
Diversified Top-k Subgraph Querying in a Large Graph

Zhengwei Yang Ada Wai-Chee Fu Ruifeng Liu
The Chinese University of Hong Kong

{zwyang,adafu,rfliu}@cse.cuhk.edu.hk

ABSTRACT

Subgraph querying in a large data graph is interesting for differ-
ent applications. A recent study shows that top-k diversified re-
sults are useful since the number of matching subgraphs can be
very large. In this work, we study the problem of top-k diversified
subgraph querying that asks for a set of up to k subgraphs isomor-
phic to a given query graph, and that covers the largest number of
vertices. We propose a novel level-based algorithm for this prob-
lem which supports early termination and has a theoretical approx-
imation guarantee. From experiments, most of our results on real
datasets used in previous works are near optimal with a query time
within 10ms on a commodity machine.

Keywords

subgraph isomorphism; top-k; diversity; maximum k-coverage

1. INTRODUCTION
Graph databases have been found useful in social networks, RDF,

and many other applications. An important processing for graph
data applications is that of the subgraph isomorphism search. Given
a data graph and a query graph, the querying returns subgraphs in
the data graph that are isomorphic to the query graph. Though this
is an NP-hard problem, it has been found to be solvable with good
response time for many real data graphs [6, 16, 26, 35, 21, 15].
The problem is manageable since the query graph is quite small in
most applications. However, as data graphs are growing in size,
the number of isomorphic subgraphs in such a graph can be exces-
sively large. Most existing works stop their computation when a
fixed number of subgraphs are found. Unfortunately, the resulting
subgraphs are often highly overlapping and not very representative,
whilst more interesting solutions may be missed. Such an observa-
tion has been made in [10]. They advocate the importance of diver-
sity in the search results. Let us illustrate with an example based
on the motivating application in [10].

EXAMPLE 1. A fraction of a collaboration network is shown as
G′ in Figure 1(b). In this graph, each node represents a person, with
a label for the job of the person. The label “a” stands for project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915216

cb

a

du4

u1

u2 u3 bc

a

dv10

v1

v4

a

b c b c

a

d d

v2

v5

v6

v11 v12

v7 v8

v9

v3

(a) query graph Q (b) part of the data graph, G′

Figure 1: Diversified subgraph matching; the meanings of the

vertex labels are: a - project manager; b - programmer; c -

database developer; d - software tester.

manager (PM), “b” for programmer (PRG), “c” for database devel-
oper (DB), and “d” for software tester (ST). A company issues a
graph query to find a team consisting of a PM, a PRG, a DB, and
an ST, such that there is a link between the PM and each of the
PRG and DB, the PRG is linked to the DB, and both the PRG and
DB are linked to the ST. These requirements are given by the query
graph Q in Figure 1(a). There are many matching subgraphs in
G′. We limit the number of resulting matchings to a small num-
ber k. In this example, let us set k = 2. The question is which
set of two matchings is better. If we return (v3, v8, v7, v12) and
(v3, v8, v9, v12) as matchings for (u1, u2, u3, u4), we have the
same PM, PRG and ST in both answers. This limits the choices
for the company, since if any of the PM, PRG or ST is not available
or not suitable, both results will not be useful. Instead, the disjoint
matchings of (v1, v5, v4, v10) and (v2, v6, v7, v12) form a better
solution set. Hence, in selecting the top k matchings we aim to
reduce the overlapping information among the matchings. That is,
the matchings should be diversified.

The above example shows that top-k diversified subgraph query-
ing (DSQ) can rectify the issues caused by an excessive number of
matchings in existing subgraph querying algorithms. Diversity is
measured by the number of vertices covered by all the subgraphs in
the result. The problem is to find at most k isomorphic subgraphs
with a maximum coverage. Diversity has been proposed in [10],
but their problem is to search for vertices that match with a sin-
gle query node, say u1 in our example, and they consider graph
simulation instead of isomorphism. In Figure 1, for example, [10]
considers that (v2, v6, v7, v11, v12) is also a matching to the query
graph. To our knowledge, this is the first study to consider DSQ.
However, to solve for DSQ, there are some major challenges:
(1) As the number of isomorphic subgraphs is potentially expo-
nential, existing algorithms typically stop after generating around
a thousand matchings. With DSQ, we may need to generate many
more matchings for selecting the diversified results.

(2) Assuming that we can generate and store all isomorphic sub-

graphs for a query, the remaining problem then becomes maximum
k-coverage, which is also NP-hard. Though a simple greedy al-
gorithm provides an approximation ratio guarantee of over 0.63, it
requires scanning all the isomorphic subgraphs k times. However,
generating all matchings may already be prohibitively costly.

(3) From the above discussion, a scalable algorithm would need an
early termination mechanism so as to return k matchings without an
exhaustive search, while having a good approximation guarantee.

Contributions. We study the above challenges and propose a so-
lution for DSQ. Our contributions are summarized as follows.

(1) We propose to study the diversified subgraph querying problem
where we ask for top-k diversified isomorphic subgraphs.

(2) We propose a novel solution, called DSQL, for DSQ. DSQL
is based on a level-wise subgraph search, where level refers to the
overlapping size of a newly selected subgraph with a set of col-
lected subgraphs. DSQL has the following desirable properties: (a)
an approximation ratio guarantee of 0.25(1 + max(1

k
, 1
q
)), where

q is the number of vertices in the query graph; (b) supports early
termination when k results are obtained.

(3) We propose optimization strategies which greatly improve the
performance of DSQL. Two of the strategies can also be used for
the subgraph querying problem.

(4) We empirically verify the efficiency and effectiveness of our
algorithm. Our experiments show that DSQL often generates near
optimal solutions with a fast response time.

(5) Our study leads to some new results for the Maximum k-coverage
problem. We propose a multi-scanning technique for a better ap-
proximation guarantee, which is asymptotically 0.5. We improve
the approximation guarantee of existing streaming algorithms to
0.25(1 + max(1

k
, 1
q
)), where q is the number of vertices in the

query graph.
The rest of this paper is organized as follows. Section 2 states

the problem definition and describes existing methods for related
problems. Section 3 gives an overview of our two-phase solution
DSQL. Section 4 describes the first phase of DSQL. Section 5 is
about the optimization of DSQL. Section 6 is about the second
phase of DSQL. The experimental results are given in Section 7.
Related works are summarized in Section 8. We conclude in Sec-
tion 9.

2. PROBLEM DEFINITION AND EXISTING

WORKS
Existing work on subgraph querying (SQ) motivates our study.

Some preliminary definitions concerning SQ are given below.

Data Graph. We define a data graph as an undirected, vertex-
labeled graph G = (V,E,Σ, L), where
(1) V is the set of data vertices;
(2) E ⊆ V × V is a set of undirected edges;
(3) Σ is a set of vertex labels;
(4) for each vertex v ∈ V , L(v) ∈ Σ is the label of v.

Subgraph. A graph Gs = (Vs, Es,Σs, Ls) is a subgraph of G
if Vs ⊆ V , Es ⊆ E, Σs ⊆ Σ, for each edge e = (v, v′) ∈ Es,
v ∈ Vs and v′ ∈ Vs, and for each v ∈ Vs, Ls(v) = L(v).

Query Graph. A query graph is an undirected, vertex-labeled graph
Q = (VQ, EQ,ΣQ, LQ), where (1) VQ, EQ, and ΣQ are the sets of
query vertices, edges, and vertex labels, respectively; (2) for each
vertex u ∈ VQ, LQ(u) ∈ ΣQ is the label of u. Let q = |Q|= |VQ|.

Subgraph Isomorphism (or embedding). Given a data graph G =
(V,E,Σ, L) and a query graph Q = (VQ, EQ,ΣQ, LQ), a sub-

graph isomorphism is an injective function f : VQ → V such that
(1) LQ(u) = L(f(u)) for any vertex u ∈ VQ; (2) for each edge
(ui, uj) ∈ EQ, there exists an edge (f(ui), f(uj)) ∈ E.

If an embedding f exists, let G′ be the subgraph in G consisting
of the vertices f(u) for u ∈ VQ, and the edges (f(ui), f(uj)) in
(2) above, then we say that G′ is isomorphic to Q and vice versa.
We also say that G′ is the subgraph for the embedding f , and that
G′ is an isomorphic subgraph.

DEFINITION 1 (SUBGRAPH QUERYING -SQ). Given a data

graph G and a query graph Q, the subgraph querying problem

(SQ) is to find all embeddings of Q in G.

DEFINITION 2 (COVERAGE). Given a set S = {s1, ..., sn}
of subgraphs of G, where si = (Vi, Ei), the cover set of S, denoted

by C(S), is the vertex set VC = V1 ∪ V2 ∪ ... ∪ Vn. The coverage

of S is given by |C(S)|.
DEFINITION 3 (DIVERSIFIED SUBGRAPH QUERYING - DSQ).

Given a data graph G, a query graph Q, and an integer k, the di-

versified subgraph querying problem (DSQ) is to select a set S of

no more than k subgraphs in G that are isomorphic to Q, and such

that S has the largest coverage among all such selections of k or

less subgraphs.

Given a data graph G, a query Q and an integer k, diversified
subgraph querying returns k subgraphs that are isomorphic to Q
and that cover the largest number of vertices possible in G. Unfor-
tunately this problem is NP-hard, a proof of which is given in the
appendix.

THEOREM 1. The problem of DSQ is NP-hard.

Notice that two embeddings may select the same vertex sets from
the data graph G, with different matchings to the query graph. Du-
plicated vertex sets will not increase the coverage, and thus need
not appear in a solution for DSQ. Hence, we are only interested in
a set of embeddings with distinct vertex sets.

We overload the term embedding to also refer to the vertex set
of the subgraph for an embedding isomorphic to Q. Given a set of
embeddings, S = {s1, s2, ..., sm}, for some integer m, denote the
set of vertices s1 ∪ s2 ∪ ... ∪ sm as V (S). C(S) = V (S) is the
cover set of S. We say that the coverage of S is |C(S)|= |V (S)|.
For better clarity, we refer to vertices in the query Q as nodes and
those in the data graph G as vertices.

2.1 Disjoint Embeddings
From the definition of DSQ, the best possible coverage for k

subgraphs is attained when the subgraphs are disjoint. Therefore,
it is interesting to consider an algorithm that returns a maximum
number of disjoint isomorphic subgraphs. If the number of returned
subgraphs is k or more, we have an optimal solution for DSQ. This
problem is also NP-hard, since Maximum 3-dimensional matching
is a special case of the problem.

THEOREM 2. The problem of maximum disjoint isomorphic sub-

graphs is NP-hard.

However, a maximum disjoint set may not be necessary for our
problem. Instead, a maximal disjoint set of isomorphic subgraphs
is already an optimal solution, once there are at least k such sub-
graphs. This observation is key in our proposed solution, though
we generalize it to optimistically look for subgraphs with as little
overlapping as possible, progressively relaxing the restriction on
the overlapping size.

Algorithm 1: EXISTING SQ FRAMEWORK: QSearch(S,...)

1 if |S|= |VQ| then return S ;
2 u← nextQueryNode(...);
3 cand(u)← refineCandidates(u, cand(u), ...);
4 foreach v ∈ cand(u) and v that is not matched do

5 if IsJoinable(S, u, v) then

6 Update(S, u, v); QSearch(S, ...); Restore(S, u, v);

2.2 Existing Subgraph Querying Algorithms
DSQ can be solved by first generating all embeddings and then

selecting k embeddings with the best coverage. In such a way, DSQ
is related to the problems of subgraph querying, SQ, and maximum
k-coverage. Here we consider known solutions for SQ. In known
applications, query graphs are very small, and a very large num-
ber of matching subgraphs are typically obtained from a large data
graph. In known existing works for SQ, the search is terminated
when k embeddings are found, where k is 1000 in [16, 35] and
1024 in [27, 15]. We also observe that many of the resulting sub-
graphs with known algorithms are highly overlapping. The best
known mechanisms follow the basic scheme by Ullmann in [28],
which is a recursive backtracking scheme. This scheme computes
the solutions by incrementally enumerating and verifying partial
solutions. Its worst case time complexity is Θ(|V |! |V |2) [6]. This
generic framework for the SQ problem is shown in Algorithm 1.

Algorithm 1. The algorithm begins with S = ∅ and recursively
explores any matching for the query graph Q one node at a time.
cand(u), where u ∈ VQ, is the set of vertices in VG that have label
LQ(u). Subroutine IsJoinable determines if the edges between u
and the already matched nodes in Q have matching edges between
v and already matched vertices of G in S. If so, it updates the set S
with the inclusion of v, and the newly matched edges. The recur-
sion continues with QSearch; i.e., QSearch is triggered within
QSearch to search for the next query vertex. When the recursive
call returns, we restore S and continue with other candidates in
cand(u). refineCandidate differs in different algorithms, rang-
ing from simple degree checking to filtering by the neighborhood
information of u. It is often the case that vertices that are near to
each other are searched consecutively, which gives rise to many
overlapping subgraphs in the solution.

Adapting Algorithm 1 for DSQ. A simple adaptation of this frame-
work for DSQ is to consider all the candidate vertices for the first
query node in the above framework and to try to retrieve embed-
dings in a random manner from these starting points. It is hoped
that since the first candidates are dispersed, they may lead to diver-
sified embeddings. However, our empirical studies show that this
is not the case and the resulting coverage is not high. This is be-
cause although the first candidate vertices are distinct, the search
paths may converge to common vertices in the remaining candi-
date matching. E.g. in Figure 1, let the first query node be u3, we
may select v7 and v9 for u3. For the remaining searches, they may
converge to v3 for u1, v8 for u2, and v12 for u4. Thus, the two
embeddings returned will overlap at v3, v8, and v12.

2.3 Existing Maximum k-coverage Solutions
For DSQ, when all the embeddings (matchings) are given, the

remaining problem is a special case of the maximum k-coverage
problem with a subset size of |Q|. This well-studied problem is NP-
hard, and we may adopt some known approximation algorithms.

GreedyDSQ. Given the set of all embeddings, GreedyDSQ keeps
selecting the next embedding that gives the maximum gain in cov-

erage, until k embeddings are obtained. GreedyDSQ has an ap-
proximation threshold of (1−1/e) ≈ 0.632, which is the best pos-
sible guarantee for a polynomial time algorithm as shown in [12].
However, since the number of embeddings can be very large [1],
the cost to generate and store all embeddings can be prohibitive.

Streaming Algorithms: SWAP0, SWAP1, SWAP2, SWAPA. In
the following, we describe four streaming algorithms which keep
only a collection Acurr of k candidate embeddings at any time.
The matching embeddings are scanned once, each newly scanned
embedding may be swapped with an embedding in the current col-
lection. The algorithms differ mainly in the swapping conditions.
SWAP0 swaps the next embedding with an embedding in Acurr

whenever it increases the coverage. However, this may result in a
poor approximation. For a better guarantee we may swap embed-
dings based on the criterion in [25], resulting in algorithm SWAP1,
or that in [3], resulting in algorithm SWAP2. Informally, SWAP1
swaps embedding s with a new s′ when the benefit of adding s′ is at
least twice the loss of removing s in the coverage. SWAP2 swaps s
with new s′ when the coverage of the set of collected embeddings
after swapping is (1 + 1/k) times that of the current collection.
Another algorithm SWAPA can be seen as a hybrid of SWAP1 and
SWAP2, where a weighted combination of their swapping condi-
tions is adopted [32]. Each of SWAP1, SWAP2, and SWAPA is a
0.25 approximate algorithm [25, 3, 32]. The streaming algorithms
are still prohibitively costly since they require a feeding stream
from the set of all embeddings. The preprocessing to generate all
embeddings is required at query time and typically will take an ex-
cessive amount of time.

Use of SWAP2 in Diversified Clique Search. Diversified top-k
maximal clique search is considered in [33]. This problem is sim-
ilar to DSQ since diversity is also defined based on the coverage.
[33] utilizes SWAP2 so that only a selection of k cliques is main-
tained at any time. With such a streaming algorithm, an initial set
of k cliques need to be generated. The initialization step of [33] se-
lects a set of k maximal cliques greedily for better pruning power.
We also utilize a streaming algorithm. However, in our solution,
the initialization step becomes a first phase, which is the more im-
portant phase since in most cases it returns the solution directly. A
highly effective indexing, PNP, is proposed in [33] for the swapping
phase. We adapt this index for DSQ in our implementation.

3. SOLUTION OVERVIEW
As discussed in Section 2.3, existing approximation algorithms

for maximum k-coverage require the generation and scanning of
all embeddings. Let us first assume that we can adopt an existing
algorithm to generate all embeddings and that they can be stored
and scanned. We shall remove this assumption later in this section.
As pointed out in Section 2.1, if we aim for totally disjoint embed-
dings and succeed, we raise the approximation ratio to 1. Based
on this idea, our first attempt is a simple multi-scanning approach
starting with a zero overlapping constraint, and relaxing the over-
lap constraint level by level. We call this algorithm DSQNS (DSQ
with No Swapping). It works as follows. We maintain a solution
set T , and starting with T = ∅, we perform up to |Q| scans of the
embeddings. At the i+1-th scanning, a new embedding is selected
if it contributes |Q|−i new vertices to the coverage after this scan.
DSQNS terminates when |T |= k. We denote the set of vertices in
a set of embeddings S as C(S). |C(S)| is the coverage of S. Let us
compare the solution of DSQNS with an optimal solution OPT .
Clearly, |C(OPT)|≤ k|Q|. Suppose |T |= k in the i-th scanning,

then it is easy to see that
|C(T)|

|C(OPT)|
≥ |Q|−i

|Q|
. If i = 0, T is opti-

Algorithm 2: DSQL-P1 Framework: Phase 1 (no swapping)

1 begin

2 i← 0; T ← ∅;
3 while i < |Q| do
4 Generate a maximal set of embeddings S s.t. for any x ∈ S,

|x ∩ V (T)|= i and ∀x, y ∈ S, x ∩ y ⊆ V (T);
5 T ← T ∪ S;
6 if |T |≥ k then return T and i;
7 i← i+ 1;

8 return T and i;

mal. Next consider the case where |T |< k after the i-th scanning
where i = |Q|−1. In this case, each embedding o in OPT that
is not chosen by the algorithm cannot contribute any new vertex to
the solution T . That is, for each embedding o in OPT , it is either
included in T , or all the vertices in o are already in C(T). Thus, T

is also optimal: |C(T)|
|C(OPT)|

= 1.

While DSQNS has good approximate guarantee when it termi-
nates early, there are two problems: (1) Typically, it is excessively
costly to generate and scan all embeddings; (2) the worst case ap-
proximation guarantee is 1/|Q|, which is below that of the swap-
ping algorithms SWAP1 and SWAP2 if |Q|> 4.

We propose a novel level-based solution called DSQL (DSQ with
Level-wise coverage) preserving the benefits of DSQNS while
avoiding the above problems.

1. To avoid generating all embeddings, DSQL will selectively
generate embeddings as the input to a mechanism that resem-
bles DSQNS . Our study shows that the diversity objective
can help to restrict the search scope significantly. The em-
bedding generation process of DSQL is based on the recur-
sive backtracking scheme of Algorithm 1.

2. To achieve a better guarantee than SWAP1, we propose a two
phase algorithm. The first phase is non-swapping and resem-
bles DSQNS . For the second phase we propose a multi-scan
swapping algorithm called SWAPα. The embedding gen-
eration process remains level-wise and selective. The two
phases are summarized in the following.

[Non-swapping Phase(DSQL-P1)]: The first phase of our solu-
tion is called DSQL-P1. The framework is shown in Algorithm 2.
The solution set is collected in T , beginning with T = ∅. Initially
we are at level 0. We collect a maximal set of disjoint embeddings
in T and move on to level 1. Let Ti be the set of embeddings T im-
mediately after level i. At level i+1, we try to add a maximal set of
embeddings to T where each new embedding contains exactly i+1
vertices in V (Ti), and all remaining vertices are distinct. When k
embeddings are collected in T at any point at any level, the algo-
rithm terminates, thereby simulating the effects of DSQNS .

[Swapping Phase (DSQL-P2)]: After Phase 1, to improve the
approximate guarantee, we may continue with the second phase
based on the swapping mechanism SWAPα. The swapping phase
resumes the level-wise embedding generation, continuing at the
level at which Phase 1 ends. Each generated embedding may swap
with an embedding in T . Our swapping condition (Inequality (2))
allows us to set up an early termination criterion for this phase,
which can significantly improve efficiency.

Some main properties of DSQL are summarized in the following.

LEMMA 1 (MAXIMALITY). After the level i iteration in DSQL-

P1, if |T |< k, then any embedding s that is not in T must overlap

with the union of embeddings in T at i+ 1 or more vertices.

THEOREM 3. Let OPT be an optimal solution. If DSQL-P1

stops at the i-th iteration then the result A has an approximation

ratio of
|C(A)|

|C(OPT)|
≥ |Q|−i

|Q|
+ i

k|Q|
, which is tight for any i and

k. If it terminates at the |Q|−1-th iteration and result A has size

|A|< k, then A is optimal, i.e. |C(A)|/|C(OPT)|= 1.

THEOREM 4. Let OPT be an optimal solution. The approxi-

mation ratio of the solution SOL of DSQL is lower bounded by
|C(SOL)|
|C(OPT)|

≥ max
(

1
4

(

1 + 1
k

)

, 1
4

(

1 + 1
q

))

We list below the meaning of some of the terms we use.

T the current collection of embeddings

V (T) set of vertices belonging to the embeddings in T
candS(u) initial set of candidate vertices for u
qList a list storing the rankings of query nodes
Qovp set of query nodes that overlap with T
ovpEmb a partial embedding (with −1 for non-overlap nodes)

TcandS set of candS(u) ∩ T for u ∈ VQ

qfList list of ranked query nodes with father nodes

Rcand candidate vertex sets as restricted by localized search

pEmb a partial embedding as a set of (u, v) matching pairs

4. PHASE ONE OF DSQL: DSQL-P1
DSQL-P1 proceeds from level 0 up to level |Q|−1, with pos-

sible early termination. A set T is used to collect embeddings.
Algorithm 3 is the pseudocode for DSQL-P1.

Algorithm 3: DSQL-P1: the non-swapping phase

Input : candidates sets candS, k
Output : embedding set T , i (level number)

1 begin

// Let Q, G, T, candS be global variables

2 qList← Order(Q, candS);
3 T ← ∅;

// Q1Search updates T
4 Q1Search(qList, ∅);
5 if |T |== k then

6 return T , k;

7 foreach i ∈ {1, ..., |Q|−1} do

8 QoverlapList← { i-subsets of qList };
9 TcandS ← { TcandS[u] from T | u ∈ VQ } ;

// TcandS[u] = candS[u] ∩ V (T)
10 foreach Qovp ∈ QoverlapList do

// get i-overlap partial embeddings

11 while

ovpEmb = getNextOvpEmb(TcandS,Qovp) do

12 Q1Search(qList, ovpEmb);
13 if |T |== k then

14 return T , i;

15 return T , i;

T is initially empty. New embeddings are added to T at each
level. The value of i at Line 7 is the level number. When |T |= k,
or when no more embeddings can be added, DSQL-P1 terminates.
Let V (T) be the set of vertices that belong to the embeddings in
T . Let Ti be the value of T after the level i processing. At level
i, a new embedding to be selected should overlap with V (Ti−1)
at i vertices. To find an embedding, we first set i query nodes as
overlap nodes, and the matching data vertices of these query nodes
are selected from V (Ti−1). For the other query nodes, vertices in
VG\V (Ti−1) are matched. Each vertex in VG\V (Ti−1) is matched
at most once at level i. When such a new embedding is added into
T , it brings |Q|−i new vertices to T .

An index is pre-computed for looking up the set of vertices with a
given label. We also use indices for degree and neighborhood sig-

nature filtering for candidates as in previous works such as [16].
Before running DSQL, we first generate a candidate set candS(u)
for each u ∈ VQ based on these filters. For better selectivity, DSQL
ranks the query nodes and stores the ranking in a list qList based
on |candS(u)|/degree(u), where candS(u) is the set of data ver-
tices with the same label as u, and degree(u) is the degree of u
in Q. DSQL-P1 next calls subroutine Q1Search to get disjoint
embeddings at Line 4 (we will describe Q1Search in Section 4.1),
resulting in T0. If k embeddings are found, DSQL terminates. Oth-
erwise, DSQL-P1 continues to search for embeddings with overlap
(number of vertices that are already in current T) from size 1 to
|Q|−1 (Lines 7-14), in a level-wise manner. The algorithm termi-
nates once k embeddings are found.

When the overlap size is i (Level i), each i-subset of VQ is a pos-
sible set of overlap nodes, we denote such a set of query nodes as
Qovp. Each Qovp is sorted based on the ranking in qList, and is
kept in QoverlapList (Line 8). For each Qovp, DSQL-P1 finds
matching data vertices for the overlap nodes in Qovp. For every
query node u ∈ VQ, we derive the candidate set TcandS[u], where
TcandS[u] = candS[u] ∩ V (T) (Line 9). For every Qovp, we
find a match v for every node u ∈ Qovp by picking a vertex in
TcandS[u], resulting in a valid partial embedding, ovpEmb, in
which only the overlap nodes are matched (Line 11). These par-
tial embeddings, ovpEmb, are passed to Q1Search one by one to
form any complete embedding. Let qList = (u1, ..., uq), a partial
embedding can be denoted by an ordered list of (a1, ..., aq) where
ai = vi if vi is the vertex matched to the overlap node ui, and
ai = −1 (null) otherwise, i.e. −1 signifies an non-overlap node ui

that has not been matched.

4.1 Subgraph Search Function Q1Search
Q1Search (Lines 4 and 12 in Algorithm 3) is similar to the re-

cursive backtracking function of QSearch in Algorithm 1 in Sec-
tion 2.2, with three major differences:
(1) Some query nodes in qList have been matched in the given par-
tial embedding ovpEmb; there is no need to search for matchings
for these nodes. The remaining nodes are searched in the order of
qList; the candidate set for u is candS(u) \ V (T).
(2) For each given ovpEmb, the only overlapping nodes should be
the ones in ovpEmb. Once an embedding that matches all the null
(−1) entries in ovpEmb is found, there is no need to generate any
more embeddings that match ovpEmb. This avoids the generation
of many embeddings when compared to QSearch.
(3) Any data vertex matched in any full embedding is marked so
that it will not be matched again for non-overlap nodes in other
embeddings.

EXAMPLE 2. Consider Figure 2. Let k = 6. Algorithm 3 ranks

the query nodes in Q as qList = (u1, u2, u3). First, it searches

the candidates of u1, which are {v1, v7, v14, v16}, and get embed-

dings without overlap in T = {(v1, v2, v3), (v7, v8, v9)}. Since

K = 6, and |T |= 2 < k, we continue to search for embeddings

with overlapping vertices with T . We move on to Level 1 (see Fig-

ure 2(d)). The overlap size is set to 1; the ordered QoverlapList =

({u1}, {u2},{u3}). From T , derive TcandS = (u1 : {v1, v7},
u2 : {v2, v8}, u3 : {v3, v9}). For each Qovp in QoverlapList,
generate partial embeddings ovpEmb one by one and pass on to

Q1Search. When Qovp = {u1}, we get ovpEmbs (v1,−1,−1),
(v7,−1,−1). For ovpEmb = (v1,−1,−1), we get embedding

(v1, v5, v6). After processing all entries in QoverlapList, T con-

tains (v1, v2, v3), (v7, v8, v9), (v1, v5, v6), (v14, v2, v15), and

(v16, v17, v3), |T |= 5 < 6. We continue with Level 2 (see Figure

a
u1

b
u2

c
u3

v14

a

v1

a

v2

b

v15

c

v13

c

v7

a

v8

b

v9

c

v6

c

v5

b

v16

a

v17

b

v3
c

au1

bu2

cu3

(a) query graph Q (b) data graph G (c) qList

Qovp

u1

u2

u3

ovpEmb

(v1,-1,-1)

(v7,-1,-1)

(v1,v5,v6)

(-1,v2,-1)
(v14,v2,v15)

(v16,v17,v3)

(-1,v8,-1)

(-1,-1,v3)

(-1,-1,v9)

matching Qovp

u1,u2

u1,u3

u2,u3

ovpEmb

(v1,v2,-1)

(v1,v8,-1) (v1,v8,v13)

(v1,-1,v3)

(-1,v2,v3)

matching

:

:

:

:

:

:

(-1,v5,v6)

(d) Level 1 (e) Level 2

Figure 2: (a) Q, (b) G, (c) qList, (d) Qovp, ovpEmb and

embeddings generated at Level 1 of DSQL-P1, (e) some

ovpEmbs at Level 2 if T = {(v1, v2, v3), (v7, v8, v9),
(v1, v5, v6),(v14, v2, v15),(v16, v17, v3)}.

2(e)) to search for embeddings with overlap size 2 (i = 2). Now,

QoverlapList = ({u1, u2}, {u1, u3}, {u2, u3}), and TcandS =

(u1 : {v1, v7, v14, v16}, u2 : {v2, v5, v8, v17}, u3 : {v3, v6, v9, v15}).
Q1Search gets a new embedding (v1, v8, v13). Now |T |= 6, so

DSQL-P1 terminates. The results are (v1, v2, v3), (v7, v8, v9),
(v1, v5, v6), (v14, v2, v15), (v16, v17, v3), and (v1, v8, v13).

4.2 Indexing and Properties of DSQL-P1
DSQL-P1 requires the indices of candS, vertex degrees and neigh-

borhood signatures for filtering candidates (see Line 3 of Algorithm
1). The neighborhood signature of a vertex v, denoted by NS(v),
is the set of labels of the neighbors of v. NS(v) = {ℓ : (v, v′) ∈
E and L(v′) = ℓ}. The storage requirement is thus O(|V |+|E|).

At each level i, Lemma 1 says that we generate a maximal set
of new embeddings. An approximation guarantee for this phase is
given in Theorem 3. The proofs are shown in the appendix.

5. OPTIMIZING DSQL-P1
The efficiency of DSQL-P1 can be greatly improved if we con-

sider some properties of the diversity requirement. We introduce
some optimization strategies in this section. The first two strategies
prune partial embeddings by restricting the candidate sets for query
nodes. The next two strategies avoid unnecessary subgraph search
in the backtracking process. All four strategies require very little
extra storage and are easy to implement.

5.1 Localized Subgraph Search
When we are given partial embeddings, some query nodes are

already matched. We may greatly improve the performance by lim-
iting the search scope to the neighborhood of the matched vertices.
In Algorithm 3, we order the query nodes in qList according to
their selectivity. With this strategy, we reorder the vertices by giv-
ing higher ranks to matched nodes. We record essential informa-
tion in a new data structure qfList. The elements of qfList are of
the form (u, uf), where u is a query node, and uf is a designated
father node for u. uf = −1 for the first element in qfList. A father
node uf for node u is a query node that is processed before u and
there is an edge linking uf to u in the query graph Q. If (u, f) is

the r-th entry in qfList, we say that the rank of u, rank(u) = r.
We refer to u as qfList[r].node, and f as qfList[r].father.

d

u7

f

u6

e

u5

a

u1

b
u2

c
u3

d

u4

uf

u u1 u5 u6 u7 u3 u2

-1 u1 u1u5 u5 u1

u4

u1

(a) query graph Q (b) qfList

v7

d

v10

a

v1

a

v5

e

v13

c

v11

d

v8

b

v9

e

v4

d

v12

b

v15
c

v3

c

v2

b

v14

d

v6

f

v16

f

v17

d

(c) data graph G

Figure 3: Query graph Q, qfList, and data Graph G

EXAMPLE 3. Figure 3 shows a query graph and its qfList. (The

initial ordering in qList is given by u1, u5, u6, u7, u3, u2, u4.)

Suppose that currently u1 is matched to v1 in the data graph in

Figure 3 (c). Q1iSearch in Algorithm 4 follows the order in qfList,

thus, u5, u4, u2, u3 will be searched after u1. Since u1 is matched

to v1, the search is localized in the neighborhood of v1. In qfList,

the “father” of each of u5, u4, u2, u3 is u1. The candidates for

u5, u4, u2, u3 will be limited to the neighbors of v1, which are

{v5}, {v4}, {v2, v12}, {v3, v15}, respectively.

This strategy is similar to that of candidate region exploration,
which is a main idea proposed in [15]. However, compared to [15],
we have a more powerful localization condition since we limit the
search scope by T0 based on the following lemma, which can be
easily proved as a corollary of Lemma 1.

LEMMA 2. For any level i, i > 0, let Ti be the value of T after

Level i of DSQL-PL. Each embedding in Ti − Ti−1 must overlap

with embeddings in T0, and |T0|≤ k.

For this strategy, we introduce two subroutines as follows.

[Subroutine reSort(Q, qList,Qovp)]
reSort scans the nodes in qList until the first matched node u
(u ∈ Qovp) is found. (u,−1) is entered as the first element in
qfList. Next, for each neighbor u′ of u in Q, if the father node of
u′ has not been set, it is set to be u, and (u′, u) is added to qfList.
After this, (u,−1) is marked in qfList. We scan qfList until we
come to the first unmarked element, and repeat a similar process as
that for u. This is repeated until |qfList|= |Q|. Finally we shift the
entries (u, uf) to the end of qfList if degree(u) = 1 in Q.

[Subroutine setCandidates(uj , uf , pEmp,Qovp)]
setCandidates sets the candidate data vertices for a given query
node uj , given its father node uf in qfList. Let the result be Rcand.
First set Rcand = candS[uj]. Next, do the following.

1. If uf is matched to some vertex vf in pEmb, set Rcand to
be the set of neighbors of vf in G with the same label as uj .

2. (1) If uj ∈ Qovp : then further restrict Rcand to vertices
in T . Thus, Rcand ← Rcand ∩ V (T). (2) If uj 6∈ Qovp:
then, Rcand← Rcand \ V (T).

DSQL-P1 (Algorithm 3) is modified accordingly as follows. Func-
tion reSort is triggered initially after qList is built at Line 2 and

also in each level for each Qovp after Line 10. We call the im-
proved search function Q1iSearch (see Algorithm 4), passing the
parameter of qfList instead of qList. We do not generate ovpEmp
at Line 11, but instead pass an empty set to Q1iSearch for the partial
embedding. Q1iSearch will also search for the partial embedding
matchings, pEmb. setCandidates is triggered in the beginning of
Q1iSearch at Line 5, when a node uj is to be matched and the father
uf is retrieved from qfList. In Q1iSearch, QSearchD is triggered
when we encounter the first query node that is not in Qovp (Line
16). QSearchD is similar to Q1iSearch except that it returns true
if an embedding is found and will not search for more embeddings,
and QSearchD will only trigger QSearchD recursively.

5.2 Single Embedding Search Mode
Consider the example in Figure 2 again. If at level 1, Qovp =
{u1} and ovpEmb = {v1,−1,−1}, then suppose we assign a
candidate v5 to match with u2. Next, we can only select a single
embedding that contains v1 and v5, otherwise the overlap size will
not be 1. Thus we enter the single embedding search mode with
pEmb = {v1, v5,−1}. This search mode is handled by function
QSearchD in Algorithm 4. Recall that QSearchD is triggered
when we encounter the first query node that is not in Qovp. Since
we only need to find a single embedding in the single embedding
search mode, we further restrict the candidate set for query nodes.
For this purpose we define labelRm and neighborRm for each
query node when qfList is updated, the use of which will be ex-
plained shortly. labelRm(u) is the number of higher ranked nodes
in qfList that has label L(u). neighborRm(u) is the number of
higher ranked nodes in qfList linked to u by an edge in Q. That is,
labelRm(u) = |{u′ : rank(u′) > rank(u) ∧ L(u′) = L(u)}|
neighborRm(u) = |{u′ : rank(u′) > rank(u) ∧ (u, u′) ∈
EQ}|.

0 0 0 1 0 0

u1 u5 u3u6 u7 u2

0

u4

 labelRm

neighborRm 4 2 1 0 0 0 0

 query node

EXAMPLE 4. The above table shows the values of labelRm
and neighborRm for the example in Figure 3. For u1, no query

node after u1 in qfList has label L(u1) = a, hence labelRm(u1) =
0. neighborRm(u1) = 4, since u1 is linked to u5, u2, u3, u4.

For a query node uj , if neighborRm(uj) = 0, we randomly
retain only labelRm(uj)+1 valid vertices in Rcand, where a valid
vertex is a vertex joinable to the matched vertices. In QSearchD,
a candidate is matched if it is joinable to the vertices that are already
matched. If neighborRm(uj) = 0, the matching of uj will not
disqualify that for the higher ranked nodes in qfList due to this join
criteria, so the matching for uj can be randomly selected. The
matching for uj may affect other nodes with the same label, say
uk, since uj may take up a good candidate for uk. By choosing
labelRm(uj)+1 candidates we allow for one additional candidate
that avoids such conflict. The enhanced QSearchD has a stronger
pruning power than Q1Search since it restricts the candidate set
and will not continue the search if no embedding is found after
exhausting the candidates.

EXAMPLE 5. Let us consider the case in Example 4. Since

neighborRm(u2) = 0 and labelRm(u2) = 0, the number of

candidates for u2 is limited to 1. In Figure 3, if u1 is matched to

v1, according to qfList, the candidates of u2 are the neighbors of

v1 with label b, namely, v2, v12. Hence, we randomly pick v2 to

be the single candidate for u2, and v12 will not be matched. For

u7, neighborRm(u7) = 0 and labelRm(u7) = 1, we pick 2

candidates from the neighbors of v5, namely, v4 and v7. We need

to pick 2 candidates since if we pick v4 only, we cannot form the

embedding with v5, for v4 should be matched to u4.

5.3 Skipping Query Nodes in Backtracking
For our next enhancement strategy, the idea is to skip the pro-

cessing of certain query nodes under some condition to speed up the
backtracking process in the Q1iSearch or QSearchD recursions.
Let pEmb be a set of matching pairs (u, v), where u is a query
node, and v is a data vertex. When pEmb contains a pair (u, v) for
each vertex u in VQ, it is a full embedding. In Q1iSearch (Algo-
rithm 4), pEmb records the current partial embedding. pEmp is
initially empty on the first call of Q1iSearch, but grows as more
matching pairs are found. Given two query nodes ui and uj , during
the computation, when the current partial embedding is pEmb, we
say that uj conflicts with ui if either of the followings holds:

1. uj is linked to ui by an edge in Q.

2. vj has been matched to uj in the current partial embedding,
i.e. (uj , vj) ∈ pEmb. Also, vj is a valid candidate for ui,
i.e. L(vj) = LQ(ui) and vj passes the degree and neighbor-
hood signature filters for ui.

We use a conflict table to record the above conflict relationships.
A conflict table is a boolean array of size |Q|. We construct a
static conflict table for every u ∈ VQ as CT (u, ∗), with an en-
try in CT (u, ∗) for each query node. If u is connected with u′ in
Q, then the entry of u′ in CT (u, ∗) is set as true (1), otherwise it
is set as false (0). When matching query node ui, we construct a
dynamic conflict table for ui, CT (ui, β), where β is the current
partial embedding, and first, we initialize all entries to false. If a
candidate v passes the degree and neighborhood signature filter of
ui, but it is matched to uj in β, then uj conflicts with ui, and we
mark the entry of uj of CT (ui, β) as true.

[Skipping Non-conflict Nodes]. We say that DSQL fails at ui

when it cannot find a vertex to match with ui. If DSQL fails at ui,
it returns the conflict table CT (ui, β), where β is the current partial
embedding. When backtracking to uk, the algorithm checks tables
CT (ui, β) and CT (ui, ∗). If the corresponding elements of uk in
both tables are false, then there is no conflict, and the algorithm
skips uk and backtracks to a higher level. Otherwise it continues
with the next candidate for uk.

[Correctness]. Suppose uk is skipped by the strategy after failing
at ui and backtracking to uk . This implies that uk does not conflict
with ui, thus, uk is not a neighbor of ui in Q. Note that by the
construction of qfList, the parent node of ui will be encountered
before its other ancestor nodes in the backtracking. Thus, the only
way that the matching of uk to a vertex vk may affect the success
or failure of matching ui is when vk is a valid candidate for ui.
This is because if we have not selected vk for uk, it can be matched
to ui, and may result in a success instead of a failure. However,
since uk does not conflict with ui, vk is not a valid candidate for
ui. Thus, we can safely skip uk.

EXAMPLE 6. Consider the example in Figure 4. The querying

order for Q is u1, u2, u3, u4. Q1iSearch matches v1 to u1 and v2
to u2, and gets partial embedding β1 = {(u1, v1), (u2, v2)}. We

continue to try to match u3; candidates v2, v5, v7 to v1007 all fail

the degree filter test. So we fail at u3, returning CT (u3, β1). We

backtrack to u2. u2 does not conflict with u3 in both CT (u3, β1)
and CT (u3, ∗), so we directly backtrack to u1 and use v6 to match

Algorithm 4: Q1iSearch (to replace Q1Search in DSQL-P1)

Input : TcandS, qfList, start, Qovp, pEmb
Output : T , candS, and matched are updated

1 begin

2 if |pEmb|= |Q| then return;
3 j ← start;
4 uj ← qfList[j].node, uf ← qfList[j].father;
5 Rcand← setCandidates(uj , uf , pEmp,Qovp);
6 foreach v ∈ Rcand following its ordering do

7 if uj /∈ Qovp and matched[v] == true then
8 continue;

9 if v fails to pass the degree or neighborhood filters then

10 candS[uj]← candS[uj] \ {v}; continue;

11 if isJoinable(pEmb, uj , v) then
12 pEmb← pEmb ∪ {(uj , v)};
13 matched[v] = true;
14 if uj ∈ Qovp then

15 Q1iSearch(TcandS, qfList, j+1,Qovp,pEmb);

16 else if

QSearchD(TcandS, qfList, j + 1, Qovp, pEmb)
then

17 T ← T ∪ pEmb;
18 if |T |== k then return;
19 continue;

20 if uj /∈ Qovp then matched[v] ← false;
21 pEmb← pEmb \ {(uj , v)};

u1. Note that without node skipping, the backtracking will process

v5, v7,...,v1007 to map u2, and fail to find any embedding. Thus, a

large number of useless node searches are saved.

bu2

c
u4

b u3

au1

b

v2

av1

c
v4

b
v3

a v6

b

v5

b

v7

b

v1007...

...

(a) query graph Q (b) data graph G

1 0 0 1

u1 u2 u3 u4

0 0 0 0

u1 u2 u3 u4

0 1 0 0

u1 u2 u3 u4

(c) CT (u3, ∗) (d) CT (u3, β1) (e) CT (u3, β2)

Figure 4: (a) Q, (b) G, and node conflict tables: (c) static con-

flict table (d) partial embedding is β1 = {(u1, v1), (u2, v2)} (e)

partial embedding is β2 = {(u1, v6), (u2, v3)}

To continue, we match v6 to u1, and v3 to u3, The current partial

embedding is β2 = {(u1, v6), (u2, v3)}. We proceed to match u3.

However, the candidate v3 is already mapped to u2. Because of

this, u2 conflicts with u3. After failing at u3, we backtrack to u2.

Since u2 conflicts with u3, we cannot skip u2, and match u2 with

the next candidate v5. With further recursions, we get the embed-

ding (v6, v5, v3, v4).

5.4 Skipping Data Vertices in Backtracking
When the average degree in the data graph is relatively high,

there may be many vertices sharing the same or similar neighbor-
hood. Failure with such vertices may incur many duplicated com-
putations. [24] rewrites vertices with the same neighborhood as a
super node, thus reducing the costs. Our algorithm simply keeps
track of "bad" vertices to a similar effect.

Let the query nodes be processed in the order of u1, ..., uq , i.e.,
we assume the following ranking in qfList: rank(u1) < ... <

rank(uq). Suppose we match a data vertex vi for ui, but we could
find no match for ui+1, then we mark vi as a "bad" vertex. These
markings of vertices are only kept for one layer: when we back-
track to the parent of ui, all "bad" vertices marked at the matching
for ui+1 are unmarked. When the subgraph search fails at query
node ui, we backtrack to the first query node uj that conflicts with
ui. We examine the query node uj−1 before uj . If uj−1 does not
conflict with ui, the data vertex for uj is marked as a "bad" vertex.
When we backtrack to the query node uj−1, the processing of uj−1

will skip the "bad" vertices for the matching of uj next time. We
illustrate the effects of this strategy with the following example.

d

u5

b

u4

cu3

b
u2

a
u1 v1 a v2a

v3
a

v4 b v5 b v6 b

v8 c c v1007c
v1006

c

v1008 d d

v2007

b

v2006

d

v7 b

... ...

... ...

v2008

d

(a) query graph Q (b) data graph G

Figure 5: An example of a denser data graph

EXAMPLE 7. Given G and Q in Figure 5. Consider the case

when the partial embedding pEmb = {(u1, v1), (u2, v4)} and we

try to match u3. The next candidate is v8. Since there is no match-

ing for u4, the algorithm marks v8 as "bad". Similarly, v9, ..., v1006
are marked as "bad" vertices. When the algorithm chooses v5 for

u2, it will directly skip "bad" vertices, i.e. v8, ..., v1006 . Then there

is no matching for u3, so v5 is marked as "bad". The algorithm

continues this process. Finally, when v3 is mapped to u1, v5 and

v6 are all marked as "bad" vertices, the algorithm directly checks

v7 and finally finds one matching (v3, v7, v1007, v2007 , v2008).
Note that v1006 will be marked as a "bad" vertex when there is no

matching for u4, as it is searched after matching v6 to u2. However,

when we move up to u1, v1006 will be unmarked.

LEMMA 3. The strategy of skipping "bad" vertices is correct.

A proof is given in the appendix. Note that this strategy and the
previous strategy are also applicable for subgraph querying, SQ.

6. PHASE TWO OF DSQL: DSQL-P2
Phase two of DSQL continues the search from phase one, with

the objective of enhancing the result by swapping embeddings and
providing a better worst case approximate guarantee.

6.1 SWAPα: Multi-Scan with Swapping
To simplify our discussion, we assume again that we first have all

the embeddings generated by an SQ mechanism. Then in Section
6.2 we shall remove this assumption. The streaming algorithms de-
scribed in Section 2.3 are 0.25-approximate. In this subsection, we
show that multiple embedding scannings can lead to better guar-
antees. The main results in this section are: (1) we propose a
multi-scan algorithm SWAPα, and derive the parameter settings
for progressive improvements on the approximation bound, which
is asymptotically 0.5. (2) We introduce a new swapping condition
in SWAPα which allows for early stopping. (3) We improve the ap-
proximation bound of the known algorithms of SWAP1, SWAP2,
and SWAPA to 0.25 × max((1 + 1/k), (1 + 1/q)), which also
applies to SWAPα.

6.1.1 Swapping Criterion for Each Scan

Let h = (Vh, Eh) be an embedding of G, C(h) = Vh, |C(h)|
stands for the coverage of h. Let F = {g1, g2, ..., gk} be a set
of k embeddings of G, where gi = (Vi, Ei), C(F) =

⋃

i Vi,
|C(F)| is the coverage of F . We assume that we are given a list of
all embeddings. SWAPα consists of multiple passes, and in each
pass, all embeddings are scanned once. Let the embedding list be
S = s1, s2, ..., |S|≥ k.

In each pass, a collection F of k embeddings for the current best
selections is maintained. We swap embeddings in the collection
with a newly scanned embedding when the swapping criterion is
satisfied. The first collection of k embeddings for the first pass is
F0 = {s1, .., sk}. The final collection generated by the t-th pass is
the first collection of the t+ 1-th pass.

The coverage loss of an embedding f w.r.t. an embedding set F
containing f is the coverage that is lost if f is deleted from F :

L(f, F) = |C(f) \ C(F \ f)| (1)

The coverage benefit of an embedding h w.r.t. a set F of embed-
dings is the gain in coverage if h is added to F :

B(h, F) = |C(h) \ C(F)|

[Swapping Criterion] In general, we swap the next candidate h
with any candidate f∗ ∈ F if for a certain parameter α ≥ 0,

B(h, F) ≥ (1 + α)L(f∗, F) (2)

The loss function L(f, F) above differs from the loss measure-
ment in [25], which is given by L+(f, h, F) = |C(f) \C(F ∪h \
f)|. In our empirical studies, we show that the two loss functions
result in similar performance in efficiency and quality for maximum
k-coverage. However, L(f, F) is independent of the new embed-
ding h, which allows us to introduce an early stopping strategy in
our algorithm for DSQ, as will be shown in the proof of Lemma 4
in Section 6.2.

6.1.2 Progressive Gain with Multiple Scans

The question is how to set the value of α in Equation (2) in each
scan. Let αt be the value of α used for the t-th scan of the em-
beddings. γt is a lower bound for the approximation ratio of the
resulting collection of embeddings in the t-th scan. For a scanning
of the embeddings, let F0 be the initial embedding collection, and
Fi be the embedding collection when fi is removed from it, where
fi is the i-th embedding swapped out by the algorithm. Hence
fi ∈ Fi and fi 6∈ Fi+1. Let Ffinal be the final collection. We
set γt as the value of |C(Ffinal)|/|C(OPT)| for the t− 1-th scan
or the value of |C(F0)|/|C(OPT)| for the t-th scan, where OPT
is an optimal solution. Our main result on the setting of α and the
coverage guarantee is the following:

THEOREM 5. At the t-th scanning of SWAPα, if γt−1 < 0.5,

then by setting
αt = 1− 2γt−1 (3)

the approximation ratio of the embedding collection after the scan-

ning is lower bounded by

γt = 0.25(1/(1 − γt−1)) (4)

A proof of Theorem 5 is given in the appendix. From Equations
(3) and (4), if γ0 = 0, α1 = 1, γ1 = 0.25, α2 = 0.5, γ2 = 1/3,
α3 = 1/3, γ3 = 3/8, α4 = 1/4, γ4 = 0.4, α5 = 0.2, γ5 ≈
0.416, α6 = 1/6, γ6 ≈ 0.428, α7 ≈ 0.114, γ7 ≈ 0.437 ...

It can be shown that γ0, γ1, ... converges to the fixed point of 0.5.

6.1.3 A Better Bound for the Swapping Mechanism

For the first scan, we can get a better bound if we do not simply
pick the first k scanned embeddings for F0. Instead, we begin with
an empty F0, and add the next scanned embedding h if the swap-
ping criterion is met, assuming that an empty fictitious embedding
f is swapped out. Since the loss L(f, T) = 0, the next embed-
ding is added whenever there is non-zero additional coverage. This
is repeated until k embeddings are collected in F0. After that the
algorithm continues as before. We refer to this as the progressive

initialization step. We prove the following in the appendix.

THEOREM 6. For DSQ, let SOL be the solution of any of the

one-pass algorithms SWAP1, SWAP2, SWAPA and SWAPα with

α = 1, with the progressive initialization step,
|C(SOL)|
|C(OPT |)

≥ max
(

1
4

(

1 + 1
k

)

, 1
4

(

1 + 1
q

))

E.g. if k = 2, γ1 = 0.375, if q = 5, then γ1 = 0.3.
This is a better bound compared to 0.25 derived in [25] and [32]
The result holds also for the maximum k-coverage problem when

the given subsets are of the same size, q.

6.2 DSQL-P2
SWAPα assumes an input stream of embeddings. We now relax

the seemingly necessary requirement to generate all embeddings.
As in DSQL-P1, in DSQL-P2, we generate embeddings in a level-
based approach and supply the embeddings to a SWAPα based al-
gorithm, with an early stopping technique that can attain the same
approximation guarantee without generating all embeddings.

After Phase 1 of DSQL, we obtain an embedding set T and also
a level number i. T and i are input to the second phase, DSQL-P2.
There are two possibilities:
(1) i = |Q|−1 and |T |< k. From Theorem 3, the solution T is an
optimal solution. Thus, we terminate without triggering Phase 2.
(2) Otherwise, |T |= k. This is because |T |= k is the termination
criteria at any level below |Q|−1. There are two subcases:
(2a) The embeddings in T are disjoint. In this case, the algorithm
has an optimal solution and is terminated.
(2b) Otherwise, if the approximation ratio of T is ≥ 0.5, return T
as the solution. Else, trigger Phase 2, DSQL-P2.

We terminate at an approximation ratio1 of 0.5 or above since
the guarantee of SWAPα is bounded by 0.5. Note that at the be-
ginning of Phase 2, |T |= k. DSQL-P2 is shown in Algorithm
5. The first step in DSQL-P2 is to save the input T as T1. In
Q2Search, we generate embeddings as in the first phase except
for a main difference: we always use T1 instead of T in the gener-
ation of TcandS. When an embedding h is found, we check if the
swapping condition of Inequality (2) is satisfied for any embedding
f in T : B(h, T) ≥ (1 + α)L(f, T). If it is satisfied then we swap
h with f . Next, we check if DSQL-P2 can be terminated. The
termination condition is described below.

[Early Termination]: The swapping phase is terminated if both of
the following two conditions hold:

(1) V (T1) ⊆ V (T);

(2) For each embedding f ∈ T , L(f, T) ≥ (q − i)/(1 + α).

If the above conditions do not hold, we continue with the gen-
eration of the next embedding. When all level i embeddings have
been generated, and if i < |Q|, we continue with the next level of
j = i + 1. This recursive process continues until either we can

1The approximation ratio is taken to be |C(T)|/kq.

Algorithm 5: Swapping Phase: DSQL-P2(T ,i)

Input : Q,G, candS, k, qList, T, i (level number)
Output : top k embeddings (T)

1 begin

2 T1← T ;
// Q,G, T, candS, k are global

3 foreach j ∈ {i, ..., |Q|−1} do
4 QoverlapList← {subset of qList of size j};
5 TcandS ← {TcandS[u] from T1|u ∈ VQ};
6 foreach Qovp ∈ QoverlapList do
7 while

ovpEmb = getNextOvpEmb(TcandS,Qovp) do

8 if ¬Q2Search(qList,0, ovpEmb, T1) then

9 return T ;

terminate early or j = |Q|−1. The following lemma is proved in
the appendix.

LEMMA 4. The early termination for DSQL-P2 is correct.

Initially T = T1, therefore if for all f ∈ T1, L(f, T1) ≥ (q −
i)/(1 + α), the swapping process can be terminated. The overall
approximation guarantee of DSQL is given by Theorem 4, a proof
of which is included in the appendix.

7. EMPIRICAL STUDY
In this section, we present our experimental results. All our ex-

periments are conducted on a machine with 3.4Ghz Intel Core i7-
4770 CPU and 16 GB RAM, running Ubuntu 12.04 LTS Linux OS.
All algorithms are implemented in C++. For existing algorithms we
use the coding provided by the authors of [24] for BoostIso over
TurboISO, and for TurboISO.

Datasets. We use 9 real datasets in our experiments: Human,
Yeast, Youtube, Wordnet, DBLP, Epinion, USpatent, Dbpedia, and
IMDB. The first six sets are used in [24], USpatent is used in [27],
and DBpedia and IMDB are used in [18]. Dbpedia is an RDF graph
crawled from Wikipedia2. We choose the person dataset and their
links to build the graph. Epinion is a who-trust-who online social
network3. The IMDB data set contains rich information of movies
and TV series. We extract the relationship among movies, TV se-
ries, actors, actresses and directors to build the whole graph. Each
of these datasets is one data graph. For Youtube, Epinion, DBLP,
and Dbpedia, there are no given labels, as in [24], we have assigned
a label for each vertex from a synthetic label set of sizes 100, 50,
50, and 100, respectively, with a uniform random distribution. The
details are shown in Table1.

Query Set. Except for the special queries used in Section 7.2, we
generate query graphs by randomly selecting connected subgraphs
of G, using the query generator coding from the authors of [24].
There are 1000 query graphs in one query set with the same query
size (the number of edges). The query size ranges from 1 to 10. Let
the query size be z. The generator begins with an empty Q, and
randomly picks a vertex u from G, puts it into Q, and continues to
randomly choose an edge e = (u, v) incident to a vertex u in Q
from E, and adds v and e to Q, until there are z edges in Q. We
vary k from 10 to 50. The default query size is 5 and the default k
value is 40.

Measurements. In our experiments, we measure the runtime,
which is by taking the average time per query after running 1000

2http://dbpedia.org/
3http://snap.stanford.edu/data/

Dataset(G) |V | |E| |Σ| Avg. degree

Yeast 3101 12519 31(184) 8.07

Human 4675 86282 90 36.92

Wordnet 76854 213308 5 5.55

Epinion 75879 405741 50
∗ 10.69

DBLP 317080 1.04M 50
∗ 6.62

Youtube 1.1M 2.9M 100
∗ 5.26

Dbpedia 809597 3.72M 100
∗ 9.19

IMDB 4.49M 7.49M 123 3.34

USpatent 3.77M 16.5M 388 8.75

Table 1: Statistics of datasets (* indicates synthetic labels)

random queries. We also measure the coverage, which is an average
value taken over 1000 queries. Let A be a solution for DSQ. |C(A)|
is the coverage of A. If the optimal solution size, |C(OPT)|, is
known, then the approximation ratio is given by |C(A)|/|C(OPT)|.
Otherwise, the approximation ratio is set to |C(A)|/kq, where q is
the query size in number of vertices, in which case, it is actually a
lower bound on |C(A)|/|C(OPT)|. Again, we take the average
value over the query set. Note that we set the time limit to 5 hours,
if the algorithm cannot finish the 1000 queries, we would terminate
the program.

7.1 Results with Existing Methods
Our first study computes the total number of embeddings for the

real datasets when the query size is 5 and k = 40. We used the
coding of BoostIso over TurboISO for generating the embeddings.
The results are shown in Table 2. The average per query is taken
over 1000 random queries for DBLP and 50 queries for the other
datasets, since 50 queries already take many hours. We have no
result for the remaining datasets as they take more than 5 hours for
50 queries. The numbers are very large except for DBLP, which is
due to the smaller data size and average degree, and the more even
distribution of labels in DBLP. This result shows that enumerating
all embeddings leads to very large answer sets. In addition, the time
to enumerate all embeddings is not scalable to large graphs.

Yeast Epinion DBLP Youtube Others

average 123389.6 666387.4 412.3 36.3M –

worst case 19.33M 1.02M 13559 1925.45M –

time(sec) 121.75 11.28 1.32 775.46 –

Table 2: Total number of embeddings and query time by best

known SQ method (per query) with |EQ|= 5

Next, we adopt a known SQ method and take the first k gen-
erated embeddings as the result. We apply the state-of-the-art al-
gorithm of BoostIso on top of TurboISO. The results are shown
in Table 3. The coverages are small because the first k matchings
are trapped in local areas, creating much overlapping. Thus, this
approach cannot provide a well diversified solution.

Yeast Epinion DBLP Youtube Others

coverage 21.05 21.76 39.07 25.82 –

approx ratio 0.105 0.091 0.168 0.108 –

Table 3: Results of best known SQ method, |EQ|= 5, k = 40

7.2 Some Query Results with IMDB
Next we evaluate the performance of DSQL. We compare DSQL

with an interleaving search method adapted from a SQ solution.
We call this method COM . We also apply our localized subgraph
search and skipping strategies to this method. COM first sorts the
query to form qList. Then for every candidate vi of the first node
in qList, it maintains a list of recursive iterators where each iterator
traverses the candidates of every query node, and explores a search

region rooted at vi. COM processes the results in an interleaving
manner. Once it finds an embedding in a search region rooted by vi,
it saves the states of the iterators for vi, and then randomly jumps
to another region rooted at another candidate vj . When COM next
jumps back to the search region rooted by vi, it restores the states
for continuing searching. COM terminates when k embeddings
are found.

c

u1

d

u2

e

u3b

u5

a

u4 Actor

Actress

Director

Action3

Adventure3

c

d

e

b

a

William

Devane

Anne

Hathaway

Christopher

Nolan

The Dark

Knight Rises

Interstellar

Query Graph A Subgraph Result

For IMDB, we build an edge if an actor/actress/director takes
part in a movie/TV series. We label the movies and TV series by
the rank and genre information, e.g., Adventure3 stands for an ex-
cellent (rank ≥ 8.5) adventure movie. We examine the results of
the query in the above figure, which resembles our motivating ex-
ample. With the default setting of k = 40, COM gets a coverage
of 97, while DSQL gets a coverage of 150. E.g. DSQL retrieves
"Prison Break" for u4, while COM does not. The figure above
shows an interesting result returned by DSQL. Another interesting
result is the following:
{Welliver_Titus, Scarwid_Diana, Beesley_Matt_Earl, Prison Break, Lost}

7.3 Performance of DSQL
In this subsection, we compare the runtime and coverage of DSQL

and COM . For the comparison of each dataset, we vary the values
of k from 10 to 50 and measure both the runtime and the coverage.
We repeat this by varying the value of |EQ| from 1 to 10, following
the settings of [24]. The results are shown in Figure 6. Here the
number of nodes (# Nodes) refers to |C(A)|, where A is the re-
sulting set of embeddings, for both DSQL and COM . To see how
close the coverage is to the optimal result, we also plot a MAX
value for comparison. With DSQL, we may discover an optimal
solution if we get k disjoint embeddings or the number of embed-
dings in the solution is below k (see Theorem 3). In such cases,
MAX is set to |C(A)| if A is the solution set. Otherwise, MAX
is set equal to |VQ|×k, which upper bounds the optimal coverage.
Thus, we can compare the value of |C(A)| for our solution A with
MAX.

In general, the coverage increases with both k and |EQ|, since
more embeddings collected increase the number of covered ver-
tices. Typically, a larger query size also leads to more covered ver-
tices. COM covers much fewer vertices compared to DSQL. Even
though it adopts an interleaving approach and randomly jumps be-
tween search regions, there is no mechanism to avoid overlapping
as in DSQL. The coverage is generally very high for DSQL because
it can avoid being trapped in a local area as it targets embeddings
with limited overlapping.

For IMDB the label distribution is highly skewed, 90% of the
labels are actor, actress or director, so the matchings can be highly
numerous in some regions, and if a search enters such a region it
can be very costly irrespective of the query size. Hence, we see
some fluctuations in the runtime.

Since COM returns the first k embeddings found, it is quite fast
when query size is small. When the data graph or query size is
large, COM may not finish within our time limit of 5 hours. This
happens with Wordnet when the query size is large than 9, and with
IMDB when the query size is 6 or above. This is because COM
may run into some deep recursion that involves many redundant
computations without yielding any result. DSQL performs much

10 20 30 40 50
k

10
-1

10
0

10
1

10
2

R
u
n
ti

m
e
(m

s
) DSQL

COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
ti

m
e
(m

s
) DSQL

COM

2 4 6 8 10
Query Size

0

200

400

600

#
 N

o
d
e
s

COM
DSQL
MAX

(a) query time and coverage for Wordnet

10 20 30 40 50
k

10
0

10
1

10
2

R
u
n
ti

m
e
(m

s
) DSQL

COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
) DSQL

COM

2 4 6 8 10
Query Size

0

100

200

300

400

#
 N

o
d
e
s

COM
DSQL
MAX

(b) query time and coverage for DBpedia

10 20 30 40 50
k

10
-1

10
0

10
1

10
2

10
3

R
u
n
ti

m
e
(m

s
)

DSQL
COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
) DSQL

COM

2 4 6 8 10
Query Size

0

200

400

600

#
 N

o
d
e
s

COM
DSQL
MAX

(c) query time and coverage for IMDB

Figure 6: Comparing DSQL with an interleaving search method, COM

better since the single embedding search stops searching when no
match is found for a restricted set of candidates. DSQL also limits
the exploration of search space within the single required embed-
ding for each overlap pattern.

7.4 Effects of Varying the Label Set Size
We study the performance of DSQL with different label densi-

ties. Here we define label density as
|Σ|
|V |

. We consider datasets

DBLP and Youtube with synthetic labels. For each graph, we vary
the label density from 0.05 ∗ 10−3 to 0.2 ∗ 10−3.

In Figure 7, the bars labeled Youtube and DBLP show the cov-
erages of DSQL algorithm, while MYoutube and MDBLP are their
MAX values, respectively.

0.05 0.1 0.15 0.2

label density(10−3)

0

50

100

150

200

250

300

#
 N

o
d
e
s

Youtube
MYoutube
DBLP
MDBLP

0.05 0.1 0.15 0.2

label density(10−3)

10
0

10
1

10
2

R
u
n
ti

m
e
(m

s
)

YouTube DLBP

Figure 7: Effects of the label set size, k=40, |Q|=5

From the result, the coverage of DSQL is always close to MAX.
As the label density increases, the approximation ratio would first
decrease then increase, while the running time first increases then
decreases.

The reason for these trends is the following. When label density
is relatively small, there exist many matches in the data graph so
that DSQL finds diversified results easily within a very short time.
As the label density increases, there exists less matches. DSQL
would terminate at higher levels, so the approximation ratio would
decrease and more time is needed. As the label density grows even
larger, there may not be enough k matches in the data graph, so
DSQL often quickly terminates at the last level, and the coverage
is close to MAX.

8. RELATED WORK
Subgraph isomorphism problem is an NP-complete problem[5].

A lot of effort has been devoted to solving it in a reasonable time
for real datasets. Ullmann proposed the first practical algorithm for
solving subgraph isomorphism problem [28]. It is a recursive back-
tracking algorithm which computes the solutions by incrementally
enumerating and verifying partial solutions. In recent years, many
works such as VF2[6], QuickSI[26], GraphQL[16], SPath[35] and
TurboIso[15] have been proposed based on the backtracking frame-
work. They improve the performance of the Ullmann algorithm by
using vertex matching order strategies, adding powerful filters to
prune invalid candidates early and choosing proper join orders. The
best known complexity of an algorithm for this problem is that of
VF2, which is Θ(|V |! |V |) [6], however, VF2 has been shown to be
less efficient than variants of the Ullmann algorithm in later works.
In [1], the number of subgraphs of G isomorphic to a given graph
H is shown to be O(|EG||VH |) for finite simple graphs. Boost-
Iso[24], TurboIso[15], and RBSub[11] solve the graph matching
problem by graph compression. They exploit an equivalence re-
lationship between vertices and the structure of the query graph
to compress the data graph. Efficient RDF querying based on the
properties of RDF data is studied in [19].

The indexing method that we use exploiting neighborhood infor-
mation to prune candidate set of vertices has been used in previous
works including GraphQL[16], SPath[35], and STwig[27]. The in-
dexes are used as filters, so these algorithms are all under the back-
tracking framework in Section 2.2. An in-depth study is made in
[21] comparing such methods and it is found that excessive index-
ing may lower the performance because of the overhead and lim-
ited filter effects. We adopt the best indexing strategy as noted in
[21], which is that of the neighborhood signatures. For the study of
querying a large set of relatively small graphs, indexes have been
used as the filters of candidate graphs, some previous works are
gIndex[30], FG-index[4], Tree+δ[36], and SwiftIndex[26]. A dis-
tributed algorithm STwig is proposed in [27] for solving subgraph
isomorphism problem in billion-node graphs. Subgraph enumera-
tion in MapReduce is considered in [20].

Approximate matching in large graphs is studied in SAPPER[34],
where matching with bounded edit distance from the query graph
is considered. [22] proposes the notion of strong simulation, with a
tractable time complexity in the computation. Based on strong sim-
ulation, [11, 9] apply graph compression strategies to do efficient
graph querying. [37, 10, 14] also study the problem of ranking the
results. [37, 14] exploit the weights of nodes or edges, while [10]
ranks the matched subgraphs based on their structure and diversity.
[11] studies personalized social search in directed graphs where a
query contains a particular person node.

The more general problem of diversity in search results has re-
ceived much attention. A survey of top-k querying techniques in
relational database systems is given in [17]. Three categories of
diversity are identified in [7], namely, content based, novelty, and
coverage. Algorithms of swapping heuristics and greedy selection
have been used in diversifying recommendations for web tagging
sites [31]. Efficient data access for diversity-aware search of rel-
evant documents is studied in [2], and that for vector objects in
[13]. A diversity measure based on distances among data objects
is proposed in [8]. Redundancy-aware maximal clique searching is
studied in [29]. Diversified top-k clique search proposes to find k
maximal cliques in a data graph with the maximum coverage [33].
Another related work is [23], which reformulates a given query
graph into a number of supergraphs to enrich the search results,
and the search results are diversified.

9. CONCLUSION
We study the problem of diversified subgraph querying (DSQ) in

a large graph, which is to find k subgraphs isomorphic to a given
query graph with maximum coverage. We propose a novel level-
based algorithm called DSQL with an approximation guarantee.
DSQL proceeds from low to high levels. The level number refers to
the number of common vertices of a newly selected subgraph with
the collected subgraphs. Our experiments show that DSQL can
generate highly diversified solutions with a quick response time.

10. ACKNOWLEDGEMENTS
We would like to thank the authors of [24] for kindly sharing

their source code with us, Janet Yung for help in the proof-reading,
and the reviewers for helpful comments. This research is supported
in part by the Hong Kong RGC/GRF research grant 412313 Project
ID 2150758.

11. REFERENCES
[1] N. Alon. On the number of subgraphs of presribed type of graphs

with a given number of edges. Israel Journal of Mathematics,
38(1-1):116–130, 1981.

[2] A. Angel and N. Koudas. Efficient diversity-aware search. In
SIGMOD, 2011.

[3] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos.
Online maximum k-coverage. Discrete Applied Mathematics,
160(13-14):1901–1913, 2012.

[4] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases. In SIGMOD,
2007.

[5] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of

computing, pages 151–158. ACM, 1971.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
26(10):1367–1372, 2004.

[7] M. Drosou and E. Pitoura. Search result diversification. SIGMOD

Record, 39(1):41–47, 2010.

[8] M. Drosou and E. Pitoura. Disc diversity: Result diversification
based on dissimilarity and coverage. In VLDB, 2013.

[9] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph
compression. In SIGMOD, pages 157–168. ACM, 2012.

[10] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern
matching. VLDB, 6(13):1510–1521, 2013.

[11] W. Fan, X. Wang, and Y. Wu. Querying big graphs within bounded
resources. In SIGMOD, pages 301–312. ACM, 2014.

[12] U. Feige. A threshold of ln n for approximating set cover. JACM,
45(4):634–652, 1998.

[13] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded
diversification. In SIGMOD, 2012.

[14] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. Top-k interesting
subgraph discovery in information networks. In ICDE, pages
820–831. IEEE, 2014.

[15] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and
robust subgraph isomorphism search in large graph databases. In
SIGMOD, pages 337–348. ACM, 2013.

[16] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In SIGMOD, pages 405–418. ACM,
2008.

[17] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.

Surv., 40(4), 2008.

[18] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast graph
search with label similarity. In VLDB, 2013.

[19] J. Kim, H. Shin, and W.S.Han. Taming subgraph isomorphism for
RDF query processing. In VLDB, 2015.

[20] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration
in mapreduce. In VLDB, 2015.

[21] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth
comparison of subgraph isomorphism algorithms in graph databases.
In VLDB, volume 6, pages 133–144. VLDB Endowment, 2012.

[22] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in
graph pattern matching. VLDB, 5(4):310–321, 2011.

[23] D. Mottin, F. Bonchi, and F. Gullo. Graph query reformulation with
diversity. In SIGKDD, 2015.

[24] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. VLDB, 8(5), 2015.

[25] B. Saha and L. Getoor. On maximum coverage in the streaming
model and application to multi-topic blog-watch. In SDM, 2009.

[26] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification
hardness: an efficient algorithm for testing subgraph isomorphism.
VLDB, 1(1):364–375, 2008.

[27] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. VLDB, 5(9):788–799, 2012.

[28] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of

the ACM (JACM), 23(1):31–42, 1976.

[29] J. Wang, J. Cheng, and A. Fu. Redundancy-aware maximal cliques.
In KDD. ACM, 2013.

[30] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, pages 335–346. ACM, 2004.

[31] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes variety to make a
world: Diverisification in recommender systems. In EDBT, 2009.

[32] D. Yuan, P. Mitra, H. Yu, and C. Giles. Updating graph indices with a
one-pass algorithm. In SIGMOD, 2015.

[33] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k
clique search. In ICDE, 2015.

[34] S. Zhang, J. Yang, and W. Jin. Sapper: subgraph indexing and
approximate matching in large graphs. VLDB, 3(1-2):1185–1194,
2010.

[35] P. Zhao and J. Han. On graph query optimization in large networks.
VLDB, 3(1-2):340–351, 2010.

[36] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree+ delta<= graph.
In VLDB, pages 938–949. VLDB Endowment, 2007.

[37] L. Zou, L. Chen, and Y. Lu. Top-k subgraph matching query in a
large graph. In Proceedings of the ACM Ph. D. workshop in CIKM,
pages 139–146. ACM, 2007.

APPENDIX

A. SOME PROOFS
Some theorems and lemmas are proved in this section.

A.1 Proof of Theorem 1

PROOF. We prove by showing that the decision problem of DSQ
is NP-complete. In the decision problem of DSQ, we are given a
data graph G, a query graph Q, and two values k and c. The ques-
tion is whether there exists a set S of k embeddings of Q in G
where |C(S)|≥ c. This problem is in NP since we can guess S
and check its validity in polynomial time. It is NP-complete be-
cause we can transform the decision version of maximum disjoint
isomorphic subgraphs, let us call it DMDIS (see Theorem 2), to
this problem by first equating k in the DSQ problem to the required
number of disjoint subgraphs in DMDIS, and then setting the value
of c to k|Q|.

A.2 Properties of DSQL-P1
In DSQL-P1, let Ti be the currently collected set of embeddings,

stored in T , after the (i + 1)-th iteration. Note that T0 contains
disjoint embeddings. Let us restate Lemma 1:

LEMMA 1. (restated) At the end of the i-th iteration of Algo-

rithm DSQL-P1, 0 ≤ i ≤ q − 1, if |Ti|< k, then any embedding

s that is not included in Ti must overlap with the union of embed-

dings in Ti at i+ 1 or more vertices.

PROOF. We prove by induction. Consider the base case for the
1-st iteration. T0 = M is a maximal set of non-overlapping sub-
graphs. For any other embedding s, s must overlap with at least
one of the embeddings in M , otherwise M would not be maximal,
since s can be added to M . Thus, the base case holds.

At the beginning of i+1-th iteration, Ti+1 is set to be equal to Ti.
By the induction hypothesis, any remaining embedding s overlaps
with Ti at i + 1 or more vertices. Suppose s overlaps with Ti

at vertices w1, ..., wi+1, An ovpEmb containing w1, ..., wi+1

will be generated in the i+ 1-th iteration (at Line 11 of Algorithm
3) and s is examined in Q1Search. There are 2 possible outcomes:
(1) s does not overlap at any other vertex with the current Ti+1, it is
included into Ti+1; (2) |V (s)∩V (T + i+ 1)|≥ i+2. Since Ti+1

grows monotonically, at the end of the iteration, s still has at least
i+ 2 overlapping vertices with Ti+1. Thus, after the i-th iteration,
all remaining subgraphs must overlap with Ti+1 at i + 2 or more
vertices.

[Proof of Theorem 3]:

PROOF. Let q = |Q|. Clearly, |C(OPT)|≤ kq. Suppose
DSQL-P1 stops at the i-th iteration and gets a solution A. If |A|=
k, let nj embeddings be added to the solution at iteration j for
0 ≤ j ≤ i, we have |A|= ∑i

j=0 nj = k. The first n0 embeddings
are disjoint and introduce qn0 vertices. At the j-th iteration, the
overlap size is j, every newly generated embeddings adds q−j new
vertices to C(Tj), so we have |C(A)|= qn0 +

∑i
j=1 nj(q− j) ≥

qn0+
∑i

j=1 nj(q− i) = qn0+(
∑i

j=1 nj)(q− i). Since n0 ≥ 1,
|C(A)|

|C(OPT)|
≥ q+(k−1)(q−i)

qk
= q−i

q
+ i

kq
.

To prove that the above bound is tight for any i and k, con-
struct a circle query Q with distinct labels and |Q|= ik. We set
q = ik, so Q is a ring with (u1, u2, ..., uq). Let the data graph
contain k + 1 such circles, where one of the circle with vertices
(v1, v2, ..., vq) overlaps at i unique vertices with other k circles.
We denote this circle as C0, and the other circles as C1, C2, ..., Ck.

More specifically, C0∩Ci = {v(i−1)q+1, ..., viq}. Suppose DSQL
first picks C0 and then C1, ...Ck−2, and returns T , then |C(T)|=
q + (q − i)(k − 1) = (q − i)k + i. Clearly the optimal solu-
tion OPT is {C1, C2, ..., Ck}, and so the approximation ratio is
exactly q−i

q
+ i

kq
.

If |A|< k, then after the i = q − 1 iteration, DSQL-P1 still
cannot get k embeddings. According to Lemma 1, any embedding
s that is not included in A overlaps with the union of embeddings
of A at q nodes. Let OPT be an optimal solution. In this case,
each embedding o in OPT cannot contribute any new vertex to A.
That is, for each embedding o in OPT , either o ∈ A, or all the

vertices in o are already in A. Thus
|C(A)|

|C(OPT)|
= 1.

Next we show that DSQL-P1 does not miss any embedding since
it effectively scans all embeddings in the given graph. Here, ef-

fectively scanning an embedding h means either including h in the
solution, or dismissing h since it will not increase the coverage.

THEOREM 7. After the q− 1-th iteration, DSQL-P1 effectively

scans all embeddings.

Theorem 7 holds because Lemma 1 says that after the q − 1-th
iteration, any embedding that is not included in Tq−1 must overlap
with Tq−1 at q vertices.

A.3 Proof of Lemma 3
Lemma 3 is about the correctness of the strategy of skipping

"bad" vertices, which is introduced in Section 5.4.

PROOF. Consider the order of nodes in a query Q as shown in
the figure below. The wavy line between u0 and uj−1 means that
some nodes may exist between u0 and uj−1.

Li

ui

Lj

uj

Lj-1

uj-1

L0

u0

Conflict

Lq

uq

Suppose we fail at ui, this means that we cannot find a matching
vertex for ui. Let the nearest conflict node of ui preceding ui in
qList be uj . Let the current partial embedding be
pEmb1 = {(u0, v0), ..., (uj−1, vj−1), (uj , vj), ..., (ui−1, vi−1)}.
We can see that for j < k < i, uk is not a neighbor of ui because
uk does not conflict with ui. Based on the strategy in Section 5.3,
we backtrack from ui to uj , skipping the non-conflict nodes. Sup-
pose uj−1 is not a conflict node of ui. We mark the candidate vj for
uj as a "bad" vertex. Having tried vj−1 for uj−1, we consider the
next candidate v′j−1 and get pEmb2 = {(u0, v0), ..., (uj−1, v

′
j−1)}.

The lemma says that we can skip any "bad" candidate vj for uj . We
prove by contradiction that this holds. Assume on the contrary that
this skipping is not correct, so that when we match vj to uj , we can
eventually find a match v′i for ui, resulting in pEmb3.
Let pEmb0 = {(u0, v0), ..., (uj−2, vj−2)}.
pEmb3 = pEmb0 ∪ {(uj−1, v

′
j−1), (uj , vj), ..., (ui, v

′
i)}.

Let pEmb4 = {(uj+1, vj+1), ... , (ui−1, vi−1)}. Thus,
pEmb1 = pEmb0 ∪ (uj−1, vj−1) ∪ (uj , vj) ∪ pEmb4.
pEmb3 shares with pEmp1 the matchings in pEmb0 and (uj , vj).

Denote the set of neighbors of ui which appear earlier than ui in the
query order as NSui

. So, we have NSui
⊆ {u0, u1, ..., uj−2, uj}

= {u(pEmb0) ∪ uj}, where u(pEmb0) is the set of query nodes
that appear in pEmb0. Since (ui, v

′
i) ∈ pEmb3 and pEmb0 ∪

(uj , vj) ⊆ pEmb3, then (ui, v
′
i) could also be used to extend

pEmb1. This is because all the neighbors of ui are in u(pEmb0)∪
uj and the other query nodes in pEmb1 do not conflict with ui.
This contradicts the fact that there is no match for ui when the cur-
rent partial embedding is pEmb1.

A.4 Proof of Theorem 5
We first introduce a lemma that will be useful.

LEMMA 4. For a scan, assume that the coverage of the initial

set of k embeddings, given by |F0|, is lower bounded by γ|C(OPT)|,
i.e., |C(F0)|≥ γ|C(OPT)|.

(2 + 1
α
+ α)|C(Ffinal)|≥ (1 + γ

α
)|C(OPT)| (5)

PROOF. Our proof is based on the concepts of set charge and
element charge as used in [25] and [32]. The analysis is based on
tracking the coverage |C(OPT)| of an optimum solution OPT
as embeddings in OPT are examined. For each embedding o in
OPT , if o is not selected, a set charge is computed. If it is selected,
then an element charge is computed for each vertex in o. We ensure
that the total charge is an upper bound of |C(OPT)|.
[Set Charge] Let β = 1 + α. For an embedding oi in OPT, let Hi

be the collection of k embeddings when oi is examined. If oi is not
selected, then ∀f ∈ Hi, B(oi,Hi) < β × L(f,Hi), hence

kB(oi,Hi) < β
∑

t

L(ft,Hi)

It is easy to see that
∑

t L(ft,Hi) ≤ |C(Hi)|,
kB(oi,Hi) < β|C(Hi)|

Set charge for each element in Hi is given by

B(oi,Hi)
|C(Hi)|

< β
k

Note also that |C(Ffinal)|≥ |C(Hi)|.
Total set charge for all embeddings in OPT is less than

k
∑

i=1

|C(Hi)|×β

k
=

k
∑

i=1

β|C(Hi)|
k

≤ β|C(Ffinal)|

[Element Charge] Let Fi be the embedding collection when fi is
removed from it, where fi is the i-th embedding swapped out by
the algorithm. Hence fi ∈ Fi and fi 6∈ Fi+1. Let Ffinal be the
final collection. The element charge is to keep track of the coverage
of vertices in embeddings in OPT that have been selected, which
may either appear in Ffinal or be swapped out. The total element
charge is at most |C(Ffinal)|+

∑

i≥0|L(fi, Fi)|, where fi is the
i-th removed embedding.

|C(Fi+1)|−|C(Fi)|≥ B(hi, Fi)− L(fi, Fi)

≥ (β − 1)L(fi, Fi)

∑

i≥0|L(fi, Fi)|≤ 1
β−1

∑

i≥0(|C(Fi+1)|−|C(Fi)|)

=
1

β − 1
(|C(Ffinal)− |C(F0)|)

[Total Charge] Summing up the set charges and element charges,
we get β|C(Ffinal)|+|C(Ffinal)|+ 1

β−1
(|C(Ffinal)|−|C(F0)|)

Clearly, this sum upper bounds |C(OPT)|. Since β = 1 + α,

(2 + 1
α
+ α)|C(Ffinal)− 1

α
|C(F0)|≥ |C(OPT)|

If the coverage of the initial set of k embeddings is lower bounded
by γ|C(OPT)|, i.e., |C(F0)|≥ γ|C(OPT)|, we have

(2 +
1

α
+ α)|C(Ffinal)|≥ (1 +

γ

α
)|C(OPT)|

[Proof of Theorem 5]: From Inequality (5) in Lemma 4, we have

|C(Ffinal)|
|C(OPT)| ≥

1 + γ
α

2 + 1
α
+ α

=
α+ γ

(α+ 1)2
(6)

Differentiate w.r.t. α and set the result to zero, we get an optimal
value for α for the swapping condition.

α = 1− 2γ (7)

From Equations (6) and (7),

αt+1 = 1− 2γt

γt+1 =
αt+1 + γt
(αt+1 + 1)2

=
1

4(1− γt)

Similar proof arguments will show that a similar theorem applies
with L+(f, h, F) replacing L(f, F). Note that in [25], α1 is set to
1, which follows Equation (3) in Theorem 5, assuming γ0 = 0.

At the fixed point of Equation (4), 4γ(1 − γ) = 1. Solving for
the equation of 4γ2−4γ+1 = 0, we obtain the fixed point value of
γ∞ = 0.5. If f(x) = 1

4(1−x)
, f ′(x) = 1

4(1−x)2
, and f ′(0.5) = 1.

Thus the sequence of γ0, γ1, ... converges to the fixed point of 0.5.

A.5 Asymptotic Tightness of SWAPα

Consider an online model of DSQ where embeddings are re-
leased one at a time. An online algorithm under such a model is
allowed to keep at most k candidate embeddings at any time. We
say that an online algorithm is greedy if the coverage of the col-
lected embeddings can only increase.

LEMMA 5. Any deterministic greedy online algorithm for DSQ

cannot have an approximation ratio guarantee above 0.5.

PROOF. Let the embedding size be ∆. Suppose the adversary
first generates the following sequence of embeddings, G1,, Gk′′ ,
where each Gi contains a common subset of R and also a subset
Xi that is distinct for each Gi. |R|= ∆− 1, |Xi|= 1.

Suppose that the algorithm keeps k′ ≤ k such embeddings, let
the embeddings be R ∪ A1, R ∪ A2, ..., R ∪ Ak′ , and dismisses
embeddings R ∪B1, ..., R ∪Bj , j = k′′ − k′.

There must be a point when j ≥ k − ⌈k′/∆⌉. At this point, the
adversary submits the following embeddings: A1 ∪ A2... ∪ A∆,
A∆+1 ∪ ... ∪A2∆,

The optimal solution covers A1, ..., Ak′ , R,B1, ..., Bk−⌈k′/∆⌉,
the coverage is ∆−1+k′+k−k′/∆ =∆−1+k′(1−1/∆)+k.

The solution from the algorithm covers R,A1, A2, .., Ak′ , the

coverage is∆−1+k′. Approximation ratio γ = ∆−1+k′

∆−1+k′(1−1/∆)+k
.

This function increases with the value of k′, and 0 ≤ k′ ≤ k. Thus,
we have the greatest ratio when k′ = k.

If k′ = k, γ = ∆−1+k
∆−1+k(2−1/∆)

, which approaches 1/2 if k is

large.

A similar proposition is proved in [3], however their proof re-
quires that ∆ is a multiple of

√
k + 1, i.e., ∆/(

√
k + 1) ∈ N,

which may not hold in our case since our query size, ∆, can be
smaller than

√
k + 1. Our proof avoids this assumption.

For the case of multiple scans, if the only information that is
passed from one scan to the next is the solution set, then this can
be seen as passing the embeddings in the solution sets as the prefix
in the embedding stream to the next scan. For the example used in
the above proof, the solution contains only embeddings of the first
type, namely R ∪ Ai. Thus, arguments in the above can be used
to show that for any greedy multi-scan online algorithm, the best
approximation ratio guarantee approaches 0.5 as k is large.

A.6 Proof of Theorem 6

PROOF. Consider the algorithm of SWAPα. If F0 is returned
by the progressive initialization step, clearly, |C(F0)|≥ q+ k− 1.
Since |C(OPT)|≤ kq, q ≥ |C(OPT)|/k and k ≥ |C(OPT)|/q.
We have |C(F0)|≥ max (|C(OPT)|/k, |C(OPT)|/q). Thus, γ0 ≥
max (1/k, 1/q), and Inequality (6) follows from Theorem 5.

Since the initialization is altered, we need to prove that we get the
same result as the original algorithms with a certain input stream.
Let F0 = {f1, f2, ..., fk} after the progressive initialization step.
Let g1, ..., gt be the embeddings that are dismissed in the initial-
ization. Let F i be the collection when gi is examined. Clearly,
B(gi, F

i) = 0, since otherwise, the swapping condition is sat-
isfied as the loss of swapping out a fictitious empty embedding
is 0. Hence, C(gi) \ C(F i) = ∅. Since C(F i) ⊆ C(F0),
C(gi) \ C(F i) = ∅, thus, B(gi, F0) = 0. Therefore, F0 is also
obtained after f1, ..., fk , and g1, ..., gt are scanned if the algorithm
collects the first k embeddings, and the input stream begins with
f1, ..., fk, g1, ..., gt.

Similar results can be readily derived for SWAP1, SWAP2, and
SWAPA. In particular, that for SWAPA can be derived by setting
β = β1 + β2, β1 = (1−αi) and β2 = (1+αi) in Inequality (23)
in [32].

A.7 Proof of Lemma 4

PROOF. We need to show that early termination does not af-
fect the result. In the following, effectively scanning an embed-
ding h means either including h in T , or dismissing h since it does
not qualify for swapping. Let DSQL-P2 begin at level i. Sim-
ilar to Lemma 1, we can show that at the end of the level j it-
eration of Algorithm DSQL-P2, j ≥ i, any embedding that has
not been effectively scanned must overlap with V (T1) at j + 1 or
more vertices. Thus, at level i, the overlap size with T1 for any
newly scanned embedding h is at least i. If V (T1) ⊆ V (T), then
for any new embedding h, the benefit of h is at most q − i, i.e.,
B(h, T) ≤ q − i. If in the current T , for each embedding f ∈ T ,
L(f, T) > (q − i)/(1 + α), hence, B(h, T) < (1 + α)L(f, T).
Thus, there will not be any new embedding with a benefit that sat-
isfies the swapping criteria of Inequality (2). Hence DSQL-P2 can
be terminated without affecting the result.

A.8 Proof of Theorem 4

PROOF. With DSQL-P2 we consider the swapping for each em-
bedding with possible gain in the coverage. The algorithm is the
same as SWAPα except that we are given an initial set of k embed-
dings from DSQL-P1, and early termination may take place. From
Lemma 4, we know that the early termination does not change the
result. It remains to show that the initial collection F of k embed-
dings from DSQL-P1 is a possible set of first k embeddings for
F0 as constructed by the process described in Section 6.1.3. This
is true if for each embedding s added to T in DSQL-P1, there is
non-zero benefit B(s, T). This is guaranteed by DSQL-P1, since
when an embedding s is added to T at level i in DSQL-P1, |Q|−i
vertices in s are not in V (T), and i ≤ |Q|−1. Thus, DSQL has the
guarantee as stated in Theorem 6.

B. MORE EXPERIMENTAL RESULTS
In this section, we include some additional experimental results.

B.1 Some Query Results with DBpedia
For DBpedia in this experiment, we extract the occupation in-

formation from the dataset and use it as the label for every person

vertex. We obtain 195 major occupations from the data and name
the remaining occupations as Other. So there are 196 distinct labels
in total.

Assume that we are interesting to find politicians who are con-
nected with scientists and physicists, thus we submit the following
query graph for DBpedia.

au1

c u3bu2

Physicist Politician

Scientist

a

cb

John Dilulio Barack Obama

James Hansen

query graph a result subgraph

For this query, with k = 40, DSQL obtains the above result sub-
graph that is about the current US President. Some other interesting
results are:
{{Anatoli_Blagonravov}{Thomas_O._Paine}{Richard_Nixon}}

{{Michael_Faraday}{Joseph_Priestley}{Richard_Sharp }}

Note that Richard Nixon was the US President presiding over the
Apollo 11 moon landing. Richard Sharp was a British Member of
Parliament that was known for founding the London Institute.

B.2 Comparison of Swapping Strategies
For the comparison of the swapping strategies, we first gener-

ate all embeddings for DBLP. We tried two generators: using the
coding of BoostIso [24] on TurboIso [15], and that of TurboIso
provided by the author of [24]. The results are shown in Table 4.
We apply the greedy algorithm GreedyDSQ (Greedy in the table)
and also different swapping algorithms (single scan) on the set of
all embeddings. For swapping and GreedyDSQ, t is the time for
generating the embeddings. GreedyDSQ takes more time since
it requires k scans, and the coverage is a little better compared
to the other swapping algorithms. Our swapping condition with
SWAPα has similar diversity result compared to other swapping
conditions. BoostIso is more efficient than TurboIso (with runtime
t), with slightly smaller coverages. Also, if we compare the cover-
ages with the results in Table 3, we can see that applying maximum
k-coverage techniques can greatly improve the diversity. Finally,
DSQL has the best results in both time and coverage.

SWAP1 SWAP2 SWAPA SWAPα Greedy DSQL

time (ms) 22.68+t 26.57+t 3.31+t 9.03+t 251.61+t 10.06

coverage 114.76 115.56 112.57 114.64 118.42 127.4

(a) results of running BoostIso on TurboIso (t = 116.00)

SWAP1 SWAP2 SWAPA SWAPα Greedy DSQL

time (ms) 165.11+t 170.06+t 8.36+t 28.02+t 451.02+t 10.06

coverage 121.66 122.55 119.85 119.95 127.5 127.4

(b) results of running TurboIso (t = 217.95)

Table 4: Comparing the time and coverage of GreedyDSQ,

swapping algorithms, and DSQL for DBLP, |EQ|= 5, k = 40

We have compared the coverage results from multiple scans. The
results show that the coverage improvement is not big with addi-
tional scans. Note that the approximation ratios are above 0.5, the
asymptotic theoretical bound. Also note that in our experiments
with DSQL (see Section 7.3), there is little scanning in DSQL-P2
due to early termination.

B.3 More Results on Comparison with COM

We show the results for the datasets of Yeast, Human, and US-
patent in Figure 8. We compare our proposed method with COM ,
the interleaving method described in Section 7.3 in terms of query
time and coverage in the number of nodes.

10 20 30 40 50
k

10
-1

10
0

10
1

R
u
n
ti

m
e
(m

s
) DSQL

COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

R
u
n
ti

m
e
(m

s
) DSQL

COM

2 4 6 8 10
Query Size

0

100

200

300

400

#
 N

o
d
e
s

COM
DSQL
MAX

(a) query time and coverage for Yeast

10 20 30 40 50
k

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
) DSQL

DSQLh
COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQLh
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
) DSQL

DSQLh
COM

2 4 6 8 10
Query Size

0

100

200

300

400

#
 N

o
d
e
s

COM
DSQLh
DSQL
MAX

(b) query time and coverage for Human

10 20 30 40 50
k

10
-1

10
0

10
1

10
2

10
3

R
u
n
ti

m
e
(m

s
)

DSQL
DSQLh
COM

10 20 30 40 50
k

0

100

200

300

#
 N

o
d
e
s

COM
DSQLh
DSQL
MAX

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
)

DSQL
DSQLh
COM

2 4 6 8 10
Query Size

0

200

400

600

#
 N

o
d
e
s

COM
DSQLh
DSQL
MAX

(c) query time and coverage for USpatent

Figure 8: Comparing the performances of DSQL, DSQLh, and COM

The trends are similar to that for the other datasets reported in
Section 7.3. COM runs faster for smaller query and dataset sizes,
but becomes inefficient as query size increases or dataset is large.

For Human and USpatent, both DSQL and COM cannot finish
the query batches of 1000 queries of large query sizes within 5
hours, we thus introduce a variation of DSQL, called DSQLh. It
differs from DSQL in the strategy of skipping bad vertices. We try
to match u with its candidates. (1) If we cannot find any match for
u, then as in DSQL in Section 5.4, we fail at u and backtrack to
uc, the closest conflict node of u. If uc−1 does not conflict with u,
we mark the corresponding matched vertex vc as "bad". (2) If we
can find matches for u, but the matches are "bad" vertices, then we
regard the matching of u as a failure, and begin the backtracking
process of u as in (1). This deviates from DSQL where we would
check the node up preceding u in qfList, and if up does not conflict
with u, we mark matched vp as "bad", and try to match up with
the next vertex. With this variation, more skipping is allowed and
there is more impact by "bad" vertices. A smaller coverage may be
returned, but it can be much more efficient for denser data graphs.
Our results show that DSQLh is efficient with both Human and
USpatent. In summary, DSQL returns a solution within 10ms on
average in most datasets, the coverage of DSQL is close to MAX
and is much higher than that of COM .

B.4 Different Strategies of DSQL
Next we study the effects of the proposed optimization strategies.

The following variations of DSQL are evaluated:
⋄ DSQL0: Most primitive method, only using the localized sub-

graph searching strategy (see Section 5.1).
⋄ DSQL1: Combining DSQL0 and the single embedding search

strategy using labelRm and neighborRm (see Section 5.2).
⋄ DSQL2: Combining DSQL0 and the conflict table strategy in

Section 5.3.
⋄ DSQL3: Combining DSQL2 and the "bad" vertex skipping

strategy in Section 5.4.
⋄ DSQLh: The variation of DSQL equipped with the relaxed

skipping strategy introduced in Section B.3.

Still we set the time limit for 1000 queries to 5 hours. The de-
fault setting is a query size of 5, and k = 40. The results in Fig-
ure 9 show that every strategy can help reduce the runtime, since
DSQL0 has a much longer runtime in comparison. DSQL1 is al-
most as good as DSQL in Figure 9(a). The single embedding search
is effective because it controls the overlap size and avoids getting
trapped in a local search area.

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
)

DSQL
DSQL1
DSQL3
DSQL2
DSQL0

10 20 30 40 50
k

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
ti

m
e
(m

s
)

DSQL1
DSQL3
DSQL

DSQL0
DSQL2

(a) query time for Youtube

1 2 3 4 5 6 7 8 9 10
Query Size

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
ti

m
e
(m

s
)

DSQL0
DSQL2
DSQL3

DSQL1
DSQL
DSQLh

10 20 30 40 50
k

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
ti

m
e
(m

s
)

DSQL1
DSQL3

DSQL
DSQLh

(b) query time for Human

Figure 9: Effects of the optimization strategies

From Figure 8(a), DSQL2 and DSQL3 are not as effective as
DSQL1 for Youtube. The skipping strategies are useful for denser
graphs. This is demonstrated by the results with Human in Fig-
ure 9(b). DSQLh, based on DSQL2 and DSQL3, greatly reduces
the runtime while the coverage is still close to MAX (see Figure
8(b)). In the last graph, DSQL0 and DSQL2 are not shown since
the runtime is too long.

