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ABSTRACT
Massive graphs, such as online social networks and communication

networks, have become common today. To efficiently analyze such

large graphs, many distributed graph computing systems have been

developed. These systems employ the “think like a vertex” pro-

gramming paradigm, where a program proceeds in iterations and at

each iteration, vertices exchange messages with each other. How-

ever, using Pregel’s simple message passing mechanism, some ver-

tices may send/receive significantly more messages than others due

to either the high degree of these vertices or the logic of the algo-

rithm used. This forms the communication bottleneck and leads to

imbalanced workload among machines in the cluster. In this paper,

we propose two effective message reduction techniques: (1)vertex

mirroring with message combining, and (2)an additional request-

respond API. These techniques not only reduce the total number

of messages exchanged through the network, but also bound the

number of messages sent/received by any single vertex. We the-

oretically analyze the effectiveness of our techniques, and imple-

ment them on top of our open-source Pregel implementation called

Pregel+. Our experiments on various large real graphs demonstrate

that our message reduction techniques significantly improve the

performance of distributed graph computation.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed systems

General Terms
Performance
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1. INTRODUCTION
With the growing interest in analyzing large real-world graphs

such as online social networks, web graphs and semantic web graphs,

many distributed graph computing systems [1, 5, 10, 11, 13, 18, 21,
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23] have emerged. These systems are deployed in a shared-nothing

distributed computing infrastructure usually built on top of a cluster

of low-cost commodity PCs. Pioneered by Google’s Pregel [13],

these systems adopt a vertex-centric computing paradigm, where

programmers think naturally like a vertex when designing distributed

graph algorithms. A Pregel-like system also takes care of fault

recovery and scales to arbitrary cluster size without the need of

changing the program code, both of which are indispensable prop-

erties for programs running in a cloud environment.

MapReduce [3], and its open-source implementation Hadoop,

are also popularly used for large scale graph processing. However,

many graph algorithms are intrinsically iterative, such as the com-

putation of PageRank, connected components, and shortest paths.

For iterative graph computation, a Pregel program is much more

efficient than its MapReduce counterpart [13].

Weaknesses of Pregel. Although Pregel’s vertex-centric comput-

ing model has been widely adopted in most of the recent distributed

graph computing systems [1, 11, 10, 18] (and also inspired the

edge-centric model [5]), Pregel’s vertex-to-vertex message pass-

ing mechanism often causes bottlenecks in communication when

processing real-world graphs.

To clarify this point, we first briefly review how Pregel performs

message passing. In Pregel, a vertex v can send messages to an-

other vertex u if v knows u’s vertex ID. In most cases, v only sends

messages to its neighbors whose IDs are available from v’s adja-

cency list. But there also exist Pregel algorithms in which a vertex

v may send messages to another vertex that is not a neighbor of

v [24, 19]. These algorithms usually adopt pointer jumping (or

doubling), a technique that is widely used in designing PRAM al-

gorithms [22], to bound the number of iterations by O(log |V |),
where |V | refers to the number of vertices in the graph.

The problem with Pregel’s message passing mechanism is that

a small number of vertices, which we call bottleneck vertices, may

send/receive much more messages than other vertices. A bottleneck

vertex not only generates heavy communication, but also signifi-

cantly increases the workload of the machine in which the vertex

resides, causing highly imbalanced workload among different ma-

chines. Bottleneck vertices are common when using Pregel to pro-

cess real-world graphs, mainly due to either (1)high vertex degree

or (2)algorithm logic, which we elaborate more as follows.

We first consider the problem caused by high vertex degree. When

a high-degree vertex sends messages to all its neighbors, it becomes

a bottleneck vertex. Unfortunately, real-world graphs usually have

highly skewed degree distribution, with some vertices having very

high degrees. For example, in the Twitter who-follows-who graph1,

the maximum degree is over 2.99M while the average degree is

1
http://law.di.unimi.it/webdata/twitter-2010/



only 35. Similarly, in the BTC dataset used in our experiments,

the maximum degree is over 1.6M while the average degree is only

4.69.

We ran Hash-Min [17, 24], a distributed algorithm for computing

connected components (CCs), on the degree-skewed BTC dataset in

a cluster with 1 master (Worker 0) and 120 slaves (Workers 1–120),

and observed highly imbalanced workload among different work-

ers, which we describe next. Pregel assigns each vertex to a worker

by hashing the vertex ID regardless of the degree of the vertex. As

a result, each worker holds approximately the same number of ver-

tices, but the total number of neighbors in the adjacency lists (i.e.,

number of edges) varies greatly among different workers. In the

computation of Hash-Min on BTC, we observed an uneven distri-

bution of edge number among workers, as some workers contain

more high-degree vertices than other workers. Since messages are

sent along the edges, the uneven distribution of edge number also

leads to an uneven distribution of the amount of communication

among different workers. In Figure 1, the taller blue bars indicate

the total number of messages sent by each worker during the entire

computation of Hash-Min, where we observe highly uneven com-

munication workload among different workers.

Bottleneck vertices may also be generated by program logic. An

example is the S-V algorithm proposed in [24, 22] for computing

CCs, which we will describe in detail in Section 3.4. In S-V, each

vertex v maintains a field D[v] which records the vertex that v is to

communicate with. The field D[v] may be updated at each iteration

as the algorithm proceeds; and when the algorithm terminates, ver-

tices vi and vj are in the same CC iff D[vi] = D[vj ]. Thus, during

the computation, some vertex u may communicate with many ver-

tices {v1, v2, . . . , vk} in its CC if u = D[vi], for 1 ≤ i ≤ k. In

this case, u becomes a bottleneck vertex.

We ran S-V on the USA road network in a cluster with 1 mas-

ter (Worker 0) and 60 slaves (Workers 1–60), and observed highly

imbalanced communication workload among different workers. In

Figure 2, the taller blue bars indicate the total number of messages

sent by each worker during the entire computation of S-V, where

we can see that the communication workload is very biased (espe-

cially at Worker 0). We remark that the imbalanced communica-

tion workload is not caused by skewed vertex degree distribution,

since the largest vertex degree of the USA road network is merely

9. Rather, it is because of the algorithm logic of S-V. Specifically,

since the USA road network is connected, in the last round of S-
V, all vertices v have D[v] equal to Vertex 0, indicating that they

all belong to the same CC. Since Vertex 0 is hashed to Worker 0,

Worker 0 sends much more messages than the other workers, as

can be observed from Figure 2.

In addition to the two problems mentioned above, Pregel’s mes-

sage passing mechanism is also not efficient for processing graphs

with (relatively) high average degree due to the high overall com-

munication cost. However, many real-world graphs such as social

networks and mobile phone networks have relatively high average

degree, as a person is often connected to at least dozens of people.

Our Solution. In this paper, we solve the problems caused by

Pregel’s message passing mechanism with two effective message

reduction techniques. The goals are to (1)mitigate the problem
of imbalanced workload by eliminating bottleneck vertices, and to

(2)reduce the overall number of messages exchanged through the
network.

The first technique is called mirroring, which is designed to

eliminate bottleneck vertices caused by high vertex degree. The

main idea is to construct mirrors of each high-degree vertex in dif-

ferent machines, so that messages from a high-degree vertex are

forwarded to its neighbors by its mirrors in local machines. Let
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Figure 1: Hash-Min on BTC (with/without mirroring)
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Figure 2: S-V on USA (with/without request-respond)

d(v) be the degree of a vertex v and M be the number of machines

in the cluster, mirroring bounds the number of messages sent by v
each time to min{M,d(v)}. If v is a high-degree vertex, d(v) can

be up to millions, but M is normally only from tens to a few hun-

dred. We remark that ideas similar to mirroring have been adopted

by existing systems [11, 18], but we find that mirroring a vertex

does not always reduce the number of messages due to Pregel’s use

of message combiner [13]. Hence, we provide a theoretical analy-

sis on which vertices should be selected for mirroring in Section 5.

In Figure 1, the short red bars indicate the total number of mes-

sages sent by each worker when mirroring is applied to all vertices

with degree at least 100. We can clearly see the big difference be-

tween the uneven blue bars (without mirroring) and the even-height

short red bars (with mirroring). Furthermore, the number of mes-

sages is also significantly reduced by mirroring. We remark that the

algorithm is still the same and mirroring is completely transparent

to users. Mirroring reduces the running time of Hash-Min on BTC

from 26.97 seconds to 9.55 seconds.

The second technique is a new request-respond paradigm. We

extend the basic Pregel framework by an additional request-respond

functionality. A vertex u may request another vertex v for its at-

tribute a(v), and the requested value will be available in the next

iteration. The request-respond programming paradigm simplifies

the coding of many Pregel algorithms, as otherwise at least three

iterations are required to explicitly code each request and response

process. More importantly, the request-respond paradigm effec-

tively eliminates the bottleneck vertices resulted from algorithm

logic, by bounding the number of response messages sent by any

vertex to M . Consider the S-V algorithm mentioned earlier, where a

set of k vertices {v1, v2, . . . , vk} with D[vi] = u require the value

of D[u] from u (thus there are k requests and responses). Under

the request-respond paradigm, all the requests from a machine to

the same target vertex are merged into one request. Therefore, at

most min{M,k} requests are needed for the k vertices and at most

min{M,k} responses are sent from u. For large real-world graphs,

k is often orders of magnitude greater than M .

In Figure 2, the short red bars indicate the total number of mes-

sages sent by each worker when the request-respond paradigm is

applied. Again, the skewed message passing represented by the

blue bars are now replaced by the even-height short red bars. In

particular, Vertex 0 now only responds to the requesting workers

instead of all the requesting vertices in the last round, and hence

the highly imbalanced workload caused by Vertex 0 in Worker 0 is

now evened out. The request-respond paradigm reduces the run-

ning time of S-V on the USA road network from 261.9 seconds to

137.7 seconds.
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Figure 3: Illustration of combiner

Finally, we remark that our experiments were run in a cluster

without any resource contention, and our optimization techniques

are expected to improve the overall performance of Pregel algo-

rithms more significantly if they were run in a public data center,

where the network bandwidth is lower and reducing communica-

tion overhead becomes more important.

The rest of the paper is organized as follows. We review existing

parallel graph computing systems, and highlight the differences of

our work from theirs, in Section 2. In Section 3, we describe some

Pregel algorithms for problems that are common in social network

analysis and web analysis. In Section 4, we introduce the basic

communication framework. We present the mirroring technique

and the request-respond functionality in Sections 5 and 6. Finally,

we report the experimental results in Section 7 and conclude the

paper in Section 8.

2. BACKGROUND AND RELATED WORK
We first review Pregel’s framework, and then discuss other re-

lated distributed graph computing systems.

2.1 Pregel
Pregel [13] is designed based on the bulk synchronous parallel

(BSP) model. It distributes vertices to different machines in a clus-

ter, where each vertex v is associated with its adjacency list (i.e.,

the set of v’s neighbors). A program in Pregel implements a user-

defined compute() function and proceeds in iterations (called su-
persteps). In each superstep, the program calls compute() for each

active vertex. The compute() function performs the user-specified

task for a vertex v, such as processing v’s incoming messages (sent

in the previous superstep), sending messages to other vertices (to

be received in the next superstep), and making v vote to halt. A

halted vertex is reactivated if it receives a message in a subsequent

superstep. The program terminates when all vertices vote to halt

and there is no pending message for the next superstep.

Pregel numbers the supersteps so that a user may use the cur-

rent superstep number when implementing the algorithm logic in

the compute() function. As a result, a Pregel algorithm can per-

form different operations in different supersteps by branching on

the current superstep number.

Message Combiner. Pregel allows users to implement a combine()

function, which specifies how to combine messages that are sent

from a machine Mi to the same vertex v in a machine Mj . These

messages are combined into a single message, which is then sent

from Mi to v in Mj . However, combiner is applied only when com-

mutative and associative operations are to be applied to the mes-

sages. For example, in the PageRank computation, the messages

sent to a vertex v are to be summed up to compute v’s PageRank

value; in this case, we can combine all messages sent from a ma-

chine Mi to the same target vertex in a machine Mj into a single

message that equals their sum. Figure 3 illustrates the idea of com-

biner, where the messages sent by vertices in machine M1 to the

same target vertex vj in machine M2 are combined into their sum

before sending.

Aggregator. Pregel also supports aggregator, which is useful for

global communication. Each vertex can provide a value to an ag-

gregator in compute() in a superstep. The system aggregates those

values and makes the aggregated result available to all vertices in

the next superstep.

2.2 Pregel-Like Systems in JAVA
Since Google’s Pregel is proprietary, many open-source Pregel

counterparts are developed. Most of these systems are implemented

in JAVA, e.g., Giraph [1] and GPS [18]. They read the graph data

from Hadoop’s DFS (HDFS) and write the results to HDFS. How-

ever, since object deletion is handled by JAVA’s Garbage Collector

(GC), if a machine maintains a huge amount of vertex/edge objects

in main memory, GC needs to track a lot of objects and the over-

head can severely degrade the system performance. To decrease the

number of objects being maintained, JAVA-based systems maintain

vertices in main memory in their binary representation. For exam-

ple, Giraph organizes vertices as main memory pages, where each

page is simply a byte array object that holds the binary representa-

tion of many vertices. As a result, a vertex needs to be deserialized

from the page holding it before calling compute(); and after com-
pute() completes, the updated vertex needs to be serialized back

to its page. The serialization cost can be high, especially if the

adjacency list is long. To avoid unnecessary serialization cost, a

Pregel-like system should be implemented in a language such as

C/C++, where programmers (who are system developers, not end

users) manage main memory objects themselves. We implemented

our Pregel+ system in C/C++.

GPS [18] supports an optimization called large adjacency list

partitioning (LALP) to handle high-degree vertices, whose idea is

similar to vertex mirroring. However, GPS does not explore the

performance tradeoff between vertex mirroring and message com-

bining. Instead, it is claimed in [18] that very small performance

difference can be observed whether combiner is used or not, and

thus, GPS simply does not perform sender-side message combin-

ing. Our experiments in Section 7 show that sender-side message

combining significantly reduces the overall running time of Pregel

algorithms, and therefore, both vertex mirroring and message com-

bining should be used to achieve better performance. As we shall

see in Section 5, vertex mirroring and message combining are two

conflicting message reduction techniques, and a theoretical analy-

sis on their performance tradeoff is needed in order to devise a cost

model for automatically choosing vertices for mirroring.

2.3 GraphLab and PowerGraph
GraphLab [11] is another parallel graph computing system that

follows a design different from Pregel. GraphLab supports asyn-

chronous execution, and adopts a data pulling programming paradigm.

Specifically, each vertex actively pulls data from its neighbors, rather

than passively receives messages sent/pushed by its neighbors. This

feature is somewhat similar to our request-respond paradigm, but

in GraphLab, the requests can only be sent to the neighbors. As

a result, GraphLab cannot support parallel graph algorithms where

a vertex needs to communicate with a non-neighbor. Such algo-

rithms are, however, quite popular in Pregel as they make use of

the pointer jumping (or doubling) technique of PRAM algorithms

to bound the number of iterations by O(log |V |). Examples include

the S-V algorithm for computing CCs [24] and Pregel algorithm for

computing minimum spanning forest [19]. These algorithms can

benefit significantly from our request-respond technique. Recently,



several studies [8, 12] reported that GraphLab’s asynchronous ex-

ecution is generally slower than its synchronous mode (that simu-

lates Pregel’s model) due to the high locking/unlocking overhead.

Thus, we mainly focus on Pregel’s computing model in this paper.

GraphLab also builds mirrors for vertices, which are called ghosts.

However, GraphLab creates mirrors for every vertex regardless of

its degree, which leads to excessive space consumption. A more

recent version of GraphLab, called PowerGraph [5], partitions the

graph by edges rather than by vertices. Edge partitioning mitigates

the problem of imbalanced workload as the edges of a high-degree

vertex are handled by multiple workers. Accordingly, a new edge-

centric Gather-Apply-Scatter (GAS) computing model is used in-

stead of the traditional vertex-centric computing model.

3. PREGEL ALGORITHMS
In this section, we describe some Pregel algorithms for prob-

lems that are common in social network analysis and web analysis,

which will be used for illustrating important concepts and for per-

formance evaluation.

We consider fundamental problems such as (1)computing con-

nected components (or bi-connected components), which is a com-

mon preprocessing step for social network analysis [14, 15]; (2)com-

puting minimum spanning tree (or forest), which is useful in min-

ing social relationships [15]; and (3)computing PageRank, which

is widely used in ranking web pages [16, 9] and spam detection[7].

For ease of presentation, we first define the graph notations used

in the paper. Given an undirect graph G = (V,E), we denote

the neighbors of a vertex v ∈ V by Γ(v), and the degree of v by

d(v) = |Γ(v)|; if G is directed, we denote the in-neighbors (out-

neighbors) of a vertex v by Γin(v) (Γout(v)), and the in-degree

(out-degree) of v by din(v) = |Γin(v)| (dout(v) = |Γout(v)|).
Each vertex v ∈ V has a unique integer ID, denoted by id(v). The

diameter of G is denoted by δ.

3.1 Attribute Broadcast
We first introduce a Pregel algorithm for attribute broadcast.

Given a directed graph G, where each vertex v is associated with

an attribute a(v) and an adjacency list that contains the set of v’s

out-neighbors Γout(v), attribute broadcast constructs a new adja-

cency list for each vertex v in G, which is defined as Γ̂out(v) =
{〈u, a(u)〉|u ∈ Γout(v)}.

Put simply, attribute broadcast associates each neighbor u in the

adjacency list of a vertex v with u’s attribute a(u). Attribute broad-
cast is very useful in distributed graph computation, and it is a fre-

quently performed key operation in many Pregel algorithms. For

example, the Pregel algorithm for computing bi-connected compo-

nents [24] requires to relabel the ID of each vertex u by its preorder

number in the spanning tree, denoted by pre(u). Attribute broad-
cast is used in this case, where a(u) refers to pre(u).

The Pregel algorithm for attribute broadcast consists of 3 su-

persteps: in superstep 1, each vertex v sends a message 〈v〉 to each

neighbor u ∈ Γout(v) to request for a(u); then in superstep 2, each

vertex u obtains the requesters v from the incoming messages, and

sends the response message 〈u, a(u)〉 to each requester v; finally

in superstep 3, each vertex v collects the incoming messages to

construct Γ̂out(v).

3.2 PageRank
Next we present a Pregel algorithm for PageRank computation.

Given a directed web graph G = (V,E), where each vertex (page)

v links to a list of pages Γout(v), the problem is to compute the

PageRank, pr(v), of each vertex v ∈ V .
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Figure 4: Forest structure of the S-V algorithm
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Figure 5: Key operations of the S-V algorithm

Pregel’s PageRank algorithm [13] works as follows. In super-

step 1, each vertex v initializes pr(v)=1/|V | and distributes the

value 〈pr(v)/dout(v)〉 to each out-neighbor of v. In superstep i
(i>1), each vertex v sums up the received values from its in-neighbors,

denoted by sum, and computes pr(v)=0.15/|V | + 0.85 × sum.

It then distributes 〈pr(v)/dout(v)〉 to each of its out-neighbors.

3.3 Hash-Min
We next present a Pregel algorithm for computing connected

components (CCs) in an undirected graph. We adopt the Hash-
Min algorithm [17, 24]. Given a CC C, let us denote the set of

vertices of C by V (C), and define the ID of C to be id(C) =
min{id(v) : v ∈ V (C)}. We further define the color of a vertex

v as cc(v) = id(C), where v ∈ V (C). Hash-Min computes cc(v)
for each vertex v ∈ V , and the idea is to broadcast the smallest

vertex ID seen so far by each vertex v, denoted by min(v). When

the algorithm terminates, min(v) = cc(v) for each vertex v ∈ V .

We now describe the Hash-Min algorithm in Pregel framework.

In superstep 1, each vertex v sets min(v) to be id(v), broadcasts

min(v) to all its neighbors, and votes to halt. In superstep i (i>1),

each vertex v receives messages from its neighbors; let min∗ be the

smallest ID received, if min∗ < min(v), v sets min(v) = min∗

and broadcasts min∗ to its neighbors. All vertices vote to halt at

the end of a superstep. When the process converges, all vertices

have voted to halt and for each vertex v, we have min(v) = cc(v).

3.4 The S-V Algorithm
The Hash-Min algorithm described in Section 3.3 requires O(δ)

supersteps [24], which can be slow for computing CCs in large-

diameter graphs. Another Pregel algorithm proposed in [24] com-

putes CCs in O(log |V |) supersteps, by adapting Shiloach-Vishkin’s

(S-V) algorithm for the PRAM model [22]. We use this algorithm

to demonstrate how algorithm logic generates a bottleneck vertex v
even if d(v) is small.

In the S-V algorithm, each vertex u maintains a pointer D[u],
which is initialized as u, forming a self loop as shown Figure 4(a).

During the computation, vertices are organized into a forest such

that all vertices in a tree belong to the same CC. The tree definition

is relaxed a bit here to allow the tree root w to have a self-loop, i.e.,

D[w] = w (see Figures 4(b) and 4(c)); while D[v] of any other

vertex v in the tree points to v’s parent.

The S-V algorithm proceeds in rounds, and in each round, the

pointers are updated in three steps (illustrated in Figure 5): (1)tree
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Figure 6: Conjoined Tree

hooking: for each edge (u, v), if u’s parent w = D[u] is a tree

root, hook w as a child of v’s parent D[v], i.e., set D[D[u]] =
D[v]; (2)star hooking: for each edge (u, v), if u is in a star (see

Figure 4(c) for an example of star), hook the star to v’s tree as in

Step (1), i.e., set D[D[u]] = D[v]; (3)shortcutting: for each vertex

v, move vertex v and its descendants closer to the tree root, by

hooking v to the parent of v’s parent, i.e., setting D[v] = D[D[v]].
The above three steps execute in rounds, and the algorithm ends

when every vertex is in a star.

Due to the shortcutting operation, the S-V algorithm creates flat-

tened trees (e.g., stars) with large fan-out towards the end of the

execution. As a result, a vertex w may have many children u (i.e.,

D[u] = w), and each of these children u requests w for the value

of D[w]. This renders w a bottleneck vertex. In particular, in

the last round of the S-V algorithm, all vertices v in a CC C have

D[v] = id(C), and they all send requests to the vertex w = id(C)
for D[w]. In the basic Pregel framework, w receives |V (C)| re-

quests and sends |V (C)| responses, which leads to skewed work-

load when |V (C)| is large.

3.5 Minimum Spanning Forest
The Pregel algorithm proposed by [19] for minimum spanning

forest (MSF) computation is another example that shows how al-

gorithm logic can generate bottleneck vertices. This algorithm pro-

ceeds in iterations, where each iteration consists of three steps,

which we describe below.

In Step (1), each vertex v picks an edge with the minimum weight.

The vertices and their picked edges form disjoint subgraphs, each

of which is a conjoined-tree: two trees with their roots joined by

a cycle. Figure 6 illustrates the concept of a conjoined-tree, where

the edges are those picked in Step (1). The vertex with the smaller

ID in the cycle of a conjoined-tree is called the supervertex of the

tree (e.g., vertex 5 is the supervertex in Figure 6), and the other

vertices are called the subvertices.

In Step (2), each vertex finds the supervertex of the conjoined-

tree it belongs to, which is accomplished by pointer jumping. Specif-

ically, each vertex v maintains a pointer D[v]; suppose that v picks

edge (v, u) in Step (1), then the value of D[v] is initialized as u.

Each vertex v then sends request to w = D[v] for D[w]. Initially,

the actual supervertex s (e.g., vertex 5 in Figure 6) and its neighbor

s′ in the cycle (e.g. vertex 6 in Figure 6) see that they have sent each

other messages and detect that they are in the cycle. Vertex s then

sets itself as the supervertex (i.e., sets D[s] = s) due to s < s′,
before responding D[s] = s to the requesters (while D[s′] = s
remains for s′ since s′ > s). For any other vertex v, it receives

response D[w] from w = D[v] and updates D[v] to be D[w]. This

process is repeated until convergence, upon when D[v] records the

supervertex s for all vertices v.

In Step (3), each vertex v sends request to each neighbor u ∈
Γ(v) for its supervertex D[u], and removes edge (v, u) if D[v] =
D[u] (i.e., v and u are in the same conjoined-tree); v then sends

the remaining edges (to vertices in other conjoined-trees) to the

supervertex D[v]. After this step, all subvertices are condensed

into their supervertex, which constructs an adjacency list of edges

to the other supervertices from those edges sent by its subvertices.

We consider an improved version of the above algorithm that ap-

plies the Storing-Edges-At-Subvertices (SEAS) optimization of [19].

Specifically, instead of having the supervertex merge and store all

cross-tree edges, the SEAS optimization stores the edges of a su-

pervertex in a distributed fashion among all of its subvertices. As

a result, if a supervertex s is merged into another supervertex, it

has to notify its subvertices of the new supervertex they belong to.

This is accomplished by having each vertex v send request to its

supervertex D[v] = s for D[s]. Since smaller conjoined-trees are

merged into larger ones, a supervertex s may have many subver-

tices v towards the end of the execution, and they all request for

D[s] from s, rendering s a bottleneck vertex.

4. BASIC COMMUNICATION FRAMEWORK
When considering on which system we should implement our

message reduction techniques, we decided to implement a new

open-source Pregel system in C/C++, called Pregel+, to avoid the

pitfalls of a JAVA-based system described in Section 2.2. Other rea-

sons for a new Pregel implementation include: (1)Giraph has been

shown to have inferior performance in recent performance evalu-

ation of graph-parallel systems [2, 4, 6, 8, 20]; (2)GPS does not

perform sender-side message combining, while our work studies

effective message reduction techniques in a system that adheres

to Pregel’s framework, where message combining is supported;

(3)other systems such as GraphLab and PowerGraph are also not

suitable as discussed in Section 2.3.

We first introduce the basic communication framework of Pregel+.

Our two new message reduction techniques to be introduced in Sec-

tions 5 and 6 further extend the basic communication framework.

We use the term “worker” to represent a computing unit, which

can be a machine or a thread/process in a machine. For ease of

discussion, we assume that each machine runs only one worker but

the concepts can be straightforwardly generalized.

In Pregel+, each worker is simply an MPI (Message Passing In-

terface) process and communications among different processes are

implemented using MPI’s communication primitives. Each worker

maintains a message channel, Chmsg , for exchanging the vertex-

to-vertex messages. In the compute() function, if a vertex sends a

message msg to a target vertex vtgt, the message is simply added

to Chmsg . Like in Google’s Pregel, messages in Chmsg are sent

to the target workers in batches before the next superstep begins.

Note that if a message msg is sent from worker Mi to vertex vtgt
in worker Mj , the ID of the target vtgt should be sent along with

msg, so that when Mj receives msg, it knows which vertex msg
should be directed to.

The operation of the message channel Chmsg is directly related

to the communication cost and hence affects the overall perfor-

mance of the system. We tested different ways of implementing

Chmsg , and the most efficient one is presented in Figure 7. We

assume that a worker maintains N vertices, {v1, v2, . . . , vN}. The

message channel Chmsg associates each vertex vi with an incom-

ing message buffer Ii. When an incoming message msg1 directed

to vertex vi arrives, Chmsg looks up a hash table Tin for the in-

coming message buffer Ii using vi’s ID. It then appends msg1 to

the end of Ii. The lookup table Tin is static unless graph mutation

occurs, in which case updates to Tin may be required. Once all in-

coming messages are processed, compute() is called for each active

vertex vi with the messages in Ii as the input.

A worker also maintains M outgoing message buffers (where M
is the number of workers), one for each worker Mj in the cluster,

denoted by Oj . In compute(), a vertex vi may send a message msg2
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Figure 7: Illustration of Message Channel, Chmsg
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Figure 9: Mirroring v.s. Message Combining

to another vertex with ID tgt. Let hash(.) be the hash function

that computes the worker ID of a vertex from its vertex ID, then the

target vertex is in worker Mhash(tgt). Thus, msg2 (along with tgt)
is appended to the end of the buffer Ohash(tgt). Messages in each

buffer Oj are sent to worker Mj in batch. If a combiner is used, the

messages in a buffer Oj are first grouped (sorted) by target vertex

IDs, and messages in each group are combined into one message

using the combiner logic before sending.

5. THE MIRRORING TECHNIQUE
The mirroring technique is designed to eliminate bottleneck ver-

tices caused by high vertex degree.

Given a high-degree vertex v, we construct a mirror for v in any

worker in which some of v’s neighbors reside. When v needs to

send a message, e.g., the value of its attribute, a(v), to its neigh-

bors, v sends a(v) to its mirrors. Then, each mirror forwards a(v)
to the neighbors of v that reside in the same local worker as the

mirror, without any message passing.

Figure 8 illustrates the idea of mirroring. Assume that ui is

a high-degree vertex residing in worker machine M1, and ui has

neighbors {v1, v2, . . . , vj} residing in machine M2 and neighbors

{w1, w2, . . . , wk} residing in machine M3. Suppose that ui needs

to send a message a(ui) to the j neighbors in M2 and k neighbors

in M3. Figure 8(a) shows how ui sends a(ui) to its neighbors in

M2 and M3 using Pregel’s vertex-to-vertex message passing. In

total, (j + k) messages are sent, one for each neighbor. To apply

mirroring, we construct a mirror for ui in M2 and M3, as shown

by the two squares (with label ui) in Figure 8(b). In this way, as

illustrated in Figure 8(b), ui only needs to send a(ui) to the two

mirrors in M2 and M3. Then, each mirror forwards a(ui) to ui’s

neighbors locally in M2 and M3 without any network communi-

cation. In total, only two messages are sent through the network,

which not only tremendously reduces the communication cost, but

also eliminates the imbalanced communication load caused by ui.

We formalize the effectiveness of mirroring for message reduc-

tion by the following theorem.

THEOREM 1. Let d(v) be the degree of a vertex v and M be the
number of machines. Suppose that v is to deliver a message a(v)
to all its neighbors in one superstep. If mirroring is applied on v,
then the total number of messages sent by v in order to deliver a(v)
to all its neighbors is bounded by min{M,d(v)}.

PROOF. The proof follows directly from the fact that v only

needs to send one message a(v) to each of its mirrors in other ma-

chines and there are at most min{M,d(v)} mirrors of v.

Mirroring Threshold. The mirroring technique is transparent to

programmers. But we can allow users to specify a mirroring thresh-

old τ such that mirroring is applied to a vertex v only if d(v) ≥ τ
(we will see shortly that τ can be automatically set by a cost model

following the result of Theorem 2). If a vertex has degree less than

τ , it sends messages through the normal message channel Chmsg

as usual. Otherwise, the vertex only sends messages to its mirrors,

and we call this message channel as the mirroring message channel,
or Chmir in short. In a nutshell, a message is sent either through

Chmsg or Chmir , depending on the degree of the sending vertex.

Figure 9 illustrates the concepts of Chmsg and Chmir , where

we only consider the message passing between two machines M1

and M2. The adjacency lists of vertices u1, u2, u3 and u4 in M1

are shown in Figure 9(a), and we consider how they send messages

to their common neighbor v2 residing in machine M2. Assume that

τ = 3, then as Figure 9(b) shows, u1, u2 and u3 send their mes-

sages, a(u1), a(u2) and a(u3), through Chmsg , while u4 sends its

message a(u4) through Chmir .

Mirroring v.s. Message Combining. Now let us assume that the

messages are to be applied with commutative and associative op-

erations at the receivers’ side, e.g., the message values are to be

summed up as in PageRank computation. In this case, a com-

biner can be applied on the message channel Chmsg . However, the

receiver-centric message combining is not applicable to the sender-
centric channel Chmir . For example, in Figure 9(b), when u4 in

M1 sends a(u4) to its mirror in M2, u4 does not need to know the

receivers (i.e., v1, v2, v3 and v4); thus, its message to v2 cannot be

combined with those messages from u1, u2 and u3 that are also to

be sent to v2. In fact, u4 only holds a list of the machines that con-

tain u4’s neighbors, i.e. {M2} in this example, and u4’s neighbors

v1, v2, v3 and v4 that are local to M2 are connected by u4’s mirror

in M2.

It may appear that u4’s message to its mirror is wasted, because

if we combine u4’s message with those messages from u1, u2 and

u3, then we do not need to send it through Chmir . However, we

note that a high-degree vertex like u4 often has many neighbors in

another worker machine, e.g., v1, v3 and v4 in addition to v2 in this

example, and the message is not wasted since the message is also

forwarded to v3 and v4, which are not the neighbors of any other

vertex in M1.

Choice of Mirroring Threshold. The above discussion shows that

there are cases where mirroring is useful, but it does not give any

formal guideline as to when exactly mirroring should be applied.



To this end, we conduct a theoretical analysis below on the inter-

play between mirroring and message combining. Our result shows

that mirroring is effective even when message combiner is used.

THEOREM 2. Given a graph G = (V,E) with n = |V | ver-
tices and m = |E| edges, we assume that the vertex set is evenly
partitioned among M machines (e.g., by hashing as in Pregel) and
each machine holds n/M vertices. We further assume that the
neighbors of a vertex in G are randomly chosen among V , and
the average degree degavg = m/n is a constant. Then, mir-
roring should be applied to a vertex v if v’s degree is at least
(M · exp{degavg/M}).

PROOF. Consider a machine Mi that contains a set of n/M ver-

tices, Vi = {v1, v2, . . . , vn/M}, where each vertex vj has �j neigh-

bors for 1 ≤ j ≤ n/M . Consider a specific vertex vj in Mi, and

infer how large �j should be so that applying mirroring on vj can

reduce the overall communication even when a combiner is used.

Consider an application where all vertices send messages to all

their neighbors in each superstep, such as in PageRank computa-

tion. Further consider vertex u ∈ Γout(vj). If another vertex

vk ∈ Vi \ {vj} sends messages through Chmsg and vk also has

u as its neighbor, then vj’s message to u is wasted since it can be

combined with vk’s message to u. We assume the worst case where

all vertices in Vi \ {vj} send messages through Chmsg . Since the

neighbors of a vertex in G are randomly chosen among V , we have

Pr{u ∈ Γout(vk)} = �k/n,

and therefore,

Pr{vj’s message to u is not wasted}
=

∏
vk∈Vi\{vj}

Pr{u �∈ Γout(vk)} =
∏

vk∈Vi\{vj}

(
1− �k

n

)
.

We regard each �k as a random variable whose value is chosen

independently from a degree distribution (e.g., power-law degree

distribution) with expectation E[�k] = m/n = degavg . Then, the

expectation of the above equation is given by

E

⎡
⎣ ∏

vk∈Vi\{vj}

(
1− �k

n

)⎤
⎦ =

∏
vk∈Vi\{vj}

E

[
1− �k

n

]

=
∏

vk∈Vi\{vj}

(
1− E[�k]

n

)
=

∏
vk∈Vi\{vj}

(
1− degavg

n

)

≥
∏

vk∈Vi

(
1− degavg

n

)
=

(
1− degavg

n

)n/M

.

For large graphs, we have

Pr{vj’s message to u is not wasted}

≈ lim
n→∞

(
1− degavg

n

)n/M

= exp

{
−degavg

M

}
,

where the last step is derived from limn→∞(1− 1/n)n = e−1.

According to the above discussion, the expected number of vj’s

neighbors that are not the neighbors of any other vertex(es) in Mi is

equal to �j · exp{−degavg/M}. In other words, if mirroring is not

used, vj needs to send at least �j ·exp{−degavg/M} messages that

are not wasted. On the other hand, if mirroring is used, vj sends

at most M messages, one to each mirror. Therefore, mirroring re-

duces the number of messages if �j · exp{−degavg/M} ≥ M ,

or equivalently, �j ≥ M · exp{degavg/M}. To conclude, choos-

ing τ = M · exp{degavg/M} as the degree threshold reduces the

communication cost.

Theorem 2 states that the choice of τ depends on the number

of workers, M , and the average vertex degree, degavg . A clus-

ter usually involves tens to hundreds of workers, while the aver-

age degree degavg of a large real world graph is mostly below 50.

Consider the scenario where M = 100 and degavg ≤ 50, then

τ ≤ 100e0.5=165. This shows that mirroring is effective even for

vertices whose degree is not very high. We remark that Theorem 2

makes some simplified assumption (e.g., G being a random graph)

for ease of analysis, which may not be accurate for a real graph.

However, our experiments in Section 7.1 show that Theorem 2 is

effective on real graphs.

Mirror Construction. Pregel+ constructs mirrors for all vertices

v with Γout(v) ≥ τ after the input graph is loaded and before

the iterative computation, although mirror construction can also be

pre-computed offline like GraphLab’s ghost construction. Specif-

ically, the neighbors in v’s adjacency list Γout is grouped by the

workers in which they reside. Each group is defined as Ni = {u ∈
Γout(v) | hash(u) = Mi}. Then, for each group Ni, v sends

〈v;Ni〉 to worker Mi, and Mi constructs a mirror of v with the ad-

jacency list Ni locally in Mi. Each vertex vj ∈ Ni also stores the

address of vj’s incoming message buffer Ij so that messages can

be directly forwarded to vj by v’s mirror in Mi.

During graph computation, a vertex v sends message 〈v, a(v)〉
to its mirror in worker Mi. On receiving the message, Mi looks up

v’s mirror from a hash table using v’s ID (similar to Tin described

in Section 4). The message value a(v) is then forwarded to the

incoming message buffers of v’s neighbors locally in Mi.

Handling Edge Fields. There are some minor changes to Pregel’s

programming interface for applying mirroring. In Pregel’s inter-

face, a vertex calls send_msg(tgt,msg) to send an arbitrary mes-

sage msg to a target vertex tgt. With mirroring, a vertex v sends

a message containing the value of its attribute a(v) to all its neigh-

bors by calling broadcast(a(v)) instead of calling send_msg(u, a(v))
for each neighbor u ∈ Γout(v).

Consider the algorithms described in Section 3. For PageRank, a

vertex v simply calls broadcast(pr(v)/|Γout(v)|); while for Hash-
Min, v calls broadcast(min(v)).

However, there are applications where the message value is not

only decided by the sender vertex v’s state, but also by the edge that

the message is sent along. For example, in Pregel’s algorithm for

single-source shortest path (SSSP) computation [13], a vertex sends

(d(v) + �(v, u)) to each neighbor u ∈ Γout(v), where d(v) is an

attribute of v estimating the distance from the source, and �(v, u)
is an attribute of its out-edge (v, u) indicating the edge length.

To support applications like SSSP, Pregel+ requires that each

edge object supports a function relay(msg), which specifies how

to update the value of msg before msg is added to the incoming

message buffer Ii of the target vertex vi. If msg is sent through

Chmsg , relay(msg) is called on the sender-side before sending. If

msg is sent through Chmir , relay(msg) is called on the receiver-

side when the mirror forwards msg to each local neighbor (as the

edge field is maintained by the mirror). For example, in Figure 9,

relay(msg) is called when msg is passed along a dashed arrow.

By default, relay(msg) does not change the value of msg. To

support SSSP, a vertex v calls broadcast(d(v)) in compute(), and

meanwhile, the function relay(msg) is overloaded to add the edge

length �(v, u) to msg, which updates the value of msg to the re-

quired value (d(v) + �(v, u)).

Summary of Contributions. GPS does not use message com-

bining, and therefore, its LALP technique are not as effective as

our mirroring technique that is reinforced with message combiner.

GraphLab’s ghost vertex technique creates mirrors for all vertices



regardless of the vertex degree, and thus it is also not as effective

as our mirroring technique. As far as we know, this is the first

work that considers the integration of vertex mirroring and mes-

sage combining in Pregel’s computing model. In addition, we also

identified the tradeoff between vertex mirroring and message com-

bining in message reduction, and provided a cost model to auto-

matically select vertices for mirroring so as to minimize the num-

ber of messages. As we shall see in our experiments in Section 7.1,

the mirroring threshold computed by our cost model in Theorem 2

achieves near-optimal performance. In addition, we also cope with

the case where the message value depends on the edge field, which

is not supported by GPS’s LALP technique.

6. THE REQUEST-RESPOND PARADIGM
In Sections 1, 3.4 and 3.5, we have shown that bottleneck vertices

can be generated by algorithm logic even if the input graph has no

high-degree vertices. For handling such bottleneck vertices, the

mirroring technique of Section 5 is not effective. To this end, we

design our second message reduction technique, which extends the

basic Pregel framework with a new request-respond functionality.

We illustrate the concept using the algorithms described in Sec-

tion 3. Using the request-respond API, attribute broadcast in Sec-

tion 3.1 is straightforward to implement: in superstep 1, each ver-

tex v sends requests to each neighbor u ∈ Γout(v) for a(u); in

superstep 2, the vertex v simply obtains a(u) responded by each

neighbor u, and constructs Γ̂out(v). Similarly, for the S-V algo-

rithm in Section 3.4, when a vertex v needs to obtain D[w] from

vertex w = D[v], it simply sends a request to w so that D[w] can

be used in the next superstep; for the MSF algorithm in Section 3.5,

a vertex v simply sends a request to its supervertex D[v] = s so

that D[s] can be used to update D[v] in the next superstep.

Request-Respond Message Channel. We now explain in de-

tail how Pregel+ supports the request-respond API. The request-

respond paradigm supports all the functionality of Pregel. In addi-

tion, it supplements the vertex-to-vertex message channel Chmsg

with a request-respond message channel, denoted by Chreq .

Figure 10 illustrates how requests and responses are exchanged

between two machines Mi and Mj through Chreq . Specifically,

each machine maintains M request sets, where M is the number of

machines, and each request set Sto k stores the requests to vertices

in machine Mk. In a superstep, a vertex v in machine Mj may call

request(u) in its compute() function to send request to vertex u for

its attribute value a(u) (which will be used in the next superstep).

Let hash(u) = i, then the requested vertex u is in machine Mi,

and hence u is added to the request set Sto i of Mj . Although many

vertices in Mj may send request to u, only one request to u will

be sent from Mj to Mi since Sto i is a (hash) set that eliminates

redundant elements.

After compute() is called for all active vertices, the vertex-to-

vertex messages are first exchanged through Chmsg . Then, each

machine sends each request set Sto k to machine Mk. After the re-

quests are exchanged, each machine receives M request sets, where

set Sfrom k stores the requests sent from machine Mk. In the exam-

ple shown in Figure 10, u is contained in the set Sfromj in machine

Mi, since vertex v in machine Mj sent request to u.

Then, a response set Rtok is constructed for each request set

Sfrom k received, which is to be sent back to machine Mk. In our

example, the requested vertex, u ∈ Sfromj , calls a user-specified

function respond() to return its specified attribute a(u), and adds

the entry 〈u, a(u)〉 to the response set Rtoj .

Once the response sets are exchanged, each machine constructs a

hash table from the received entries. In the example shown in Fig-
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Figure 10: Illustration of request-respond paradigm

ure 10, the entry 〈u, a(u)〉 is received by machine Mj since it is in

the response set Rtoj in machine Mi. The hash table is available for

the next superstep, where vertices can access their requested value

in their compute() function. In our example, vertex v in machine

Mj may call get_resp(u) in the next superstep, which looks up u’s

attribute a(u) from the hash table.

The following theorem shows the effectiveness of the request-

respond paradigm for message reduction.

THEOREM 3. Let {v1, v2, . . . , v�} be the set of requesters that
request the attribute a(u) from a vertex u. Then, the request-
respond paradigm reduces the total number of messages from 2� in
Pregel’s vertex-to-vertex message passing framework to 2min(M, �),
where M is the number of machines.

PROOF. The proof follows directly from the fact that each ma-

chine sends at most 1 request to u even though there may be more

than 1 requester in that machine, and that at most 1 respond from

u is sent to each machine that makes a request to u, and that there

are at most min(M, �) machines that contain a requester.

In the worst case, the request-respond paradigm uses the same

number of messages as Pregel’s vertex-to-vertex message passing.

But in practice, many Pregel algorithms (e.g., those described in

Sections 3.4 and 3.5) have bottleneck vertices with a large number

of requesters, leading to imbalanced workload and long elapsed

running time. In such cases, our request-respond paradigm effec-

tively bounds the number of messages to the number of machines

containing the requesters and eliminates the imbalanced workload.

Explicit Responding. In the above discussion, a vertex v simply

calls request(u) in one superstep, and it can then call get_resp(u) in

the next superstep to get a(u). All the operations including request

exchange, response set construction, response exchange, and re-

sponse table construction are performed by Pregel+ automatically

and are thus transparent to users. We name the above process as im-
plicit responding, where a responder does not know the requester

until a request is received.

When a responder w knows its requesters v, w can explicitly

call respond(v) in compute(), which adds 〈w,w.respond()〉 to the

response set Rto j where j = hash(v). This process is also illus-

trated in Figure 10. Explicit responding is more cost-efficient since

there is no need for request exchange and response set construction.

Explicit responding is useful in many applications. For example,

to compute PageRank on an undirected graph, a vertex v can simply

call respond(u) for each u ∈ Γ(v) to push a(v) = pr(v)/|Γ(v)| to

v’s neighbors; this is because in the next superstep, vertex u knows

its neighbors Γ(u), and can thus collect their responses. Similarly,

in attribute broadcast, if the input graph is undirected, each vertex

v can simply push its attribute a(v) to its neighbors. Note that



Data Type |V| |E| AVG Deg Max Deg
WebUK directed 133,633,040 5,507,679,822 41.21 22,429

LiveJournal directed 10,690,276 224,614,770 21.01 1,053,676
Twitter directed 52,579,682 1,963,263,821 37.34 779,958

BTC undirected 164,732,473 772,822,094 4.69 1,637,619
USA Road undirected 23,947,347 58,333,344 2.44 9

Figure 11: Datasets (M = million)

data pushing by explicit responding requires less messages than

by Pregel’s vertex-to-vertex message passing, since responds are

sent to machines (more precisely, their response tables) rather than

individual vertices.

Programming Interface. Pregel+ extends the vertex class in Pregel’s

interface [13] by requiring users to specify an additional template

argument <R>, which indicates the type of the attribute value that

a vertex responds.

In compute(), a vertex can either pull data from another vertex v
by calling request(v), or push data to v by calling respond(v). The

attribute value that a vertex returns is defined by a user-specified ab-

stract function respond(), which returns a value of type <R>. Like

compute(), one may program respond() to return different attributes

of a vertex in different supersteps according to the algorithm logic

of the specific application. Finally, a vertex may call get_resp(v) in

compute() to get the attribute of v, if it is pushed into the response

table in the previous superstep.

7. EXPERIMENTAL RESULTS
We now evaluate the effectiveness of our message reduction tech-

niques. We ran our experiments on a cluster of 16 machines, each

with 24 processors (two Intel Xeon E5-2620 CPU) and 48GB RAM.

One machine is used as the master, while the other 15 machines act

as slaves. The connectivity between any pair of nodes in the cluster

is 1Gbps.

We used five real-world datasets, as shown in Figure 11: (1)We-
bUK2: a web graph generated by combining twelve monthly snap-

shots of the .uk domain collected for the DELIS project; (2)Live-
Journal (LJ) 3: a bipartite network of LiveJournal users and their

group memberships; (3)Twitter4: Twitter who-follows-who network

based on a snapshot taken in 2009; (4)BTC5: a semantic graph

converted from the Billion Triple Challenge 2009 RDF dataset;

(5)USA6: the USA road network.

LJ, Twitter and BTC have skewed degree distribution; WebUK,

LJ and Twitter have relatively high average degree; USA and We-
bUK have a large diameter.

Pregel+ Implementation. Pregel+ is implemented in C/C++ as

a group of header files, and users only need to include the neces-

sary base classes and implement the application logic in their sub-

classes. Pregel+ communicates with HDFS through libhdfs, a JNI

based C API for HDFS. Each worker is simply an MPI process

and communications are implemented using MPI communication

primitives. While one may deploy Pregel+ with any Hadoop and

MPI version, we use Hadoop 1.2.1 and MPICH 3.0.4 in our ex-

periments. All programs are compiled using GCC 4.4.7 with -O2

option enabled.

2http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
3http://konect.uni-koblenz.de/networks/livejournal-
groupmemberships
4http://konect.uni-koblenz.de/networks/twitter_mpi
5http://km.aifb.kit.edu/projects/btc-2009/
6http://www.dis.uniroma1.it/challenge9/download.shtml

All the system source codes, as well as the source codes of the

algorithms discussed in this paper, can be found in http://www.

cse.cuhk.edu.hk/pregelplus.

7.1 Effectiveness of Mirroring
Figure 12 reports the performance gain by mirroring. We mea-

sure the gain by comparing with (1)Pregel+ without both mirror-

ing and combiner, denoted by Pregel-noMC; (2)Pregel+ with com-

biner but without mirroring, denoted by Pregel-noM; and (3)GPS [18]

with and without LALP. The request-respond technique is not ap-

plied in Pregel+ for this set of experiments. As a reference, we

also report the performance of Giraph 1.0.0 [1] (with combiner)

and GraphLab 2.2 (which includes PowerGraph [5]).

We test the mirroring thresholds 1, 10, 100, 1000, and the one

automatically set by the cost model given by Theorem 2 (which is

199, 165, 62, 126, for WebUK, Twitter, LJ, BTC, respectively). But

for the USA road network, its maximum vertex degree is only 9 and

thus we do not apply mirroring with large thresholds. For GPS, we

follow [8] and fix the threshold of LALP as 100. This is a rea-

sonable choice, since [8] reports that this threshold achieves good

performance in general, and we find that the best performance af-

ter tuning the threshold is very close to the performance when the

threshold is 100. We also report the preprocessing time of con-

structing mirrors for Pregel+ and that of LALP for GPS in rows

marked by “Preproc Time”. We also report the number of mes-

sages sent by Pregel+ and GPS (note that Giraph does not report

the number of messages, but the number should be the same as that

of Pregel-noMC and Pregel-noM; while GraphLab does not employ

message passing).

We ran PageRank on the three directed graphs, and Hash-Min
on the two undirected graphs in Figure 11. For PageRank compu-

tation, we use aggregator to check whether every vertex changes

its PageRank value by less than 0.01 after each superstep, and ter-

minate if so. The computation takes 89, 89 and 96 supersteps on

WebUK, Twitter and LJ, respectively, before convergence. We do

not run GraphLab in asynchronous mode for PageRank, since its

convergence condition is different from the synchronous version

and hence leads to different PageRank results.

Mirroring in Pregel+. As Figure 12 shows, mirroring signif-

icantly improves the performance of Pregel-noM, in terms of the

reduction in both running time and message number. The improve-

ment is particularly obvious for the graphs, Twitter, LJ, and BTC,

which have highly skewed degree distribution. Thus, the result also

demonstrates the effectiveness of mirroring in workload balancing.

Mirroring is not so effective for PageRank on WebUK, for which

Pregel-noM has the best performance. The number of messages is

only slightly decreased when mirroring threshold τ = 1000, and

yet it is still slower than Pregel-noM. This is because messages sent

through Chmir are intercepted by mirrors which incurs additional

cost. Since the degree of the majority of the vertices in WebUK is

not very high, mirroring does not significantly reduce the number

of messages, and thus, the additional cost of Chmir is not paid off.

The results also show that the mirroring threshold given by our

cost model achieves either the best performance, or close to the

performance of the best threshold tested. The one-off preprocess-

ing time required to construct the mirrors is also short compared

with the computation time.

Comparison with Other Systems. Figure 12 shows that Pregel+

without mirroring (i.e., Pregel-noM) is already faster than both Gi-

raph and GraphLab, which verifies that our Chmsg implementation

is efficient, and thus the performance gain by mirroring is not an

over-claimed improvement gained over a slow implementation.



Pregel+ Pregel+ with Mirroring GPS Giraph
GraphLab

Mirroring Thresholds
Sync AsyncnoM noMC 1 10 100 1000 Cost Model Basic LALP

PageRank
on WebUK

Comput Time 2669* 7732 5603 5561 3475 2784 2935 3909 4020 4834 4262

��

Preproc Time �� 162.29 143.00 46.68 32.79 26.66 �� 663.34 �� ��# of Msgs 120107 490184 319614 314212 168317 119889* 134734 487285 377687

PageRank
on Twitter

Comput Time 1575 3131 1621 1648 1177 1381 1048 1343 750.11* 1567 1762
Preproc Time �� 40.74 41.34 24.13 8.63 14.31 �� 74.95 �� ��# of Msgs 62276 174730 68430 65770 40980 48616 38873* 174730 78904

PageRank
on LJ

Comput Time 316.26 541.53 251.98 255.26 212.35 243.32 216.05 316.45 197.28* 312 662
Preproc Time �� 9.95 7.72 3.75 1.07 3.94 �� 8.17 �� ��# of Msgs 6429 21563 5949 3949* 4209 5162 4359 21563 9665

Hash�����
on BTC

Comput Time 26.97 44.28 29.95 15.53 9.55* 10.69 9.85 37.99 33.00 93 83 155
Preproc Time �� 20.74 6.63 5.92 5.56 5.41 �� 3.52 �� ��# of Msgs 1189 2419 1294 259.4 126.1 152.4 122.5* 1525 716.4

Hash�����
on USA

Comput Time 546.86 546.66 542.69*
��

1205
��

5714 2982 627
Preproc Time �� 4.52 �� �� ��# of Msgs 8353 8485 8305 8485

Figure 12: Effects of mirroring (�: best result; Comput/Preproc time: Computation/Preprocessing time in sec; # of Msgs: # of
messages in millions)

Compared with GPS, the reduction in both message number and

running time achieved by the integration of mirroring and com-
biner in Pregel+ is significantly more than that achieved by LALP
alone in GPS, which can be observed from (1)Pregel+ with mir-

roring vs. Pregel-noMC, and (2)GPS with LALP v.s. GPS without

LALP. In contrast to the claim in [18] that message combining is

not effective, our result clearly demonstrates the benefits of inte-

grating mirroring and combiner, and hence highlights the impor-

tance of our theoretical analysis on the tradeoff between mirroring

and message combining (i.e., Theorem 2).

However, we notice that GPS is sometimes faster than Pregel+

even though much more messages are exchanged. We found it hard

to explain and so we studied the codes of GPS to explore the reason,

which we explain below. GPS requires that vertex IDs should be

integers that are contiguous starting from 0, 1, · · · , |V |; while other

systems allow vertex IDs to be of any user-specified type as long as

a hash function is provided (for calculating the ID of the worker that

a vertex resides in). As a result of the dense ID representation, each

worker in GPS simply maintains the incoming message buffers of

the vertices by an array, and when a worker receives a message

targeted at vertex tgt, it is put into tgt’s incoming message buffer

(i.e., Itgt) whose position in the array can be directly computed

from tgt. On the contrary, systems like Pregel+ and Giraph need to

look up Itgt from a hash table using key tgt, which has extra cost

for each message exchanged.

We remark that there are good reasons to require vertex IDs to

take arbitrary type, rather than to hard-code them as contiguous in-

tegers. For example, the Pregel algorithm in [24] for computing

bi-connected components constructs an auxiliary graph from the

input graph, and each vertex of the auxiliary graph corresponds to

an edge (u, v) of the input graph. While we can simply use integer

pair as vertex ID in Pregel+, using GPS requires extra effort from

programmers to relabel the vertices of the auxiliary graph with con-

tiguous integer IDs, which can be costly for a large graph. We note

that, if one desires, he can easily implement GPS’s dense vertex

ID representation in Pregel+ to further improve the performance

for certain algorithms, but this is not the focus of our work which

studies message reduction techniques.

7.2 Effectiveness of Request-Respond Technique
Figure 13 reports the performance gained by the request-respond

technique. We test the three algorithms in Section 3 to which the

request-respond technique is applicable: attribute broadcast, S-V
and minimum spanning forest. We also include Giraph and GPS

Pregel+ ReqResp Giraph GPS 
Attribute Broadcast on WebUK

Time 178.4 s 84.53 s 169.28 s 83.71 s*
Msg # 11015 M 2699 M* 10950 M

Attribute Broadcast on BTC
Time 16.33 s 13.31 s 54.76 s 8.69 s*
Msg # 772.8 M 393.2 M* 772.8 M

Attribute Broadcast on LJ
Time 11.66 s 9.09 s 11.56 s 6.43 s*
Msg # 449.2 M 131.9 M* 449.2 M

Attribute Broadcast on Twitter
Time 59.84 s 29.65 s* 71.35 s 29.93 s
Msg # 3927 M 1396 M* 3927 M

Pregel+ ReqResp Giraph GPS 
S-V on USA

261.93 s 137.69 s* 690 s 189.77 s
6598 M 3789 M* 6598M

S-V on BTC
408.78 s 190.55 s* 1531 s 286.22 s
22393 M 11232 M* 22393M
Minimum Spanning Forest on USA

19.95 s* 25.20 s 259.63 s 85.15 s
387.1 M 162.2 M* 387.1 M
Minimum Spanning Forest on BTC
83.36 s 36.56 s* 350.15 s 209.92 s
2424 M 1110 M* 2424 M

Figure 13: Effects of the request-respond technique

as a reference. We do not include GraphLab since the algorithms

cannot be easily implemented in GraphLab (e.g., it is not clear how

a vertex v can communicate with a non-neighbor D[v] as in S-V
and minimum spanning forest).

The results show that Pregel+ with request-respond, denoted by

ReqResq, uses significantly less messages. For example, for at-
tribute broadcast on WebUK, ReqResq reduces the message num-

ber from 11,015 million to only 2,699 million. ReqResq also records

the shortest running time except in a few cases where GPS is faster

due to the same reason given in Section 7.1. Another exception is

when computing minimum spanning forest on USA, where Pregel+

is faster without request-respond. This is because vertices in USA
have very low degree, rendering the request-respond technique in-

effective, and the additional computational overhead is not paid off

by the reduction in message number.

8. CONCLUSIONS
We presented two techniques to reduce the amount of commu-

nication and to eliminate skewed communication workload. The

first technique, mirroring, eliminates communication bottlenecks

caused by high vertex degree, and is transparent to programming.

The second technique is a new request-respond paradigm, which

eliminates bottlenecks caused by program logic, and simplifies the

programming of many Pregel algorithms. Our experiments on large

real-world graphs verified that our techniques are effective in re-

ducing the communication cost and overall computation time.
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