollary is weaker than
restricting the entire problem to the sub-class XP[/, //, []].
On the other hand, if we do restrict both p and q to that
subclass, we will have a stronger result, which will be
introduced shortly.
Example 3.10. Consider Fig. 12. The only node labeled *
in q is 2, which is not incident with D_edges. Thus the
condition in Theorem 3.10 is met. Let us explain some
points in our proof to see why the claim in the theorem is
true. Since the longest star-path contains only one node,
we have L=1. Thus there are three canonical models,
depicted in 12c, 12d and 12e. We consider the
2-Extension, t2. The rubber path is /20, 24S. We
can see that no node in q can be matched to the two
inner nodes, 22 and 23. Consider a trap embedding e1

from q to t2[24�#] defined as: e1(0)=20, e1(1)=24,
e1(2)=e1(3)=e1(4)=#. This results in the induced pattern
depicted in Fig. 12.f. Now, consider t1. From trap
embedding e1, we have trap embedding e01 from q to t1:
e01(0)=14, e01(1)=17, e01(2)=e01(3)=e01(4)=#, where 14
and 20 are copies of 5, 17 and 24 are copies of 7, etc.
Thus, e01 results in same induced pattern as that in 12f.
This can be repeated for t0. This means the induced
pattern in 12f is shared by all the canonical models. The
same can be said for the induced pattern in 12g. Thus,
concatenating 12f and 12g with v, we get the maximal
rewriting for q using v.

The above results are related to trap embeddings. They
are not universally applicable to the concept of trap
relays. This is because the latter has weaker modeling
power than the former. To make the maximality also hold
for relay, we need to make the conditions stronger.

Theorem 3.11. The set of all the rewritings generated by

Theorem 3.7 is maximal if both q and v belong to subclasses

XP[/, *, [ � ]] or XP[/, //, [ � ]].

Proof for XP[/, *, [.]. Let rv be the return node in v. Since v
does not contain D_edge, any canonical model of v for q
does not contain rubber path. This means there is exactly
one canonical model t of v, which is identical to v in
shape. Let Pv={induced[f, rv]|f is a trap relay from q to
v[rv�#]}, and Pt={induced[e, pt(rv)]|e is a trap embedding
from q to t[pt(rv)�#]}. Let e: nodes(q)-nodes(t[pt(rv)�#])
be a trap embedding. We define a mapping f: nodes(q)-
nodes(v[rv�#]) as follows. For all n A nodes(q), let
f(n)=pt

�1(e(n)) if e(n)a#, and f(n)=# otherwise. We prove
that f is a trap relay. First, e(root(q))=root(t)a#. Thus
f(root(q))=pt

�1(e(root(q))=pt
�1(root(t))=root(v). Second,

assume n A nodes(q)–{root(q)}. If e(n)a#, then label(n)a*
implies label(n)=label(e(n))az. Thus label(e(n))=
label(pt

�1(e(n)))=label(f(n)). If e(n)=#, we have f(n)=#.
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Let /n1, n2S be a C_edge in q. Assume e(n1)a#. Then
f(n1)=pt

�1(e(n1))a#. If e(n2)a#, then /e(n1), e(n2)S is an
edge in t, imply /pt

�1(e(n1)),pt
�1(e(n2))S is a C_edge in v.

If e(n2)=#, then e(n1)=pt(rv) and f(n2)=#. Thus
f(n1)=pt

�1(e(n1))=pt
�1(pt(rv))=rv. meaning /f(n1), f(n2)S

is a C_edge in v. Now assume e(n1)=#. Then e(n2)=#, and
f(n1)= f(n2)=#. Thus f is a trap relay. Note that for any node
n, f(n)=# if and only if e(n)=#. Thus induced [f,
rv]=induced[e, pt(rv)]. This means induced[e, pt(rv)]APv.
Since e is any trap embedding, we have PtDPv. Let c be any
compensation for q using v. By Theorem 3.3, {c}D#Pt.
Thus {c}D#Pv. This means Pv is maximal &.

Proof for XP[/,//,[.]]. In this case, a trap embedding
cannot map the nodes in q to the rubber nodes in any
canonical model t of v. We define Pv and Pt the same way
as in the case for XP[/,*,[.]]. The wording of the argument is
almost identical to that case. The only exception is that
following each occurrence of word ‘C_edge’, insert a
‘(D_edge)’, and following each occurrence of word ‘edge’,
insert a ‘(path)’. Also, the sentence ‘If e(n2)=#, then
e(n1)=pt(rv) and f(n2)=#. Thus f(n1)=pt

�1(e(n1))=
pt
�1(pt(rv))=rv.’ should be replaced by ‘If e(n2)=#, then

e(n1)=(!=)pt(rv) and f(n2)=#. Thus f(n1)=pt
�1(e(n1))=

pt
�1(pt(rv))=(!=)rv.’ &
4. Related work

Query containment for XML queries has been studied
extensively. As a result, significant results have been
generated. In [1,12,23], it has been shown that the
containment problem for XPath queries in class XP[/, //,

[ � ], *] is coNP-hard and is in P when the problem is restrict
to the subclasses XP[/, //, [ � ]], or XP[/, //, *], or XP[/, [ � ], *]. The
strength and weakness of homomorphism-based and
canonical model-based methods are discussed in detail
in [12]. In [15,23], the authors further extend the results
to the case where disjunctions, DTDs and some limited
predicates are allowed.

Query rewriting using views has been studied exten-
sively for relational databases [9,11,14,17,18]. As a result,
the technologies, both in theoretical foundations and in
methodologies, are maturing. A comprehensive survey for
the problems and solutions for relational databases are
given in [9]. In [3,7,13,16], the authors study the query
rewriting problem in a general context of semi-structured
data. Several works have studied this issue for XML data
in specific contexts recently. Most of them study the
complete rewritings [2,4,6,20,21,22]. Among these works,
the ones closest to ours in paradigm, i.e., based directly on
query containment, are in [2,21,22]. In [2], the authors
introduce an algorithm that systematically matches all
the nodes in a view to those in the query. A successful
matching signifies the existence of a complete rewriting
using the view. The information collected from the
matching phase is then used to generate rewriting. Their
method of matching is based on the concept of homo-
morphism introduced in [12]. In [22], the authors present
some theoretic as well as algorithmic approaches for the
problem of query rewriting using views. They introduce
the idea of concatenation of a compensation pattern and a
view. This simplifies the analysis of the problem without
compromising the generality. Their method is complete
for the three subclasses of XP[/, //, [ � ], *]. Our previous work
in [21] discussed some theoretic aspects relating to how
to determine the existence of a query rewriting using
views for multiple return nodes. It nonetheless is based on
a simplified model where a view itself serves as a
rewriting. Thus, how to generate a rewriting is not an
issue. The only work we know of that study incomplete
rewriting is in [10]. Their key concepts, ‘useful embed-
ding’ and ‘clip-away tree’, are the counter parts of our
‘trap embedding’ and ‘induced pattern’. (The following
comparison is for purpose of clarifying the differences
between the two methods, and not meant to be critical of
the method in [10]. The authors in [10] dealt with a
context without wildcards, as such it was not their
intention to circumvent the problems caused by wild-
cards.) Useful embedding is based on homomorphism
[12], and is defined from a query to a view. It requires the
latter to preserve the structural information of the former.
This requirement is both sufficient and necessary for the
existence of maximal rewriting in class XP[ /, //, [ � ]] [10]. In
class XP[/, //, [ � ], *], however, it is reduced to a sufficient
condition. This is because within this class, in many cases
where a maximal rewriting exists, the structural informa-
tion of the query cannot be preserved in the view. Our
concept of trap embedding is defined from a query to the
canonical models of a view. It is both necessary and
sufficient for the existence of maximal rewriting in class
XP[/, //, [ � ], *]. (Refer to Theorem 3.3. and the interpretation
following the proof.) The trap embedding method, which
is based on a weaker version of the theorem (specified in
the corollary that follows the theorem), can generate
maximal rewritings in some common cases where the
wildcard is present. For the trap relay method, although it
is weaker than trap embedding method, it nonetheless is
still strictly stronger than useful embedding. This is
because a trap relay requires preserving the structural
information only for C_segments, not for F_segments. The
correctness is still guaranteed due to the ability of an
F_segment to perform prefix–suffix matching. Thus, for
example, in Fig. 10, no useful embedding exists from l1 to
m1, since node 2 cannot be mapped to node 9 or any of its
descendents, but trap relay g1 is allowed to map nodes
2–9. (As a matter of fact, it can be proven theoretically
that in class XP[/, //, [ � ], *], a useful embedding is necessarily
a trap relay, but not vice versa.)

The work in [19] discusses the issue of efficiently
maintaining a materialized view in the face of updates.
The work in [5,24] study how the queries over the target
schema can be answered using the views over the source
data, and hence provide a way for schema integration.
These works assume the target schema and the source
schema are heterogeneous, and therefore a mapping
between the two that resolves semantic heterogeneity is
crucial for the solution. It is well known, however, that
resolving semantic heterogeneity is a difficult problem,
cannot be fully automatic, and its accuracy is not without
question in many cases. In our context, both the query and
the view use the same set of XPath labels, and use the
standard syntax and semantics specified by the W3
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consortium [25]. Thus, semantic heterogeneity does not
exist. (However, if the problem does contain semantic
heterogeneity as a component, our method is not directly
applicable.)

5. Summary

Although the benefits of query rewriting using views
have been well appreciated for the relational database, it
starts to emerge as a research topic for XML data only in
the last few years. Although the problem statements are
similar in both contexts, due to the tree-based structures
of XPath queries and XML documents compared with
table-based structure for relational data, the problem
posts very different challenge for XML data. While most of
the work approaching this problem is restricted to
equivalence rewriting, we study this problem under the
assumption that the original query and its rewritten
version are not necessarily equivalent. Our study is
restricted to a subclass of XPath queries that consists of
four kinds of symbols, /, //, [ � ], *. We first propose a model
for the problem, and introduce some related concepts.
Then, we look into the issue that, given a query q, and a
view v, how a rewriting for q using v is found. The general
framework for our study is query containment. The key
notion underlying our approach is trap embedding. We
provide two alternatives, which have different character-
istics in terms of generalities and performances. We feel
this is of practically significant since a user can adopt one
based on his/her specific requirement. We also provide
conditions under which the rewritings generated by our
algorithms are maximal.

In a context where equivalence requirement is re-
moved, maximality becomes the most desirable property
that any rewriting technique looks for. Unfortunately, as
alluded by Theorem 3.3, there may not exist an efficient
algorithm that can generate a maximal rewriting in XP[ /, //

, [ � ], *] in the general case. Therefore, an interesting
question that deserves further study is: what is the
weakest restriction on XP[ /, //, [ � ], *] under which such an
efficient algorithm exists? We have given some conditions
under which our methods can generate maximal rewrit-
ing using views. However, it is not clear to us at this time
whether or not these conditions can be further weakened
without compromising the results. Our second method is
more efficient compared with the first one, and can
generate maximal rewriting for subclasses XP[/, //, [ � ]] and
XP[/, *, [ � ]]. However, we do not have the similar result for
subclass XP[/, //, *]. At this time, we are not aware of any
efficient algorithm that can generate a maximal rewriting
for this subclass without further restrictions. Whether or
not such an algorithm exists deserves further study.

Appendix A. Proof of Lemma 3.2

We first prove another lemma.
Lemma. Let q be a pattern and t[b�#] be a tree with

trapping node. Then e: nodes(q)-nodes(t[b�#]) is a trap

embedding if there is a pattern q0Dq with root(q0)=root(q)

such that (1) e is an embedding from q0 to t when it is
restricted on nodes(q0), (2) for all n A nodes(q)–nodes(q0),

e(n)=#, (3) for all n1Anodes(q0), n2Anodes(q)–nodes(q0), if

/n1, n2S is a C_edge, then e(n1)=b, and if /n1, n2S is a

D_edge, then e(n1)!=b.

Proof. Note that since q0 is a tree structure, 8n1,n2 A
nodes(q): [n2Anodes(q0) & n1!n2)n1Anodes(q0)]. We
show e meets the conditions in Definition 3.1. First,
e(root(q))=e(root(q0))=root(t). Condition 1 in the defini-
tion, is true. Second, let n A nodes(q). If n A nodes(q0),
then either label(n)=*, or label(n)=label(e(n)), else n A
nodes(q)–nodes(q0), in which case by condition 2 in the
lemma, e(n)=#. Condition 2 in the definition is true. Let
n1, n2 A nodes(q). Assume /n1, n2S is a C_edge (D_edge).
If e(n1)=#, then n1 A nodes(q)–nodes(q0). By the above
note, n2 A nodes(q)–nodes(q0). Thus e(n2)=#. Assume
e(n1)a#, i.e., n1 A nodes(q0). If n2 A nodes(q0) also, e(n1) is
a parent (ancestor) of e(n2) in t. If n2 A nodes(q)–
nodes(q0), then e(n2)=#. By condition 3 in the lemma,
e(n1)=b (e(n1)!=b). This means e(n1) is a parent
(ancestor) of e(n2) in t[b�#]. This proves Condition 3 in
the definition. &

Lemma 3.2. Let q be a pattern, where rq is the return node.

Let t and s be trees, and bAnodes(t). Then it is true that:
1.
 If there is a trap embedding f: nodes(q)- nodes(t[b�#])

and an embedding g: nodes(d)-nodes(s) where d=in-

duced[f, b], then e: nodes(q)- nodes(s�bt), defined as:

e(n)=f(n) if f(n)a#, and e(n)=g(n) otherwise, is an

embedding such that e(rq)=g(rd).

2.
 If there is an embedding e: nodes(q)- nodes(s�bt) such

that e(rq) A nodes(s), then f: nodes(q)- nodes(t[b�#])

defined as: f(n)=e(n) if e(n) A nodes(t), and f(n)=#

otherwise, is a trap embedding. Let d=induced[f, b] be its

induced pattern. Define g: nodes(d)- nodes(s) as:

g(root(d))=root(s)(=b), and g(n)=e(n) for n a root(d),

then g is an embedding, and g(rd)=e(rq).

Proof. Part 1: We need to prove e is an embedding. Let n

A nodes(q). Since either e(n)= f(n) or e(n)=g(n), and both f
and g meet the node condition, e also meets the node
condition. Let n1, n2 A nodes(q). If both f(n1)a# and
f(n2)a#, then e(n1)= f(n1) and e(n2)= f(n2). Since the edge
condition is met for n1 and n2 under f, it is also met under
e. Similar argument applies to the case where both
f(n1)=# and f(n2)=#. Now assume f(n1)a# and f(n2)=#.
Thus, e(n1)= f(n1), and e(n2)=g(n2). First assume /n1, n2S
is a C_edge. By the definition of a trap embedding, f(n1)=b.
By the definition of an induced pattern, n2 is a C_child of
root(d). Thus, g(n2) is a child of g(root(d))=root(s) in s, and
hence a child of b in s�bt. Now assume /n1, n2S is a
D_edge. Thus either f(n1)=b, or f(n1)!b, and n2 is a
D_child of root(d). This means g(n2) is a descendant of
g(root(d))=root(s) in s, and hence a descendant of b in
s�bt. This in turn implies g(n2) is a descendant of f(n1).
Since d is non-empty, either f(rq)=b or f(rq)=#. In the
former case, root(d)=rd. Thus g(rd)=root(s)=b= f(rq)=e(rq).
In the latter case, e(rq)=g(rq).

Part 2: First note that 8n1 A nodes(t), 8n2 A nodes(s)–b,

[n2 not(!)n1]. Let T={n|nAnodes(q) & e(n) A nodes(t)}
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and S={n|n A nodes(q) & e(n) A nodes(s)–b}. Thus T\S=F
and T[S=nodes(q). Since e is an embedding, 8m1AT,

8m2AS, [m2 not(!)m1]. Let S1={n|nAS & parent(n)AT}.

We claim 8n1AS, (n2AS1, [n2!n1]. To prove, let xAS and y

be the oldest ancestor of x in S. Since root(q)AT and

root(q)!=y, parent(y)AT. The claim follows. Denote

by pn the sub-pattern rooted at n in q, we have

[n2S1
nodesðpnÞ ¼ S. Also, if we remove all the nodes in S

from q (along with the associated edges), we obtain a

pattern, qT, which is a sub-graph of q, and nodes(qT)=T.

We first show f is a trap embedding. Note that when f is

restricted on nodes(qT), it is an embedding to t, and for all

nAS, f(n)=#. Let n1 A nodes(qT) and n2AS. If /n1, n2S is a

C_edge, then e(n1) is a parent of e(n2). Since e(n1) A

nodes(t) and e(n2) A nodes(s)–b, e(n1)=b, i.e., f(n1)=b. If /
n1, n2S is a D_edge, then e(n1) is an ancestor of e(n2). Thus

e(n1)!b. By the above lemma, f is a trap embedding. Now,

we show g is an embedding from d to s. First, note that 8i,

jAS1, [pi\pj=F]. This follows directly from the fact that

both pi and pj are tree structures, and i not(!) j and j

not(!)i. Thus, 8jAS1, [j is a child of root(d)], implying

nodes(d)–root(d)=S. Since e(S) D nodes(s)–b, g(S) D

nodes(s)–b. Thus g is a mapping from nodes(d) to

nodes(s). By definition of an induced pattern, label(root(-

d))=label(b). Let nAS. Either label(n)=* or label(n)=labe-

l(e(n)). The latter implies label(n)=label(f(n)). Let n1, n2 A

nodes(d). If n1, n2AS, then /n1, n2S is a C_edge (D_edge) in

d, and e(n1) is a parent (ancestor) of e(n2) in s, implying

g(n1) is a parent (ancestor) of g(n2) in s. Assume

n1=root(d) and n2 A nodes(d)–root(d). If /n1, n2S is a

C_edge in d, then /n0, n2S is a C_edge in q for some n0 A

nodes(qT), implying e(n0) is a parent of e(n2) in s �b t. This

can happen only when e(n0)=b=root(s). Recall e(n2) A

nodes(s)–b, g(n1)=b and g(n2)=e(n2). Thus g(n1) is a parent

of g(n2) in s. If /n1, n2S is a D_edge, from the expressions

recalled above, it is trivial to see g(n2) is a descendant of

g(n1). Thus, g is an embedding. Finally, since e(rq) A

nodes(s), either e(rq)=b (i.e., root(s)) or e(rq) A nodes(s)–b.

In the former case, f(rq)=b, and therefore root(d)=rd,

implying g(rd)=b. In the latter case, f(rq)=#, implying

rq=rd. We have e(rq)=g(rq)=g(rd). &

Appendix B. Proof of Lemmas 3.5 and 3.6

We first show an additional lemma.
Lemma A. Let e(l)=m be a trap relay, and e(m)=t be an

embedding. If e(l) is in one of the three base cases in

Definition 3.3, then there is a trap embedding f(l)=t.

Proof. If e(l) is a trap mapping, then m=#. Since e(m)=t,
we also have t=#. Define f(n)=# for all n A nodes(l). So f(.)
is a trap embedding. If e(l) is a C_segment mapping,
define f(n)=e(e(n)). Since both e(.) and e(.) meet node and
edge conditions, clearly f(.) also does. Thus it is a trap
embedding. Now assume e(l) is an F_segment mapping.
Since both e(.) and e(.) are 1–1 mapping, we have
|l|r|m|r|t|. By Theorem 3.4, the claim follows. &
Lemma 3.5. Let l and m be two path patterns. Assume

e(l)=m[b�#], and e(l) is a trap relay. Let t be a tree path,

and e(m[b�#])=t[c�#] be an embedding. Then (1) there is a

trap embedding f(l)=t[c�#], and (2) let d1=induced[e, b]

and d2=induced[f, c]. Then (d1=d2) except

(label(root(d1))a*) label(root(d1))=label(root(d1))).

Proof. From Definition 3.4, l=a1l1a2,y,anln, and
m[b�#]=b1m1b2m2,y,bn�1mn�1bn where nZ1 and bn=#,
such that for all 1rirn�1, e(ailiai +1)=bimibi +1 is either a
C_segment mapping, or an F_segment mapping, and
e(anln)=bn is a trap mapping. Also, from the definition of
an embedding, t[c�#]=c1t1c2,y,cn�1tn�1cn where cn=#,
such that for all 1rirn�1, e(bimibi + 1)=citici +1. By Lemma
A, for all 1rirn�1, there is a trap embedding
fi(ailiai + 1)=citici+ 1, and a trap embedding fn(anln)=cn.
Define f: nodes(l)- nodes(t[c�#]) as: for all 1rirn�1,
f(n)= fi(n) if nAnodes(ailiai +1). Clearly, f is a trap embed-
ding. In addition, induced[f, c]=xanln where /x, anS is a
C_edge (D_edge) iff an is a C_child (D_child) in l. We also
have induced[e, b]=yanln where /y, anS is a C_edge
(D_edge) iff an is a C_child (D_child) in l. Note that the
only difference between yanln and xanln is in their roots, y

and x. We have label(y)=label(b) and label(x)=label(c).
Since e(b)=c, label(b)a*) label(b)=label(c). This implies
label(y)a*) label(y)=label(x). &

Lemma 3.6. Let q and v be patterns, where vaF. Let r1 be

the return node in v. Assume g: nodes(q)- nodes(v[r1�#]) is

a trap relay. Let t be a tree and e: nodes(v[r1�#])-

nodes(t[r2�#]) be an embedding. Then there is a trap

embedding f: nodes(q)- nodes(t[r2�#]) such that (1) for

each block l in q, f(l)=e(g(l)), and (2) let induced[g, r1]=d1,

and induced[f, r2]=d2, then (d1=d2) except

(label(root(d1))a*) label(root(d1))=label(root(d2))).

Proof. Let l be any block in q, m be a path pattern in
v[r1�#] such that g(l)=m, and s be a path in t such that
e(m)=s. By Lemma 3.5, there is a trap embedding fl(l)=s
that satisfies the two conditions in Lemma 3.6. Define f:
nodes(q)- nodes(t[r1�#]) as: for all nAnodes(q),
f(n)= fl(n) if nAnodes(l). We first prove f is a well defined
mapping. If n is not a fork point, then f(n) is uniquely
determined. Assume n is a fork point. Without loss of
generality, let n=start(a) and n=start(b) where a and b
are different blocks. The arguments for the other cases
are similar. Note g(n)=start(g(a))=start(g(b)), and
e(g(n))=start(e(g(a))=start(e(g(b)). Since fa(a)=e(g(a))
and fb(b)=e(g(b)), fa(n)=start(e(g(a)) and fb(n)=
start(e(g(b)), implying fa(n)= fb(n). Thus f is well defined.
We now prove f is a trap embedding. First, let l be such
that start(l)=root(q). Thus g(start(l))=root(v[r1�#]),
implying (start(m)=root(v[r1�#]). Thus start(s)=
root(t[r2�#]). Combine the above equalities, we have
f(root(q))=root(t[r2�#]). Since any node and any edge in q

must belong to some block l, the node and edge
conditions follow directly from the fact that f= fl and fl
is a trap embedding. Thus, f is a trap embedding. We now
show f meets the two conditions in the Lemma. From the
way f is defined, condition 1 is clearly true. For condition
2, let d1=induced[g, r1]. Let root(q)=a0, root(v[r1�#])=b0,
the trapping node in v[r1�#] be b1, root(t[r2�#])=c0, and
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the trapping node in t[r2�#] be c1. Let /root(d1), a1,y,a2S
be a path in d1 where a1 is a child of root(d1) and a2 is a
leaf in d1, and y=/a0,y,a1,y,a2S, which is a path in q. It
must be the case that induced[gy, r1]=/o1, a1, y, a2S
where label(o1)=label(root(d1)). Note that a1 must be the
first note in y such that g(a1)=b1. Since g(a0)ab1, a0aa1.
Let y=t1~y~tk~y ~tm where each ti is a block, and
start(tk)!a1!=end(tk), i.e., tk is the first block in y that
contains a1, and hence 8i: [ko irm) g(ti)=b1=#]. Thus
induced[gy, r1]=induced[gtk

, r1] ~tk + 1,y,~tm. On the
other hand, since # is b1 in v[r1�#], we have g(tk)=m1r1b1

for some path m1 in v[r1~#]. Since /r1, b1S is a C_edge, and
b1 is the only node labeled # in v[r1�#], and /r2, c1S is a
C_edge, and c1 is the only node labeled # in t[r2�#], we
have e(m1r1b1)=s1r2c1 for some s1 in t[r2�#]. By Lemma
3.5, tðtkÞ ¼ ftk

ðtkÞ ¼ s1r2c1 and, letting d3=induced[gtk
, r1]

and d4=induced[ftk
, r2], we have (d3=d4) except

(label(root(d3))a* ) label(root(d3))=label(root(d4))).
This implies induced[ftk

, r2] ~tk +1,y,~tm=/o2,
a1,y,a2S, where label(o1)a*) label(o1)=label(o2). Since
e(b1)=c1, by Lemma 3.5, we have 8i: [ko irm)

fti
(ti)=c1=#]. This means induced[fy, r2]=induced[ftk

, r2]
~tk + 1,y,~tm. Thus, induced[fy, r2]=/o2, a1, y, a2S. Let
d2=induced[f, r2]. We must have /root(d2), a1,y,a2S is a
path in d2, and label(o2)=label(root(d2)). Noting labe-
l(o1)=label(root(d1)), we have label(root(d1))a* ) la-
bel(root(d1))=label(root(d2)). Similar argument can also
show that for any path /root(d2), a1, y, a2S in d2, there is
a path /root(d1), a1, y, a2S in d1 such that label(-
root(d1))a*) label(root(d1))=label(root(d2)). Thus condi-
tion 2 follows. &

Appendix C. Proof of Theorem 3.10

Theorem 3.10. The rewriting generated by the corollary

of Theorem 3.3 is maximal if the following conditions hold

true for pattern q: (1) any node labeled * is not incident with

a D_edge, and (2) if a leaf is labeled *, then its parent is not.

Proof. Consider the (L+1)-extension tL +1 of v for q, where
L is the number of nodes in the longest star-path in q. Let
rq and rv be the return nodes in q and v, respectively. Let e:
nodes(q) - nodes(tL+ 1[ptLþ 1

ðrvÞ�#]) be a trap embedding.
Let n A nodes(q). Assume n is an internal node. If
label(n)a*, then label(n)=label(e(n)) a *, which means
e(n) is not a rubber node. (Recall a rubber node is labeled z

that no label other than * in q can be matched.) lf
label(n)=*, then let l be the longest path containing n in
which all the nodes are marked *. By condition 1, l is a
star-path. By condition 2, end(l) is not a leaf node. This
means there is a path alb in q where label(a)a* and
label(b)a*. Since |l|rL and every rubber path in tL + 1 has
a degree of L+1, we have 8nAnodes(l): [e(n) is not a
rubber node in tL +1]. Now assume n is a leaf node in q. If
e(n) is a rubber node in tL+ 1, then label(n)=*. By condition
1, /parent(n), nS is a C_edge, and by condition 2
label(parent(n))a*. This means /e(parent(n)), e(n)S is
an edge and e(parent(n)) is not a rubber node in tL+ 1. In
summary, if n is an internal node in q, then e(n) is not a
rubber node in tL +1, and if n is a leaf node such that e(n) is
a rubber node, then /e(parent(n)), e(n)S is an edge and
e(parent(n)) is not a rubber node in tL+ 1. Let t be any
canonical model of v for q, we define a mapping f:
nodes(q)- nodes(t[pt(rv)�#]) as follows. If n is an
internal node, or a leaf node in q but e(n) is not a rubber
node in tL +1, then let f ðnÞ ¼ ðpt3p�1

tLþ 1
3eÞðnÞ if e(n)a#,

and f(n)=# otherwise. If n is a leaf node and e(n) is a
rubber node, then let f(n)=child(pt(a)) in pt(/a,bS) where
/a, bSAD_edges(v) and e(n) AptLþ 1

ð/a; bSÞ. We now
prove that f is a trap embedding. First, root(q) is an
internal node and e(root(q))=root(tL+ 1)a#. We have
f ðrootðqÞÞ ¼ ðpt3p�1

tLþ 1
3eÞðrootðqÞÞ ¼ ðpt3ptLþ

1�1
ÞðrootðtLþ1ÞÞ

¼ ptðrootðvÞÞ ¼ rootðtÞ. Second, let n A nodes(q)–root(q).
Assume n is an internal node, or a leaf node but e(n) is not
a rubber node in tL +1. If e(n)a#, then label(n)a*)
label(n)=label(e(n)), which implies label(e(n))
=label(p�1

tLþ 1
ðeðnÞÞ)a*, which in turn implies label

(ptðp�1
tLþ 1
ðeðnÞÞÞ)=label(p�1

tLþ 1
ðeðnÞÞ). Combine the above, we

have label(n)=label(f(n)). If e(n)=#, we have label
(f(n))=#. Now assume n is a leaf and e(n) is a rubber
node. We must have label(n)=*. We have
proven the root and node conditions. For the edge
condition, let /n1, n2S be a C_edge (D_edge) in q. Note
n1 can only be an internal node in q. We consider the
following cases.

Case 1: n2 is an internal node in q, or a leaf node but

e(n2) is not a rubber node in tL+ 1.

Subcase 1: e(n1)a# and e(n2)a#. Thus /e(n1), e(n2)S is

an edge (path) in tL +1, implying /p�1
tLþ 1
ðeðn1ÞÞ, p�1

tLþ 1
ðeðn2ÞÞS

is a C_edge (path) in v. This means /ptðp�1
tLþ 1
ðeðn1ÞÞÞ,

ptðp�1
tLþ 1
ðeðn2ÞÞÞS, or /f(n1), f(n2)S, is an edge (path) in t.

Subcase 2: e(n1)a# and e(n2)=#. Again, /e(n1), e(n2)S is

an edge (path) in tL +1. Thus e(n1)=(!=)ptLþ 1
ðrvÞ. This

means p�1
tLþ 1
ðeðn1ÞÞ=(!=)rv, implying ptðp�1

tLþ 1
ðeðn1ÞÞÞ=

(!=)pt(rv). By definition of f, f(n1)=(!=)pt(rv) and

f(n2)=#. Noting # is a child of pt(rv) in t, /f(n1), f(n2)S is

an edge (path) in t.

Subcase 3: e(n1)=# and e(n2)=#. By definition of f,

f(n1)= f(n2)=#.

Subcase 4: e(n1)=# and e(n2)a#. Since e is a trap

embedding, this case is impossible.

Case 2: n2 is a leaf node in q, and e(n2) is a rubber node

in tL+ 1. We must have label(n2)=*. Thus /n1, n2S is a

C_edge and label(n1)a* in q. Let /a, bSAD_edge(v) such

that e(n2) AptLþ 1
ð/a; bSÞ. We have shown that e(n2) is a

child of e(n1). Thus it must be the case that e(n1)=ptLþ 1
ðaÞ,

otherwise e(n1) would be a rubber node, which is

impossible. Note e(n1)a#, otherwise, e(n2) cannot possi-

bly be a rubber node. By definition of f, f(n1)=

ptðp�1
tLþ 1
ðeðn1ÞÞÞ=ptðp�1

tLþ 1
ðptLþ 1

ðaÞÞÞ=pt(a), and f(n2)=

child(pt(a)). Thus, /f(n1), f(n2)S is an edge in t. We have

proven the edge condition. Note that by our definition, for

any n A nodes(q), f(n)=# if f e(n)=#. Thus, induced[e,

ptLþ 1
ðrvÞ]= induced[f, pt(rv)]. Since t is an arbitrary canoni-

cal model of v, and e is an arbitrary trap embedding from q

to tL+ 1[ptLþ 1
ðrvÞ�#], PtLþ 1

D Pt for all t. By the corollary of

Theorem 3.3, R¼ fd� v : dDPtLþ 1
} is a rewriting for q

using v. Let x�v be any rewriting for q using v. By
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Theorem 3.3, fxgD#PtLþ 1
, implying {x�v}D#R. Thus R is

maximal .&
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