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1. Review of Hashing/Graph-Based Algorithms 



Hashing Based Methods 

Common in LSH, PCAH, ITQ: 

 Use hashing matrix to hash the original data to buckets 

 

 



Locality Sensitive Hashing (LSH) 

Map each vector in 𝑿 = 𝒙1, … , 𝒙𝑛  ∈  ℝ𝑑×𝑛 to a c-bit binary code 
𝑯(𝒙) 

 
𝑯 𝒙 = [ℎ1 𝒙 , … , ℎ𝑐 𝒙 ] 

where 

ℎ𝑙 𝒙 = 𝑠𝑔𝑛(𝑥𝒘𝑙
𝑇) ∈ 0, 1   

is the 𝑙-th hash function and with 𝒘𝑙  being a randomly generated 
weight vector 



Locality Sensitive Hashing (LSH) 

Use Hamming distance 𝑑𝐻(𝒂, 𝒃) as a proxy and scan through items that 
fall in hash buckets that fall within a radius 𝑟𝐻 to 𝑯(𝒒), i.e., return 

 
𝑎𝑟𝑔𝑚𝑖𝑛𝒙∈ 𝒙:𝑑𝐻 𝒙,𝒒 ≤𝑟𝐻

𝑑(𝒙, 𝒒) 

 

where 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is the 
Hamming distance between the two binary codes 

 

Note that 𝑑𝐻 can be efficiently computed with low-level hardware 
operation XOR 



Locality Sensitive Hashing (LSH) 

Green: the query point 𝒒 green star 
Red: its NN neighbors 
Black: other data points 
 
Hyperplanes l1, l2, and l3 to separate 
the 2-D space into seven parts 

Example LSH in 2-D space 

To achieve a 100% recall, one must specify the parameter to be 𝑟𝐻 ≥ 2  



K-Nearest Neighbor (kNN) Graph 

Let 𝒩𝑘 𝒙  denote the set of k nearest nodes of data point 𝒙 in the 
reference set 𝑿 = 𝑥1, … , 𝑥𝑛  ∈  ℝ𝑑×𝑛 
 
 
A KNN graph is a directed graph 𝒢 = (𝑿, 𝑬), where 𝑬 is the directed 
edge set where 
 

vertex 𝒙𝑖 is connected to vertex 𝒙𝑗  ⟺ 𝒙𝑗  ∈  𝒩𝑘 𝒙𝑖 . 

 
starting from a randomly selected item, iterative hill-climbing takes place and lead the search to reach near the 

query target Q 



Graph Nearest Neighbor Search (GNNS) 

Starting from a randomly selected item, iterative hill-climbing takes 
place and lead the search to reach near the query target Q 

 

𝒮 ← {} is the set of visited nodes 
𝒰 ← {} is the set of 𝜌 distance measures of the visited nodes against 𝒒 
for 𝑟 = 1, … , 𝑅 do 

Randomly select an item 𝒚0 from 𝑿 
for 𝑡 = 1, … , 𝑇 do 

Update 𝒚𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒚∈𝒩𝐸 𝒚𝒕−𝟏
𝜌(𝒚, 𝒒) 

Update 𝒮 = 𝒮 ∪ 𝒩𝐸 𝒚𝒕−𝟏  
Update 𝒰 = 𝒰 ∪ 𝜌 𝒚, 𝒒   𝒚 ∈ 𝒩𝐸 𝒚𝒕−𝟏 } 

Return the 𝑘 items in 𝒮 with minimum corresponding 𝜌 in 𝒰 
 



2. GNNS on KNN Graph 



Graph Construction 

naïve_knn: 𝑛2 distance computations, O(𝑛𝑙𝑜𝑔𝑛) finding top k 

fast_knn: 
𝑛2

2
 distance computations, O(𝑛) finding top k 

pcah_knn: even better 

Dataset Cardinality Dimension Construction Method Time Graph Quality 

SIFT1m_10k 10,000 128 naïve_knn 4m46.990s 100% 

SIFT1m_10k 10,000 128 fast_knn 2m51.005s 100% 

SIFT1m_10k 10,000 128 pcah_aknn 0m25.055s 84.17% 

 

 



GNNS Search Results – CIFAR60k 

Beating Hashing Techniques 
 
K ↑, Performance ↑ 
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GNNS Search Results – GIST_10k 

Beating Hashing Techniques 
 
K ↑, Performance ↑ 
 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

R
ec

al
l 

Time 

ITQ

PCAH

KNN_5

KNN_10

KNN_20



GNNS Search Results – GIST_10k 

Beating Hashing Techniques 
 
K ↑, Performance ↑ 
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3. GNNS on PCA Hashing-Based AKNN Graph 
 



Constructing Approximate KNN (AKNN) with PCAH 

Idea Results 

Limit the search range 
 

Code 
Len 8 

Code 
Len 16 

Code 
Len 32 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

2 67.44 14.98 4 40.51 4.13 8 10.50 0.45 

4 97.46 63.65 8 97.39 59.79 16 96.22 56.93 

Code 
Len 8 

Code 
Len 16 

Code 
Len 32 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

maxHa
m 

Recall 
(%) 

Scan 
Rate(%) 

2 84.17 14.64 4 69.30 4.46 8 39.40 0.65 

4 99.37 62.36 8 99.67 59.01 16 99.79 56.24 

GIST_10k 
 

SIFT1m_10k 
 



Perform GNNS on AKNN 
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Similar recall 
 
More efficient construction 
 

GIST_10k 
 



Perform GNNS on AKNN 

Similar recall 
 
More efficient construction 
 

GIST_10k 
 

0

0.2

0.4

0.6

0.8

1

1.2

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R
ec

al
l 

Time 

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20



4. Future Work 



4. Future work 

 
Work 
 

1. Construct AKNN with more iterations of hashing 
2. Use PCA hashing to generate seeds for searching  
3. Small-World Graph instead on KNN 

  
Report 
 

1. Compare with LSH based AKNN results 
2. Add CIFAR60k 

 



THANK YOU 
Q&A 



Appendix 

• Distance measure 

• From NN Search to ANN Search 

• ML Methods 

• Time complexity analysis 

• Hashing methods 

 



Appendix – Distance measure 

We have assumed l2-distance, which is popular 

 

Other distance measures: 

Euclidean distance other than l2, cosine similarity, Jaccard similarity 

 



Appendix – From NN Search to ANN Search 

NN Search 
 

• Linear Scan 
• Tree-based structures 
 
Optimal guaranteed but 
unacceptably slow 

 

ANN Search 
 

• Hashing: LSH, PCAH, ITQ 
• kNN graph search 
 
Optimal guaranteed but 
unacceptably slow 

 



Appendix – ML Methods 

There are advantages that similarity search methods have:  
 
• Avoid overfitting of parameters, because no parameter learning is 

required 
• Can naturally handle a huge number of classes 
• Require no training/learning phase  

 
In the studies, a method named Naive-Bayes Nearest-Neighbor 
(NBNN) similarity search based methods are also be shown to 
perform in line with top leading learning-based image classifiers 
 



Appendix – Time complexity analysis 

Algorithm Offline Online 

LSH O(cdN) O(N/2c * r(d*logR)) 

PCAH/ITQ O(d^2(d+N)) O(N/2c * r(d*logR)) 

kNN O(N2(d+logk)) O(sdE * logk) 



Appendix - Principle Component Analysis Hashing (PCAH) 

Instead of randomly generated hash functions, try to obtain more 
meaningful ones so that the variance of each bit is maximized and the 
bits are pairwise independent, i.e., maximize the objective function: 

ℒ 𝑾 =  𝑣𝑎𝑟 ℎ𝑘 𝒙 =  𝑣𝑎𝑟 𝑠𝑔𝑛 𝒘𝑘
𝑇𝒙𝑘𝑘 ,

1

𝑁
𝑩𝑇𝑩 = 𝑰  

where 𝑩 is the binary code matrix generated by the hash functions 



Appendix - Principle Component Analysis Hashing (PCAH) 

The objective function is undifferentiable, hence the relaxation to 
maximize the variance of the projected values: 

ℒ 𝑾 =  𝔼(∥ 𝒙𝒘𝒌 ∥2) =
1

𝑛
𝑡𝑟(𝑾𝑇𝑿𝑇𝑿𝑾)𝑘 , 𝑾𝑇𝑾 = 𝑰  

The constraint requires the hashing hyperplanes to be orthogonal to 
each other. Essentially the relaxed objective function is the same as 
that of PCA 



Appendix - Iterative Quantization (ITQ) 

Both LSH and PCAH are hashing the items and then performing binary 
quantization. There is quantization error which is the error between 
the projected values 𝒗 and the quantized binary values 𝑠𝑔𝑛(𝒗): 

ℰ =∥ 𝒗 − 𝑠𝑔𝑛(𝒗) ∥2 

Smaller the error ℰ, the better the binary codes will preserve the 
original locality structure 



Appendix - Iterative Quantization (ITQ) 

Rotate the data to achieve the optimized error 


