
Exploring Efficient Similarity Search Algorithms

with K-Nearest Neighbor Graph

Final Year Project – Term 2

HU Bin (Evan)

Agenda

• Review of Hashing/Graph-Based Algorithms

• GNNS on KNN Graph

• GNNS on PCA Hashing-Based AKNN Graph

• Future Work

• Q&A

1. Review of Hashing/Graph-Based Algorithms

Hashing Based Methods

Common in LSH, PCAH, ITQ:

 Use hashing matrix to hash the original data to buckets

Locality Sensitive Hashing (LSH)

Map each vector in 𝑿 = 𝒙1, … , 𝒙𝑛 ∈ ℝ𝑑×𝑛 to a c-bit binary code
𝑯(𝒙)

𝑯 𝒙 = [ℎ1 𝒙 , … , ℎ𝑐 𝒙]

where

ℎ𝑙 𝒙 = 𝑠𝑔𝑛(𝑥𝒘𝑙
𝑇) ∈ 0, 1

is the 𝑙-th hash function and with 𝒘𝑙 being a randomly generated
weight vector

Locality Sensitive Hashing (LSH)

Use Hamming distance 𝑑𝐻(𝒂, 𝒃) as a proxy and scan through items that
fall in hash buckets that fall within a radius 𝑟𝐻 to 𝑯(𝒒), i.e., return

𝑎𝑟𝑔𝑚𝑖𝑛𝒙∈ 𝒙:𝑑𝐻 𝒙,𝒒 ≤𝑟𝐻

𝑑(𝒙, 𝒒)

where 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is the
Hamming distance between the two binary codes

Note that 𝑑𝐻 can be efficiently computed with low-level hardware
operation XOR

Locality Sensitive Hashing (LSH)

Green: the query point 𝒒 green star
Red: its NN neighbors
Black: other data points

Hyperplanes l1, l2, and l3 to separate
the 2-D space into seven parts

Example LSH in 2-D space

To achieve a 100% recall, one must specify the parameter to be 𝑟𝐻 ≥ 2

K-Nearest Neighbor (kNN) Graph

Let 𝒩𝑘 𝒙 denote the set of k nearest nodes of data point 𝒙 in the
reference set 𝑿 = 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑×𝑛

A KNN graph is a directed graph 𝒢 = (𝑿, 𝑬), where 𝑬 is the directed
edge set where

vertex 𝒙𝑖 is connected to vertex 𝒙𝑗 ⟺ 𝒙𝑗 ∈ 𝒩𝑘 𝒙𝑖 .

starting from a randomly selected item, iterative hill-climbing takes place and lead the search to reach near the

query target Q

Graph Nearest Neighbor Search (GNNS)

Starting from a randomly selected item, iterative hill-climbing takes
place and lead the search to reach near the query target Q

𝒮 ← {} is the set of visited nodes
𝒰 ← {} is the set of 𝜌 distance measures of the visited nodes against 𝒒
for 𝑟 = 1, … , 𝑅 do

Randomly select an item 𝒚0 from 𝑿
for 𝑡 = 1, … , 𝑇 do

Update 𝒚𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒚∈𝒩𝐸 𝒚𝒕−𝟏
𝜌(𝒚, 𝒒)

Update 𝒮 = 𝒮 ∪ 𝒩𝐸 𝒚𝒕−𝟏
Update 𝒰 = 𝒰 ∪ 𝜌 𝒚, 𝒒 𝒚 ∈ 𝒩𝐸 𝒚𝒕−𝟏 }

Return the 𝑘 items in 𝒮 with minimum corresponding 𝜌 in 𝒰

2. GNNS on KNN Graph

Graph Construction

naïve_knn: 𝑛2 distance computations, O(𝑛𝑙𝑜𝑔𝑛) finding top k

fast_knn:
𝑛2

2
 distance computations, O(𝑛) finding top k

pcah_knn: even better

Dataset Cardinality Dimension Construction Method Time Graph Quality

SIFT1m_10k 10,000 128 naïve_knn 4m46.990s 100%

SIFT1m_10k 10,000 128 fast_knn 2m51.005s 100%

SIFT1m_10k 10,000 128 pcah_aknn 0m25.055s 84.17%

GNNS Search Results – CIFAR60k

Beating Hashing Techniques

K ↑, Performance ↑

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

GNNS Search Results – GIST_10k

Beating Hashing Techniques

K ↑, Performance ↑

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

GNNS Search Results – GIST_10k

Beating Hashing Techniques

K ↑, Performance ↑

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

3. GNNS on PCA Hashing-Based AKNN Graph

Constructing Approximate KNN (AKNN) with PCAH

Idea Results

Limit the search range

Code
Len 8

Code
Len 16

Code
Len 32

maxHa
m

Recall
(%)

Scan
Rate(%)

maxHa
m

Recall
(%)

Scan
Rate(%)

maxHa
m

Recall
(%)

Scan
Rate(%)

2 67.44 14.98 4 40.51 4.13 8 10.50 0.45

4 97.46 63.65 8 97.39 59.79 16 96.22 56.93

Code
Len 8

Code
Len 16

Code
Len 32

maxHa
m

Recall
(%)

Scan
Rate(%)

maxHa
m

Recall
(%)

Scan
Rate(%)

maxHa
m

Recall
(%)

Scan
Rate(%)

2 84.17 14.64 4 69.30 4.46 8 39.40 0.65

4 99.37 62.36 8 99.67 59.01 16 99.79 56.24

GIST_10k

SIFT1m_10k

Perform GNNS on AKNN

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

Similar recall

More efficient construction

GIST_10k

Perform GNNS on AKNN

Similar recall

More efficient construction

GIST_10k

0

0.2

0.4

0.6

0.8

1

1.2

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

4. Future Work

4. Future work

Work

1. Construct AKNN with more iterations of hashing
2. Use PCA hashing to generate seeds for searching
3. Small-World Graph instead on KNN

Report

1. Compare with LSH based AKNN results
2. Add CIFAR60k

THANK YOU
Q&A

Appendix

• Distance measure

• From NN Search to ANN Search

• ML Methods

• Time complexity analysis

• Hashing methods

Appendix – Distance measure

We have assumed l2-distance, which is popular

Other distance measures:

Euclidean distance other than l2, cosine similarity, Jaccard similarity

Appendix – From NN Search to ANN Search

NN Search

• Linear Scan
• Tree-based structures

Optimal guaranteed but
unacceptably slow

ANN Search

• Hashing: LSH, PCAH, ITQ
• kNN graph search

Optimal guaranteed but
unacceptably slow

Appendix – ML Methods

There are advantages that similarity search methods have:

• Avoid overfitting of parameters, because no parameter learning is

required
• Can naturally handle a huge number of classes
• Require no training/learning phase

In the studies, a method named Naive-Bayes Nearest-Neighbor
(NBNN) similarity search based methods are also be shown to
perform in line with top leading learning-based image classifiers

Appendix – Time complexity analysis

Algorithm Offline Online

LSH O(cdN) O(N/2c * r(d*logR))

PCAH/ITQ O(d^2(d+N)) O(N/2c * r(d*logR))

kNN O(N2(d+logk)) O(sdE * logk)

Appendix - Principle Component Analysis Hashing (PCAH)

Instead of randomly generated hash functions, try to obtain more
meaningful ones so that the variance of each bit is maximized and the
bits are pairwise independent, i.e., maximize the objective function:

ℒ 𝑾 = 𝑣𝑎𝑟 ℎ𝑘 𝒙 = 𝑣𝑎𝑟 𝑠𝑔𝑛 𝒘𝑘
𝑇𝒙𝑘𝑘 ,

1

𝑁
𝑩𝑇𝑩 = 𝑰

where 𝑩 is the binary code matrix generated by the hash functions

Appendix - Principle Component Analysis Hashing (PCAH)

The objective function is undifferentiable, hence the relaxation to
maximize the variance of the projected values:

ℒ 𝑾 = 𝔼(∥ 𝒙𝒘𝒌 ∥2) =
1

𝑛
𝑡𝑟(𝑾𝑇𝑿𝑇𝑿𝑾)𝑘 , 𝑾𝑇𝑾 = 𝑰

The constraint requires the hashing hyperplanes to be orthogonal to
each other. Essentially the relaxed objective function is the same as
that of PCA

Appendix - Iterative Quantization (ITQ)

Both LSH and PCAH are hashing the items and then performing binary
quantization. There is quantization error which is the error between
the projected values 𝒗 and the quantized binary values 𝑠𝑔𝑛(𝒗):

ℰ =∥ 𝒗 − 𝑠𝑔𝑛(𝒗) ∥2

Smaller the error ℰ, the better the binary codes will preserve the
original locality structure

Appendix - Iterative Quantization (ITQ)

Rotate the data to achieve the optimized error

