Exploring Efficient Similarity Search Algorithms with K-Nearest Neighbor Graph

Final Year Project – Term 2

HU Bin (Evan)

Agenda

- Review of Hashing/Graph-Based Algorithms
- GNNS on KNN Graph
- GNNS on PCA Hashing-Based AKNN Graph
- Future Work
- Q&A

1. Review of Hashing/Graph-Based Algorithms

Hashing Based Methods

Common in LSH, PCAH, ITQ: Use hashing matrix to hash the original data to buckets

Locality Sensitive Hashing (LSH)

Map each vector in $X = [x_1, ..., x_n] \in \mathbb{R}^{d \times n}$ to a c-bit binary code H(x)

$$\boldsymbol{H}(\boldsymbol{x}) = [h_1(\boldsymbol{x}), \dots, h_c(\boldsymbol{x})]$$

where

$$h_l(\boldsymbol{x}) = sgn(\boldsymbol{x}\boldsymbol{w}_l^T) \in \{0, 1\}$$

is the l-th hash function and with w_l being a randomly generated weight vector

Locality Sensitive Hashing (LSH)

Use Hamming distance $d_H(a, b)$ as a proxy and scan through items that fall in hash buckets that fall within a radius r_H to H(q), i.e., return

 $argmin_{x \in \{x:d_H(x,q) \le r_H\}} d(x,q)$

where d_H is the Hamming distance function and $d_H(a, b)$ is the Hamming distance between the two binary codes

Note that d_H can be efficiently computed with low-level hardware operation XOR

Locality Sensitive Hashing (LSH)

Example LSH in 2-D space

Green: the query point *q* green star Red: its NN neighbors Black: other data points

Hyperplanes I1, I2, and I3 to separate the 2-D space into seven parts

To achieve a 100% recall, one must specify the parameter to be $r_H \ge 2$

K-Nearest Neighbor (kNN) Graph

Let $\mathcal{N}_k(\mathbf{x})$ denote the set of k nearest nodes of data point \mathbf{x} in the reference set $\mathbf{X} = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$

A KNN graph is a directed graph $\mathcal{G} = (X, E)$, where E is the directed edge set where

vertex x_i is connected to vertex $x_j \Leftrightarrow x_j \in \mathcal{N}_k(x_i)$.

starting from a randomly selected item, iterative hill-climbing takes place and lead the search to reach near the query target Q

Graph Nearest Neighbor Search (GNNS)

Starting from a randomly selected item, iterative hill-climbing takes place and lead the search to reach near the query target Q

 $S \leftarrow \{\} \text{ is the set of visited nodes} \\ \mathcal{U} \leftarrow \{\} \text{ is the set of } \rho \text{ distance measures of the visited nodes against } q \\ \text{for } r = 1, \dots, R \text{ do} \\ \text{Randomly select an item } y_0 \text{ from } X \\ \text{for } t = 1, \dots, T \text{ do} \\ \text{Update } y_t = argmin_{y \in \mathcal{N}_E(y_{t-1})} \rho(y, q) \\ \text{Update } S = S \cup \mathcal{N}_E(y_{t-1}) \\ \text{Update } \mathcal{U} = \mathcal{U} \cup \{\rho(y, q) \mid y \in \mathcal{N}_E(y_{t-1})\} \\ \text{Return the } k \text{ items in } S \text{ with minimum corresponding } \rho \text{ in } \mathcal{U} \end{cases}$

2. GNNS on KNN Graph

Graph Construction

Dataset	Cardinality	Dimension	Construction Method	Time	Graph Quality	
SIFT1m_10k	10,000	128	naïve_knn	4m46.990s	100%	
SIFT1m_10k	10,000	128	fast_knn	2m51.005s	100%	
SIFT1m_10k	10,000	128	pcah_aknn	0m25.055s	84.17%	

naïve_knn: n^2 distance computations, O(*nlogn*) finding top k fast_knn: $\frac{n^2}{2}$ distance computations, O(*n*) finding top k pcah knn: even better

GNNS Search Results – CIFAR60k

GNNS Search Results – GIST_10k

GNNS Search Results – GIST_10k

3. GNNS on PCA Hashing-Based AKNN Graph

Constructing Approximate KNN (AKNN) with PCAH

Idea

Limit the search range

Results

Code			Code			Code		
Len	8		Len	16		Len	32	
maxHa	Recall	Scan	maxHa	Recall	Scan	maxHa	Recall	Scan
m	(%)	Rate(%)	m	(%)	Rate(%)	m	(%)	Rate(%)
2	67.44	14.98	4	40.51	4.13	8	10.50	0.45
4	97.46	63.65	8	97.39	59.79	16	96.22	56.93

GIST_10k

Code			Co	ode			Code		
Len	8		Le	en	16		Len	32	
maxHa	Recall	Scan	m	ахНа	Recall	Scan	maxHa	Recall	Scan
m	(%)	Rate(%)	m		(%)	Rate(%)	m	(%)	Rate(%)
2	84.17	14.64		4	69.30	4.46	8	39.40	0.65
4	99.37	62.36		8	99.67	59.01	16	99.79	56.24

SIFT1m_10k

Perform GNNS on AKNN

GIST_10k

Perform GNNS on AKNN

More efficient construction

GIST_10k

4. Future Work

4. Future work

Work

Construct AKNN with more iterations of hashing Use PCA hashing to generate seeds for searching Small-World Graph instead on KNN

5. Small world Graph instead on

Report

Compare with LSH based AKNN results
Add CIFAR60k

Appendix

- Distance measure
- From NN Search to ANN Search
- ML Methods
- Time complexity analysis
- Hashing methods

Appendix – Distance measure

We have assumed I2-distance, which is popular

Other distance measures:

Euclidean distance other than I2, cosine similarity, Jaccard similarity

Appendix – From NN Search to ANN Search

NN Search

- Linear Scan
- Tree-based structures

Optimal guaranteed but unacceptably slow

ANN Search

- Hashing: LSH, PCAH, ITQ
- kNN graph search

Optimal guaranteed but unacceptably slow

Appendix – ML Methods

There are advantages that similarity search methods have:

- Avoid overfitting of parameters, because no parameter learning is required
- Can naturally handle a huge number of classes
- Require no training/learning phase

In the studies, a method named Naive-Bayes Nearest-Neighbor (NBNN) similarity search based methods are also be shown to perform in line with top leading learning-based image classifiers

Appendix – Time complexity analysis

Algorithm	Offline	Online
LSH	O(cdN)	O(N/2 ^{c*} r(d*logR))
PCAH/ITQ	O(d^2(d+N))	$O(N/2^{c*}r(d*logR))$
kNN	O(N ² (d+logk))	O(sdE * logk)

Appendix - Principle Component Analysis Hashing (PCAH)

Instead of randomly generated hash functions, try to obtain more meaningful ones so that the variance of each bit is maximized and the bits are pairwise independent, i.e., maximize the objective function:

$$\mathcal{L}(\boldsymbol{W}) = \sum_{k} var(h_{k}(\boldsymbol{x})) = \sum_{k} var(sgn(\boldsymbol{w}_{k}^{T}\boldsymbol{x})), \frac{1}{N}\boldsymbol{B}^{T}\boldsymbol{B} = \boldsymbol{I}$$

where **B** is the binary code matrix generated by the hash functions

Appendix - Principle Component Analysis Hashing (PCAH)

The objective function is undifferentiable, hence the relaxation to maximize the variance of the projected values:

$$\hat{\mathcal{L}}(\boldsymbol{W}) = \sum_{k} \mathbb{E}(\|\boldsymbol{x}\boldsymbol{w}_{k}\|^{2}) = \frac{1}{n} tr(\boldsymbol{W}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{W}), \boldsymbol{W}^{T}\boldsymbol{W} = \boldsymbol{I}$$

The constraint requires the hashing hyperplanes to be orthogonal to each other. Essentially the relaxed objective function is the same as that of PCA

Appendix - Iterative Quantization (ITQ)

Both LSH and PCAH are hashing the items and then performing binary quantization. There is quantization error which is the error between the projected values v and the quantized binary values sgn(v):

$$\mathcal{E} = \| \boldsymbol{v} - sgn(\boldsymbol{v}) \|^2$$

Smaller the error \mathcal{E}_{i} the better the binary codes will preserve the original locality structure

Appendix - Iterative Quantization (ITQ)

Rotate the data to achieve the optimized error

